地球科学进展 ›› 2024, Vol. 39 ›› Issue (9): 915 -929. doi: 10.11867/j.issn.1001-8166.2024.072

综述与评述 上一篇    下一篇

青藏高原大气边界层数值模拟研究进展
许菡颖 1 , 3( ), 韩存博 1 , 6 , 8, 马耀明 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8( ), 张蕴帅 1   
  1. 1.中国科学院青藏高原研究所 青藏高原地球系统与资源环境国家重点实验室地气作用与气候效应团队,北京 100101
    2.三峡大学 水利与环境学院,湖北 宜昌 443002
    3.中国科学院大学 地球与行星科学 学院,北京 100101
    4.中国科学院西北生态环境资源研究院,甘肃 兰州 730000
    5.兰州大学 大气科学学院,甘肃 兰州 730000
    6.西藏珠穆朗玛特殊大气过程与环境变化国家野外科学 观测研究站,西藏 定日 858200
    7.中国科学院加德满都科教中心,北京 100101
    8.中国—巴基斯坦地球科学研究中心,伊斯兰堡 45320,巴基斯坦
  • 收稿日期:2024-06-07 修回日期:2024-08-24 出版日期:2024-09-10
  • 通讯作者: 马耀明 E-mail:xuhy@itpcas.ac.cn;ymma@itpcas.ac.cn
  • 基金资助:
    国家重点研发计划项目(2022YFB4202104);国家自然科学基金项目(42475088)

Review on Numerical Simulation of Atmospheric Boundary Layer over the Tibetan Plateau

Hanying XU 1 , 3( ), Cunbo HAN 1 , 6 , 8, Yaoming MA 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8( ), Yunshuai ZHANG 1   

  1. 1.Land-Atmosphere Interaction and Its Climatic Effects Group, State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
    2.College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang Hubei 443002, China
    3.College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
    4.Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    5.College of Atmospheric Science, Lanzhou University, Lanzhou 730000, China
    6.National Observation and Research Station for Qomolongma Special Atmospheric Processes and Environmental Changes, Dingri Xizang 858200, China
    7.Kathmandu Center of Research and Education, Chinese Academy of Sciences, Beijing 100101, China
    8.China -Pakistan Joint Research Center on Earth Sciences, Chinese Academy of Sciences, Islamabad 45320, Pakistan
  • Received:2024-06-07 Revised:2024-08-24 Online:2024-09-10 Published:2024-11-22
  • Contact: Yaoming MA E-mail:xuhy@itpcas.ac.cn;ymma@itpcas.ac.cn
  • About author:XU Hanying, research areas include numerical simulation of atmospheric boundary layer on the Tibetan Plateau. E-mail: xuhy@itpcas.ac.cn
  • Supported by:
    the National Key Research and Development Program of China(2022YFB4202104);The National Natural Science Foundation of China(42475088)

青藏高原大气边界层过程和结构特征受该区热力和动力作用的影响显著,利用现有观测资料难以全面系统地揭示青藏高原复杂边界层的形成、发展和演变机制。因此采用数值模拟的手段研究青藏高原大气边界层过程并解释其形成发展的内在机制,已成为一种行之有效的方法。首先综述归纳了常用于大气边界层模拟的数值模式及各模式中广泛采用的边界层参数化方案;其次,介绍了近年来在青藏高原大气边界层数值模拟领域开展的各项工作和成果,包括青藏高原大气边界层高度时空分布特征的模拟研究、青藏高原典型地区(具有大地形和湖泊的地区)大气边界层结构特征及其影响机制的模拟研究、不同边界层参数化方案在青藏高原地区的对比评估以及模式分辨率对模拟效果的影响;最后,总结并提出目前青藏高原大气边界层过程模拟仍存在对大气边界层高度、近地面气象要素等有模拟偏差的问题,针对这些问题就边界层参数化方案的改进、模式分辨率的选取、驱动数据优化和验证数据的选取以及其他物理方案的选择4个方面做出初步展望,以期为未来青藏高原地区大气边界层结构和过程的模拟改进提供新的研究思路。

