1 |
YE Duzheng. Seasonal variation of the influence of the Tibetan Plateau on the atmospheric circulation[J]. Acta Meteorologica Sinica, 1952(): 33-47.
|
|
叶笃正. 西藏高原对于大气环流影响的季节变化[J]. 气象学报, 1952(): 33-47.
|
2 |
LIU X D, CHEN B D. Climatic warming in the Tibetan Plateau during recent decades[J]. International Journal of Climatology, 2000, 20(14): 1 729-1 742.
|
3 |
WU Guoxiong. Recent progress in the study of the Qinghai-Xizang Plateau climate dynamics in China[J]. Quaternary Research, 2004(1): 1-9.
|
|
吴国雄. 我国青藏高原气候动力学研究的近期进展[J]. 第四纪研究, 2004(1): 1-9.
|
4 |
MA Y M, ZHONG L, SU Z B, et al. Determination of regional distributions and seasonal variations of land surface heat fluxes from Landsat-7 enhanced Thematic Mapper data over the central Tibetan Plateau area[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D10). DOI:10.1029/2005JD006742 .
|
5 |
MA Y M, MENENTI M, FEDDES R, et al. Analysis of the land surface heterogeneity and its impact on atmospheric variables and the aerodynamic and thermodynamic roughness lengths[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D8). DOI:10.1029/2007JD009124 .
|
6 |
STULL R B. An introduction to boundary layer meteorology[M]. Dordrecht: Springer Science & Business Media, 2012.
|
7 |
ZUO H C, HU Y Q, LI D L, et al. Seasonal transition and its boundary layer characteristics in Anduo area of Tibetan Plateau[J]. Progress in Natural Science, 2005, 15(3): 239-245.
|
8 |
LI Maoshan, DAI Youxue, MA Yaoming, et al. Analysis on structure of atmospheric boundary layer and energy exchange of surface layer over mount Qomolangma region[J]. Plateau Meteorology, 2006, 25(5): 807-813.
|
|
李茂善, 戴有学, 马耀明 等. 珠峰地区大气边界层结构及近地层能量交换分析[J]. 高原气象, 2006, 25(5): 807-813.
|
9 |
CHE J H, ZHAO P. Characteristics of the summer atmospheric boundary layer height over the Tibetan Plateau and influential factors[J]. Atmospheric Chemistry and Physics, 2021, 21(7): 5 253-5 268.
|
10 |
GU L L, YAO J M, HU Z Y, et al. Characteristics of the atmospheric boundary layer’s structure and heating (cooling) rate in summer over the northern Tibetan Plateau[J]. Atmospheric Research, 2022, 269. DOI:10.1016/j.atmosres.2022.106045 .
|
11 |
CHEN X L, AÑEL J A, SU Z B, et al. The deep atmospheric boundary layer and its significance to the stratosphere and troposphere exchange over the Tibetan Plateau[J]. PLoS ONE, 2013, 8(2). DOI: 10.1371/journal.pone.0056909 .
|
12 |
ZHAO Ping, LI Yueqing, GUO Xueliang, et al. Earth-atmosphere coupling system on Qinghai-Tibet Plateau and its weather and climate effects: the third atmospheric science experiment on Qinghai-Tibet Plateau[J]. Acta Meteorologica Sinica, 2018, 76(6): 833-860.
|
|
赵平, 李跃清, 郭学良, 等. 青藏高原地气耦合系统及其天气气候效应: 第三次青藏高原大气科学试验[J]. 气象学报, 2018, 76(6): 833-860.
|
13 |
ZHUO Ga, XU Xiangde, CHEN Lianshou. Dynamical effect of boundary layer characteristics of Tibetan Plateau on general circulation[J]. Journal of Applied Meteorological Science, 2002, 13(2): 163-169.
|
|
卓嘎, 徐祥德, 陈联寿. 青藏高原边界层高度特征对大气环流动力学效应的数值试验[J]. 应用气象学报, 2002, 13(2): 163-169.
|
14 |
LI Jialun, HONG Zhongxiang, SUN Shufen. An observational experiment on the atmospheric boundary layer in gerze area of the Tibetan Plateau[J]. Chinese Journal of Atmospheric Sciences, 2000, 24(3): 301-312.
|
|
李家伦, 洪钟祥, 孙菽芬. 青藏高原西部改则地区大气边界层特征[J]. 大气科学, 2000, 24(3): 301-312.
|
15 |
CHEN Xuelong, MA Yaoming, HU Zeyong, et al. Analysis of atmospheric structure in Gaize region of western Tibetan Plateau during pre-onset and onset of monsoon[J]. Chinese Journal of Atmospheric Sciences, 2010, 34(1): 83-94.
|
|
陈学龙, 马耀明, 胡泽勇, 等. 季风爆发前后青藏高原西部改则地区大气结构的初步分析[J]. 大气科学, 2010, 34(1): 83-94.
|
16 |
LI Maoshan, MA Yaoming, MA Weiqiang, et al. Structural difference of atmospheric boundary layer between dry and rainy seasons over the central Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2011, 33(1): 72-79.
|
|
李茂善, 马耀明, 马伟强, 等. 藏北高原地区干、雨季大气边界层结构的不同特征[J]. 冰川冻土, 2011, 33(1): 72-79.
|
17 |
LI Ying, HU Zhili, ZHAO Hongmei. Overview on the characteristic of boundary layer structure in Tibetan Plateau[J]. Plateau and Mountain Meteorology Research, 2012, 32(4): 91-96.
|
|
李英, 胡志莉, 赵红梅. 青藏高原大气边界层结构特征研究综述[J]. 高原山地气象研究, 2012, 32(4): 91-96.
|
18 |
GERKEN T, BIERMANN T, BABEL W, et al. A modelling investigation into lake-breeze development and convection triggering in the Nam Co Lake Basin, Tibetan Plateau[J]. Theoretical and Applied Climatology, 2014, 117(1): 149-167.
|
19 |
SLÄTTBERG N, LAI H W, CHEN X L, et al. Spatial and temporal patterns of planetary boundary layer height during 1979-2018 over the Tibetan Plateau using ERA5[J]. International Journal of Climatology, 2022, 42(6): 3 360-3 377.
|
20 |
WANG Chunxiao, MA Yaoming, HAN Cunbo. Research on the atmospheric boundary layer structure and its development mechanism in the Tibetan Plateau[J]. Advances in Earth Science, 2023, 38(4): 414-428.
|
|
王春晓, 马耀明, 韩存博. 青藏高原大气边界层结构及其发展机制研究[J]. 地球科学进展, 2023, 38(4): 414-428.
|
21 |
WANG Jiemin. Land surface process experiments and interaction study in China—from HEIFE to IMGRASS and GAME-Tibet/TIPEX[J]. Plateau Meteorology, 1999, 18(3): 280-294.
|
|
王介民. 陆面过程实验和地气相互作用研究——从HEIFE到IMGRASS和GAME-Tibet/TIPEX[J]. 高原气象,1999,1(3):280-294.
|
22 |
WANG Jiemin, QIU Huasheng. Sino Japanese cooperation Asian monsoon experiment—the Tibetan Plateau experiment (GAME-Tibet)[J]. Journal of the Chinese Academy of Sciences, 2000(5): 386-388.
|
|
王介民, 邱华盛. 中日合作亚洲季风实验——青藏高原实验(GAME-Tibet)[J]. 中国科学院院刊, 2000(5): 386-388.
|
23 |
MA Yaoming, YAO Tandong, WANG Jiemin. Experimental study of energy and water cycle in Tibetan Plateau: the progress introduction on the study of GAME/Tibet and CAMP/Tibet[J]. Plateau Meteorology, 2006, 25(2): 344-351.
|
|
马耀明, 姚檀栋, 王介民. 青藏高原能量和水循环试验研究: GAME/Tibet与CAMP/Tibet研究进展[J]. 高原气象, 2006, 25(2): 344-351.
|
24 |
WANG Y J, XU X D, LIU H Z, et al. Analysis of land surface parameters and turbulence characteristics over the Tibetan Plateau and surrounding region[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(16): 9 540-9 560.
|
25 |
TAO S Y, LUO S W, ZHANG H C. The Qinghai-Xizang Plateau meteorological experiment (Qxpmex) May-August 1979[C]// Proceedings of international symposium on the Qinghai-Xizang Plateau and mountain meteorology. Boston, MA: American Meteorological Society, 1986: 3-13.
|
26 |
YANAI M, LI C F. Mechanism of heating and the boundary layer over the Tibetan Plateau[J]. Monthly Weather Review, 1994, 122(2): 305-323.
|
27 |
XU Xiangde, CHEN Lianshou. Advances of the study on Tibetan Plateau experiment of atmospheric sciences[J]. Journal of Applied Meteorological Science, 2006, 17(6): 756-772.
|
|
徐祥德, 陈联寿. 青藏高原大气科学试验研究进展[J]. 应用气象学报, 2006, 17(6): 756-772.
|
28 |
CHEN B J, HU Z Q, LIU L P, et al. Raindrop size distribution measurements at 4,500 m on the Tibetan Plateau during TIPEX-III[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(20): 11 092-11 106.
|
29 |
ZHAO P, XU X D, CHEN F, et al. The third atmospheric scientific experiment for understanding the Earth-atmosphere coupled system over the Tibetan Plateau and its effects[J]. Bulletin of the American Meteorological Society, 2018, 99(4): 757-776.
|
30 |
CHENG Linsheng. The current status of mesoscale numerical model development and its application prospects[J]. Plateau Meteorology, 1999, 18(3): 350-360.
|
|
程麟生. 中尺度大气数值模式发展现状和应用前景[J]. 高原气象, 1999, 18(3): 350-360.
|
31 |
ESTOQUE M A. A numerical model of the atmospheric boundary layer[J]. Journal of Geophysical Research, 1963, 68(4): 1 103-1 113.
|
32 |
DELAGE Y. A numerical study of the nocturnal atmospheric boundary layer[J]. Quarterly Journal of the Royal Meteorological Society, 1974, 100(425): 351-364.
|
33 |
ANDRÉ J C, de MOOR G, LACARRÈRE P, et al. Modeling the 24-hour evolution of the mean and turbulent structures of the planetary boundary layer[J]. Journal of the Atmospheric Sciences, 1978, 35(10): 1 861-1 883.
|
34 |
WANG Zhenghong, WANG Jiemin. Development of numerical models for atmospheric boundary layer[J]. Atmospheric Intelligence, 1995, 15(2): 1-5.
|
|
王政宏,王介民. 大气边界层数值模式的发展[J]. 大气情报, 1995, 15(2): 1-5.
|
35 |
WANG Rong, ZHANG Qiang, YUE Ping, et al. Summary and prospects of numerical simulation research of the atmospheric boundary layer[J]. Advances in Earth Science, 2020, 35(4): 331-349.
|
|
王蓉, 张强, 岳平, 等. 大气边界层数值模拟研究与未来展望[J]. 地球科学进展, 2020, 35(4): 331-349.
|
36 |
GRELL G A, DUDHIA J, STAUFFER D R. A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5)[Z]. NCAR Technical Note, 1995.
|
37 |
COTTON W R, PIELKE SR R A, WALKO R L, et al. RAMS 2001: current status and future directions[J]. Meteorology and Atmospheric Physics, 2003, 82(1): 5-29.
|
38 |
XUE M, DROEGEMEIER K K, WONG V. The Advanced Regional Prediction System (ARPS)—a multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: model dynamics and verification[J]. Meteorology and Atmospheric Physics, 2000(75): 161-193.
|
39 |
SKAMAROCK W C, KLEMP J B, DUDHIA J, et al. A description of the advanced research WRF model version 4.3[Z]. NCAR Technical Notes, 2021.
|
40 |
BALDAUF M, SEIFERT A, FÖRSTNER J, et al. Operational convective-scale numerical weather prediction with the COSMO model: description and sensitivities[J]. Monthly Weather Review, 2011, 139(12): 3 887-3 905.
|
41 |
SMAGORINSKY J. Role of numerical modeling[J]. Bulletin of the American Meteorological Society, 1967, 48(2): 89-93.
|
42 |
DEARDORFF J W. Numerical investigation of neutral and unstable planetary boundary layers[J]. Journal of the Atmospheric Sciences, 1972, 29(1): 91-115.
|
43 |
WOOD N, MASON P. The influence of static stability on the effective roughness lengths for momentum and heat transfer[J]. Quarterly Journal of the Royal Meteorological Society, 1991, 117(501): 1 025-1 056.
|
44 |
GRAY M E B, PETCH J, DERBYSHIRE S H, et al. Version 2.3 of the Met Office large eddy model: part II. scientific documentation[Z]. UK:The Met Office,2001.
|
45 |
ZHU P. Simulation and parameterization of the turbulent transport in the hurricane boundary layer by large eddies[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D17). DOI:10.1029/2007JD009643 .
|
46 |
WU Xiaoming. Introduction to MM5 mode system and applications[J]. Qinghai Meteorology, 2000(3): 59-61.
|
|
吴晓鸣. MM5模式系统及应用介绍[J]. 青海气象, 2000(3): 59-61.
|
47 |
ZHANG Jinshan, ZHONG Zhong, HUANG Jin. An introduction to meso-scale model MM5[J]. Marine Forecasts, 2005, 22(1): 31-40.
|
|
张金善, 钟中, 黄瑾. 中尺度大气模式MM5简介[J]. 海洋预报, 2005, 22(1): 31-40.
|
48 |
PIELKE R A, COTTON W R, WALKO R L, et al. A comprehensive meteorological modeling system—RAMS[J]. Meteorology and Atmospheric Physics, 1992, 49(1): 69-91.
|
49 |
XUE M, DROEGEMEIER K K, WONG V, et al. The Advanced Regional Prediction System (ARPS)—a multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: model physics and applications[J]. Meteorology and Atmospheric Physics, 2001, 76(3): 143-165.
|
50 |
LANG Fengwang, WANG Peng, LI Bo. Introduction of mesoscale meteorological model (ARPS)[J]. Sciences & Wealth, 2011(3): 118-119.
|
|
郎丰旺, 王鹏, 李波. 中尺度气象模式(ARPS)介绍[J]. 科学与财富, 2011(3): 118-119.
|
51 |
ZHANG Guocai. Progress of Weather Research and Forecast (WRF) modeland application in the United States[J]. Meteorological Monthly, 2004, 30(12): 27-31.
|
|
章国材. 美国WRF模式的进展和应用前景[J]. 气象, 2004, 30(12): 27-31.
|
52 |
BARROS A P, LETTENMAIER D P. Dynamic modeling of orographically induced precipitation[J]. Reviews of Geophysics, 1994, 32(3): 265-284.
|
53 |
TIAN W S, PARKER D J. Two-dimensional simulation of orographic effects on mesoscale boundary-layer convection[J]. Quarterly Journal of the Royal Meteorological Society, 2002, 128(584): 1 929-1 952.
|
54 |
COLLAUD C M, PRAZ C, HAEFELE A, et al. Determination and climatology of the planetary boundary layer height above the Swiss Plateau by in situ and remote sensing measurements as well as by the COSMO-2 model[J]. Atmospheric Chemistry and Physics, 2014, 14(23): 13 205-13 221.
|
55 |
HUANG Jing, ZHANG Qiang. Mesoscale atmospheric numerical simulation and its progress[J]. Arid Zone Research, 2012, 29 (3): 273-283.
|
|
黄菁, 张强. 中尺度大气数值模拟及其进展[J]. 干旱区研究, 2012, 29 (3): 273-283.
|
56 |
SUN Wenqi, LI Changyi. A review of atmospheric boundary layer parameterization schemes in numerical models[J]. Journal of Marine Meteorology, 2018, 38(3): 11-19.
|
|
孙文奇, 李昌义. 数值模式中的大气边界层参数化方案综述[J]. 海洋气象学报, 2018, 38(3): 11-19.
|
57 |
CHE Junhui, ZHAO Ping, SHI Qian, et al. Research progress in atmospheric boundary layer[J]. Chinese Journal of Geophysics, 2021, 64(3): 735-751.
|
|
车军辉, 赵平, 史茜, 等. 大气边界层研究进展[J]. 地球物理学报, 2021, 64(3): 735-751.
|
58 |
KUROWSKI M J, TEIXEIRA J. A scale-adaptive turbulent kinetic energy closure for the dry convective boundary layer[J]. Journal of the Atmospheric Sciences, 2018, 75(2): 675-690.
|
59 |
ZHANG X, BAO J W, CHEN B D, et al. A three-dimensional scale-adaptive turbulent kinetic energy scheme in the WRF-ARW model[J]. Monthly Weather Review, 2018, 146(7): 2 023-2 045.
|
60 |
KUELL V, BOTT A. A nonlocal three-dimensional turbulence parameterization (NLT3D) for numerical weather prediction models[J]. Quarterly Journal of the Royal Meteorological Society, 2022, 148(742): 117-140.
|
61 |
BANKS R F, TIANA-ALSINA J, BALDASANO J M, et al. Sensitivity of boundary-layer variables to PBL schemes in the WRF model based on surface meteorological observations, lidar, and radiosondes during the HygrA-CD campaign[J]. Atmospheric Research, 2016, 176/177: 185-201.
|
62 |
GÓMEZ I, RONDA R J, CASELLES V, et al. Implementation of non-local boundary layer schemes in the Regional Atmospheric Modeling System and its impact on simulated mesoscale circulations[J]. Atmospheric Research, 2016, 180: 24-41.
|
63 |
ONWUKWE C, JACKSON P L. Meteorological downscaling with WRF model, version 4.0, and comparative evaluation of planetary boundary layer schemes over a complex coastal airshed[J]. Journal of Applied Meteorology and Climatology, 2020, 59(8): 1 295-1 319.
|
64 |
MANTOVANI J A, ARAVÉQUIA J A, CARNEIRO R G, et al. Evaluation of PBL parameterization schemes in WRF model predictions during the dry season of the central Amazon Basin [J]. Atmosphere, 2023, 14(5). DOI:10.3390/atmos14050850 .
|
65 |
GRENIER H, BRETHERTON C S. A moist PBL parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers[J]. Monthly Weather Review, 2001, 129(3): 357-377.
|
66 |
BRETHERTON C S, PARK S. A new moist turbulence parameterization in the community atmosphere model[J]. Journal of Climate, 2009, 22(12): 3 422-3 448.
|
67 |
WEI W, PENG X D, LIN Y L, et al. Extension and evaluation of university of Washington moist turbulence scheme to gray-zone scales[J]. Journal of Advances in Modeling Earth Systems, 2022, 14(8). DOI:10.1029/2021MS002978 .
|
68 |
HOLTSLAG A A M, BOVILLE B A. Local versus nonlocal boundary-layer diffusion in a global climate model[J]. Journal of Climate, 1993, 6(10): 1 825-1 842.
|
69 |
NAKANISHI M, NIINO H. An improved mellor-Yamada level-3 model with condensation physics: its design and verification[J]. Boundary-Layer Meteorology, 2004, 112(1): 1-31.
|
70 |
LU Xulan, PENG Xindong. Parametric improvement of scale adaptive atmospheric boundary layer and its numerical simulation of a sea fog[J]. Acta Meteorologica Sinica, 2021, 79(1): 119-131.
|
|
卢绪兰, 彭新东. 尺度自适应大气边界层参数化改进及其对一次海雾的数值模拟研究[J]. 气象学报, 2021, 79(1): 119-131.
|
71 |
NAKANISHI M, NIINO H. An improved mellor-Yamada level-3 model: its numerical stability and application to a regional prediction of advection fog[J]. Boundary-Layer Meteorology, 2006, 119(2): 397-407.
|
72 |
JANJIĆ Z I. Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP meso model[Z]. UCAR Scientific Visitor, 2001.
|
73 |
SUKORIANSKY S, GALPERIN B, PEROV V. Application of a new spectral theory of stably stratified turbulence to the atmospheric boundary layer over sea ice[J]. Boundary-Layer Meteorology, 2005, 117(2): 231-257.
|
74 |
KOSOVIĆ B, CURRY J A. A large eddy simulation study of a quasi-steady, stably stratified atmospheric boundary layer[J]. Journal of the Atmospheric Sciences, 2000, 57(8): 1 052-1 068.
|
75 |
COHEN A E, CAVALLO S M, CONIGLIO M C, et al. A review of planetary boundary layer parameterization schemes and their sensitivity in simulating southeastern U.S. cold season severe weather environments[J]. Weather and Forecasting, 2015, 30(3): 591-612.
|
76 |
HONG S Y, PAN H L. Nonlocal boundary layer vertical diffusion in a medium-range forecast model[J]. Monthly Weather Review, 1996, 124(10): 2 322-2 339.
|
77 |
WYNGAARD J C, BROST R A. Top-down and bottom-up diffusion of a scalar in the convective boundary layer[J]. Journal of the Atmospheric Sciences, 1984, 41(1): 102-112.
|
78 |
MASS C F, OVENS D, WESTRICK K, et al. Does increasing horizontal resolution produce more skillful forecasts?[J]. Bulletin of the American Meteorological Society, 2002, 83(3): 407-430.
|
79 |
HONG S Y, NOH Y, DUDHIA J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Monthly Weather Review, 2006, 134(9): 2 318-2 341.
|
80 |
CONIGLIO M C, CORREIA J, MARSH P T, et al. Verification of convection-allowing WRF model forecasts of the planetary boundary layer using sounding observations[J]. Weather and Forecasting, 2013, 28(3): 842-862.
|
81 |
SHIN H H, HONG S Y. Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions[J]. Monthly Weather Review, 2015, 143(1): 250-271.
|
82 |
PLEIM J E. A combined local and nonlocal closure model for the atmospheric boundary layer. part I: model description and testing[J]. Journal of Applied Meteorology and Climatology, 2007, 46(9): 1 383-1 395.
|
83 |
PLEIM J E. A combined local and nonlocal closure model for the atmospheric boundary layer. part II: application and evaluation in a mesoscale meteorological model[J]. Journal of Applied Meteorology and Climatology, 2007, 46(9): 1 396-1 409.
|
84 |
BOUGEAULT P, LACARRERE P. Parameterization of orography-induced turbulence in a mesobeta: scale model[J]. Monthly Weather Review, 1989, 117(8): 1 872-1 890.
|
85 |
SHIN H H, HONG S Y. Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99[J]. Boundary-Layer Meteorology, 2011, 139(2): 261-281.
|
86 |
YE G J, ZHANG X, YU H. Modifications to three-dimensional turbulence parameterization for tropical cyclone simulation at convection-permitting resolution[J]. Journal of Advances in Modeling Earth Systems, 2023, 15(4). DOI:10.1029/2022MS003530 .
|
87 |
ZHOU Mingyu, XU Xiangde, BIAN Lingen, et al. Observational analysis and dynamic study of the atmospheric boundary layer on the Qinghai Tibet Plateau[M]. Beijing: China Meteorological Press, 2000.
|
|
周明煜, 徐祥德, 卞林根, 等. 青藏高原大气边界层观测分析与动力学研究[M].北京:中国气象出版社, 2000.
|
88 |
XU X D, ZHOU M Y, CHEN J Y, et al. A comprehensive physical pattern of land-air dynamic and thermal structure on the Qinghai-Xizang Plateau[J]. Science in China Series D: Earth Sciences, 2002, 45(7): 577-594.
|
89 |
YANG K, KOIKE T, FUJII H, et al. The daytime evolution of the atmospheric boundary layer and convection over the Tibetan Plateau: observations and simulations[J]. Journal of the Meteorological Society of Japan Series II, 2004, 82(6): 1 777-1 792.
|
90 |
ZHOU Wen, YANG Shengpeng, JIANG Xi, et al. Estimating planetary boundary layer height over the Tibetan Plateau using COSMIC radio occultation data[J]. Acta Meteorologica Sinica, 2018, 76(1): 117-133.
|
|
周文, 杨胜朋, 蒋熹, 等. 利用COSMIC掩星资料研究青藏高原地区大气边界层高度[J]. 气象学报, 2018, 76(1): 117-133.
|
91 |
LIU Hongyan, MIAO Manqian. Preliminary analysis on Characteristics of boundary layer in Qinghai-Tibet Paleau[J]. Journal of Nanjing University (Natural Sciences), 2001, 37(3): 348-357.
|
|
刘红燕,苗曼倩. 青藏高原大气边界层特征初步分析[J]. 南京大学学报(自然科学版), 2001, 37(3): 348-357.
|
92 |
CHOU Yan. Simulation study on the formation of deep boundary layer and its effects on near-surface ozone concentration[D]. Lanzhou: Lanzhou University,2022.
|
|
丑岩. 青藏高原深厚大气边界层的形成及其对臭氧传输影响的数值模拟研究[D]. 兰州:兰州大学,2022.
|
93 |
ZHOU Qiang, LI Guoping. Impact of the different boundary layer parameterization schemes on numerical simulation of plateau vortex moving eastward[J]. Plateau Meteorology, 2013, 32(2): 334-344.
|
|
周强, 李国平. 边界层参数化方案对高原低涡东移模拟的影响[J]. 高原气象, 2013, 32(2): 334-344.
|
94 |
WANG Qianru. Numerical simulation of the influence of atmospheric boundary layer height on plateau vortex in Tibetan Plateau[D]. Chengdu:Chengdu University of Information Engineering,2018.
|
|
王倩茹. 青藏高原大气边界层高度对高原涡影响的数值模拟[D]. 成都:成都信息工程大学,2018.
|
95 |
LI Maoshan, MA Yaoming, Shihua LÜ, et al. Modeling of near surface energy and characteristic of boundary layer in the northern Tibetan Plateau[J]. Plateau Meteorology, 2008, 27(1): 36-45.
|
|
李茂善, 马耀明, 吕世华, 等. 藏北高原地表能量和边界层结构的数值模拟[J]. 高原气象, 2008, 27(1): 36-45.
|
96 |
LI Fei, ZOU Han, ZHOU Libo, et al. Study of boundary layer parameterization schemes’ applicability of WRF model over complex underlying surfaces in southeast Tibet[J]. Plateau Meteorology, 2017, 36(2): 340-357.
|
|
李斐, 邹捍, 周立波, 等. WRF模式中边界层参数化方案在藏东南复杂下垫面适用性研究[J]. 高原气象, 2017, 36(2): 340-357.
|
97 |
XU Lujun, LIU Huizhi, XU Xiangde, et al. Evaluation of the WRF model to simulate atmospheric boundary layer simulation over Nagqu area in the Tibetan [J]. Acta Meteorologica Sinica, 2018, 76(6): 955-967.
|
|
许鲁君, 刘辉志, 徐祥德,等. WRF模式对青藏高原那曲地区大气边界层模拟适用性研究[J]. 气象学报, 2018, 76(6): 955-967.
|
98 |
XU Pei, LI Maoshan, CHANG Na, et al. Parameterized adaptation of the winter atmospheric boundary layer in the Nyingchi region of southeast Tibet[J]. Advances in Earth Science, 2023, 38(9): 954-966.
|
|
胥佩, 李茂善, 常娜, 等. 藏东南林芝地区冬季大气边界层参数化方案适应性研究[J]. 地球科学进展, 2023, 38(9): 954-966.
|
99 |
WANG Qianru, FAN Guangzhou, GE Fei, et al. Climatic characteristics of the diurnal variation boundary layer height over the Qinghai-Tibetan Plateau based on CERA-20C[J]. Plateau Meteorology, 2018, 37(6): 1 486-1 498.
|
|
王倩茹, 范广洲, 葛非, 等. 基于CERA-20C资料青藏高原边界层高度日变化气候特征分析[J]. 高原气象, 2018, 37(6): 1 486-1 498.
|
100 |
LAI Y, CHEN X L, MA Y M, et al. Impacts of the westerlies on planetary boundary layer growth over a valley on the north side of the central Himalayas[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(3). DOI:10.1029/2020JD033928 .
|
101 |
CHEN X L, ŠKERLAK B, ROTACH M W, et al. Reasons for the extremely high-ranging planetary boundary layer over the western Tibetan Plateau in winter[J]. Journal of the Atmospheric Sciences, 2016, 73(5): 2 021-2 038.
|
102 |
ZHAO C L, MENG X H, ZHAO L, et al. Energy mechanism of atmospheric boundary layer development over the Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2023,128(6). DOI:10.1029/2022JD037332 .
|
103 |
MA M J, PU Z X, WANG S G, et al. Characteristics and numerical simulations of extremely large atmospheric boundary-layer heights over an arid region in north-west China[J]. Boundary-Layer Meteorology, 2011, 140(1): 163-176.
|
104 |
GAO Dengyi. Glacier winds in the Rongbu valley of mount Qomolangma[J]. Journal of Glaciology and Geocryology, 1985, 7(3): 249-256.
|
|
高登义. 珠穆朗玛峰绒布河谷的冰川风[J]. 冰川冻土, 1985, 7(3): 249-256.
|
105 |
LIU Yu, ZOU Han, HU Fei. Observation study on atmospheric surface layer in rongbu valley in Zumolama Peak area of Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2004, 23(4): 512-518.
|
|
刘宇, 邹捍, 胡非. 青藏高原珠峰绒布河谷地区大气近地层观测研究[J]. 高原气象, 2004, 23(4): 512-518.
|
106 |
ZHONG Lei, MA Yaoming, LI Maoshan. An analysis of atmosphere turbulence and energy transfer characteristics of surface layer over rongbu valley in Mt. Qomolangma area[J]. Chinese Journal of Atmospheric Sciences, 2007, 31(1): 48-56.
|
|
仲雷, 马耀明, 李茂善. 珠穆朗玛峰绒布河谷近地层大气湍流及能量输送特征分析[J]. 大气科学, 2007, 31(1): 48-56.
|
107 |
SUN Fanglin, MA Yaoming, MA Weiqiang, et al. One observational study on atmospheric boundary layer structure in Mt. Qomolangma region[J]. Plateau Meteorology, 2006, 25(6): 1 014-1 019.
|
|
孙方林, 马耀明, 马伟强, 等. 珠峰地区大气边界层结构的一次观测研究[J]. 高原气象, 2006, 25(6): 1 014-1 019.
|
108 |
SONG Y, ZHU T, CAI X H, et al. Glacier winds in the Rongbuk Valley, north of Mount Everest: 1. meteorological modeling with remote sensing data[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D11). DOI:10.1029/2006JD007868 .
|
109 |
ZHU Lingyun, ZHANG Meigen, MA Shupo, et al. Numerical simulation of atmospheric boundary layer structure over Rongbuk valley of Mt. Qomolangma[J]. Plateau Meteorology, 2007, 26(6): 1 208-1 213.
|
|
朱凌云, 张美根, 马舒坡, 等. 珠峰绒布河谷大气边界层结构的数值模拟[J]. 高原气象, 2007, 26(6): 1 208-1 213.
|
110 |
CAI X H, SONG Y, ZHU T, et al. Glacier winds in the Rongbuk valley, north of Mount Everest: 2. their role in vertical exchange processes[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D11). DOI: 10.1029/2006JD007867 .
|
111 |
SUN F L, MA Y M, HU Z Y, et al. Mechanism of daytime strong winds on the northern slopes of Himalayas, near mount Everest: observation and simulation[J]. Journal of Applied Meteorology and Climatology, 2018, 57(2): 255-272.
|
112 |
Yaqiong LÜ, MA Yaoming, LI Maoshan, et al. Study on characteristic of atmospheric boundary layer over lake Namco region, Tibetan Plateau[J]. Plateau Meteorology, 2008, 27(6): 1 205-1 210.
|
|
吕雅琼, 马耀明, 李茂善, 等. 青藏高原纳木错湖区大气边界层结构分析[J]. 高原气象, 2008, 27(6): 1 205-1 210.
|
113 |
YOU Qinglong, KANG Shichang, LI Chaoliu, et al. Variation features of meteorological elements at Namco station, Tibetan Plateau[J]. Meteorological Monthly, 2007, 33(3): 54-60.
|
|
游庆龙, 康世昌, 李潮流, 等. 青藏高原纳木错气象要素变化特征[J]. 气象, 2007, 33(3): 54-60.
|
114 |
LI Zhaoguo, Shihua LÜ, WEN Lijuan, et al. Influence of incursion of dry cold air on atmospheric boundary layer process in Ngoring lake basin[J]. Plateau Meteorology, 2016, 35(5): 1 200-1 211.
|
|
李照国, 吕世华, 文莉娟, 等. 一次干冷空气过境对鄂陵湖地区大气边界层过程的影响[J]. 高原气象, 2016, 35(5): 1 200-1 211.
|
115 |
Yaqiong LÜ, MA Yaoming, LI Maoshan, et al. Numerical simulation of typical atmospheric boundary layer characteristics over lake Namco region, Tibetan Plateau in summer[J]. Plateau Meteorology, 2008, 27(4): 733-740.
|
|
吕雅琼, 马耀明, 李茂善, 等. 纳木错湖夏季典型大气边界层特征的数值模拟[J]. 高原气象, 2008, 27(4): 733-740.
|
116 |
YANG Xianyu, WEN Jun. Numerical simulation of characteristic of atmospheric boundary layer over lake Gyaring and Ngoring[J]. Plateau Meteorology, 2012, 31(4): 927-934.
|
|
杨显玉, 文军. 扎陵湖和鄂陵湖大气边界层特征的数值模拟[J]. 高原气象, 2012, 31(4): 927-934.
|
117 |
ZHANG Y S, HAN C B, MA Y M, et al. Influence of lake breezes on the triggering of moist convection on the Tibetan Plateau: a large-eddy simulation study[J]. Journal of the Atmospheric Sciences, 2024, 81(6): 983-998.
|
118 |
ZHANG Yunshuai, HUANG Qian, MA Yaoming, et al. Large eddy simulation study of the turbulent structure characteristics of the convective boundary layer over Ngoring lake and surrounding grassland in thesource region of the Yellow River[J]. Chinese Journal of Atmospheric Sciences, 2021, 45(2): 435-455.
|
|
张蕴帅, 黄倩, 马耀明,等. 黄河源区鄂陵湖湖面和湖边草地对流边界层湍流结构特征的大涡模拟研究[J]. 大气科学, 2021, 45(2): 435-455.
|
119 |
ZHANG Y S, HUANG Q, MA Y M, et al. Large eddy simulation of boundary-layer turbulence over the heterogeneous surface in the source region of the Yellow River[J]. Atmospheric Chemistry and Physics, 2021, 21(20): 15 949-15 968.
|
120 |
LI Zhaoguo, Shihua LÜ, AO Yinhuan, et al. Numerical simulation of impact of ecological environment change on lake effect in the source region of the Yellow River[J]. Plateau Meteorology, 2012, 31(6): 1 591-1 600.
|
|
李照国, 吕世华, 奥银焕, 等. 黄河源区生态环境变化对湖泊效应影响的数值模拟[J]. 高原气象, 2012, 31(6): 1 591-1 600.
|
121 |
HE You, YANG Kun, YAO Tandong, et al. Numerical simulation of a heavy precipitation in Qinghai-Xizang Plateau based on WRF model[J]. Plateau Meteorology, 2012, 31(5): 1 183-1 191.
|
|
何由, 阳坤, 姚檀栋, 等. 基于WRF模式对青藏高原一次强降水的模拟[J]. 高原气象, 2012, 31(5): 1 183-1 191.
|
122 |
LUAN Lan, MENG Xianhong, Shihua LÜ, et al. Impacts of microphysics and PBL physics parameterization on a convective precipitation over the Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2017, 36(2): 283-293.
|
|
栾澜, 孟宪红, 吕世华, 等. 青藏高原一次对流降水模拟中边界层参数化和云微物理的影响研究[J]. 高原气象, 2017, 36(2): 283-293.
|
123 |
XU G R, XIE Y F. Sensitivity of the summer precipitation simulated with WRF model to planetary boundary layer parameterization over the Tibetan Plateau and its downstream areas[J]. Journal of Geology & Geophysics, 2016, 5(4): 249-260.
|
124 |
ZHOU P F, MA M N, SHAO M, et al. Sensitivity of summer precipitation simulation to the physical parameterizations in WRF over the Tibetan Plateau: a case study of 2018[J]. Atmospheric Research, 2024, 299. DOI:10.1016/j.atmosres.2023.107174 .
|
125 |
XU L J, LIU H Z, DU Q, et al. The assessment of the plane- tary boundary layer schemes in WRF over the central Tibetan Plateau[J]. Atmospheric Research, 2019, 230. DOI: 10.1016/j.atmosres. 2019.104644 .
|
126 |
WANG Yinjun. Comparative study on simulation and observation of WRF boundary layer in southeastern Qinghai-Tibet Plateau[D].Nanjing: Nanjing University of Information Science & Technology, 2011.
|
|
王寅钧. 青藏高原东南部WRF边界层模拟与观测对比探讨研究[D]. 南京: 南京信息工程大学, 2011.
|
127 |
WEI Wei, BAI Jiayi. Research progress on the numerical simulation at gray-zone scales of the convective boundary layer[J]. Advances in Earth Science, 2024, 39(3): 221-231.
|
|
魏伟, 白嘉怡. 对流边界层灰区尺度数值模拟研究进展[J]. 地球科学进展, 2024, 39(3): 221-231.
|
128 |
GU H H, YU Z B, PELTIER W R, et al. Sensitivity studies and comprehensive evaluation of RegCM4.6.1 high-resolution climate simulations over the Tibetan Plateau[J]. Climate Dynamics, 2020, 54(7): 3 781-3 801.
|
129 |
LIN C G, CHEN D L, YANG K, et al. Impact of model resolution on simulating the water vapor transport through the central Himalayas: implication for models’ wet bias over the Tibetan Plateau[J]. Climate Dynamics, 2018, 51(9): 3 195-3 207.
|
130 |
MAUSSION F, SCHERER D, FINKELNBURG R, et al. WRF simulation of a precipitation event over the Tibetan Plateau, China—an assessment using remote sensing and ground observations[J]. Hydrology and Earth System Sciences, 2011, 15(6): 1 795-1 817.
|
131 |
BAO Yansong, JI Lingxiao, LI Huan, et al. Application of large eddy simulation on Qinghai-Xizang Plateau wind for airdrop[J]. Plateau Meteorology, 2024, 43(2): 293-302.
|
|
鲍艳松, 季凌潇, 李欢, 等. 面向空投的青藏高原风场大涡模拟研究[J]. 高原气象, 2024, 43(2): 293-302.
|
132 |
WU Yao, LI Yueqing, JIANG Xingwen, et al. Influence of two planetary boundary layer parameterization schemes on summer rain in 2013 on Tibet Plateau by WRF model[J]. Plateau and Mountain Meteorology Research, 2015, 35(2): 7-16.
|
|
吴遥, 李跃清, 蒋兴文, 等. 两种边界层参数化方案对WRF模拟青藏高原2013年夏季降水的影响[J]. 高原山地气象研究, 2015, 35(2): 7-16.
|
133 |
TANG Jie, GUO Xueliang, CHANG Yi. Cloud microphysics and regional water budget of a summer precipitation process at Naqu over the Tibetan Plateau[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(6): 1 327-1 343.
|
|
唐洁, 郭学良,常祎. 青藏高原那曲地区夏季一次对流云微物理及区域水分收支特征[J]. 大气科学, 2018, 42(6): 1 327-1 343.
|
134 |
LIU H C, ZHAO X N, DUAN K Q, et al. Optimizing simula- tion of summer precipitation by weather research and forecast- ing model over the mountainous southern Tibetan Plateau[J]. Atmospheric Research,2023,281. DOI: 10.1016/j.atmosres.2022.106484 .
|
135 |
LU Mingzhi, ZHOU Mingyu. A study on the entrainment effect in the convective boundary layer[J]. Chinese Journal of Atmospheric Science, 1988, 12(4): 420-429.
|
|
鲁明之,周明煜. 对流边界层中夹卷作用的研究[J]. 大气科学, 1988, 12(4): 420-429.
|
136 |
CHEN H, ZHU Q A, PENG C H, et al. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau[J]. Global Change Biology, 2013, 19(10): 2 940-2 955.
|
137 |
PREIN A F, LANGHANS W, FOSSER G, et al. A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges[J]. Reviews of Geophysics, 2015, 53(2): 323-361.
|
138 |
GAO Y H, XIAO L H, CHEN D L, et al. Comparison between past and future extreme precipitations simulated by global and regional climate models over the Tibetan Plateau[J]. International Journal of Climatology, 2018, 38(3): 1 285-1 297.
|
139 |
ZHOU X, YANG K, BELJAARS A, et al. Dynamical impact of parameterized turbulent orographic form drag on the simulation of winter precipitation over the western Tibetan Plateau[J]. Climate Dynamics, 2019, 53(1): 707-720.
|
140 |
LIU Jia, CHEN Yan, WANG Man, et al. Comparison of the applicability between ERA-Interim and ERA5 reanalysis in complex terrain area of southwest China[J]. Plateau and Mountain Meteorology Research, 2023, 43(1): 95-103.
|
|
刘佳, 陈艳, 王曼, 等. ERA-Interim及ERA5 在中国西南复杂地形区的适用性对比分析[J]. 高原山地气象研究, 2023, 43(1): 95-103.
|
141 |
LIU Tingting, ZHU Xiufang, ZHANG Shizhe, et al. Applicability analysis of ERA5 reanalysis surface air temperature data in China[J]. Journal of Tropical Meteorology, 2023, 39(1): 78-88.
|
|
刘婷婷, 朱秀芳, 张世喆, 等. ERA5再分析地面气温数据在中国区域的适用性分析[J]. 热带气象学报, 2023, 39(1): 78-88.
|
142 |
ZHU Zhi, SHI Chunxiang, ZHANG Tao, et al. Applicability analysis of various reanalyzed land surface temperature datasets in China[J]. Journal of Glaciology and Geocryology, 2015, 37(3): 614-624.
|
|
朱智, 师春香, 张涛, 等. 多种再分析地表温度资料在中国区域的适用性分析[J]. 冰川冻土, 2015, 37(3): 614-624.
|
143 |
ZHOU X, YANG K, WANG Y. Implementation of a turbulent orographic form drag scheme in WRF and its application to the Tibetan Plateau[J]. Climate Dynamics, 2018, 50(7): 2 443-2 455.
|
144 |
XIE J B, ZHANG M H, ZENG Q C, et al. Implementation of an orographic drag scheme considering orographic anisotropy in all flow directions in the Earth system model CAS-ESM 2.0[J]. Journal of Advances in Modeling Earth Systems, 2021, 13(12). DOI: 10.1029/2021MS002585 .
|
145 |
HU Wei, MA Weiqiang, MA Yaoming, et al. Evaluating performance of Noah-MP LSM with GLDAS forcing data over Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2020, 39(3): 486-498.
|
|
胡伟, 马伟强, 马耀明, 等. GLDAS资料驱动的Noah-MP陆面模式青藏高原地表能量交换模拟性能评估[J]. 高原气象, 2020, 39(3): 486-498.
|
146 |
MA S P, ZHOU L B, LI F, et al. Evaluation of WRF land surface schemes in land-atmosphere exchange simulations over grassland in Southeast Tibet[J]. Atmospheric Research, 2020, 234. DOI:10.1016/j.atmosres.2019.104739 .
|