The atmospheric boundary layer processes and structural characteristics of the Tibetan Plateau (TP) are significantly influenced by thermal and dynamic effects in the region. The existing observational data are insufficient to comprehensively reveal the complex formation, development, and evolutionary mechanisms of the TP boundary layer of the TP. Therefore, the use of numerical simulations to investigate these processes and explain their underlying mechanisms has become an effective approach. First, this study reviews the numerical models commonly used for atmospheric boundary layer simulations and the widely adopted parameterization schemes within these models. Second, we present recent research and findings in the field of numerical simulations of the atmospheric boundary layer of the TP, including studies on the spatiotemporal distribution characteristics of the boundary layer height, simulations of the boundary layer structure and its influencing mechanisms in typical regions (such as areas with significant topography and lakes), comparative assessments of different boundary layer parameterization schemes in the region, and the impact of model resolution on the simulation outcomes. Finally, the paper concludes by addressing the persistent challenges in simulating PBL processes over the TP, particularly the biases in modeling PBL height and near-surface meteorological variables. It outlines potential strategies for advancing simulation accuracy, including improvements in boundary layer parameterization schemes, careful selection of model resolution, optimization of driving and verification data, and refinement of other physical parameterizations. These insights are intended to provide new directions for future research, with the aim of enhancing the simulation of PBL structure and processes over the TP.

中图分类号: 

表1 常用于大气边界层模拟的数值模式
Table 1 Numerical models commonly used for atmospheric boundary layer simulation
模式名称 开发单位 模式框架 水平分辨率 边界层湍流参数化 适用范围
MM5 美国国家大气研究中心(NCAR)/宾夕法尼亚大学(PSU) 非静力移动套网格格点模式 1~6 km Buld PBL总体空气动力学参数化、高分辨率Blackadar方案、Burk-Thompson方案、Eta方案 和MEF方案等 可用于台风、海浪、风暴潮、梅雨和锋面等的模拟 46 - 47
RAMS 科罗拉多州立大学(CSU) 非静力格点模式 100 m~2 km Deardorff方案和Yamada方案等 可用于大涡数值模拟、雷暴、中尺度对流系统及行星边界层等的模拟,适用于山区和城市等复杂地区 48
ARPS 俄克拉荷马大学(OU)的风暴分析及预报中心 曲线坐标格点模式 100 m~1 km Smagorinsky方案、1.5阶湍流动能(Turbulent Kinetic Energy,TKE)方案和 Germano动力次网格(Sub-Grid-Scale,SGS)方案 适用于中小尺度和风暴尺度的天气系统模拟与预报,如龙卷和超级单体风暴等 49 - 50
WRF 美国国家大气研究中心(NCAR)、美国国家环境预报中心(NCEP)及其合作伙伴 非静力格点模式 几十米到几千米 YSU方案、MYJ方案、MYNN方案和ACM2方案等 适用于超级单体雷暴、飓风和山地波等不同尺度的天气系统的模拟预报 51
COSMO 德国气象局(DWD)及欧洲多国气象机构 非静力格点模式 几百米到几千米 Tiedtke方案、Rodi方案和MYNN方案等 适用于对冬季山区地形的天气过程模拟 40
BLASIUS 英国气象局(MO) 非静力格点模式 几十米到几百米 1阶闭合湍流方案 适用于复杂地形上空过山气流、湍流分离以及重力波等模拟,也适用于城市微气候研究 52 - 53
LEM 英国气象局(MO) 三维非静力格点模式 几米到几百米 1阶闭合湍流方案(小尺度湍流) 适用于各种高分辨率的湍流尺度和云尺度现象,可以模拟湍流和边界层干、湿对流过程 44
表2 常用的边界层参数化方案
Table 2 Common boundary layer parameterization schemes
方案 方案类型 边界层顶高度 方案特征
GBM 65 局地1.5阶闭合方案 Rib=0.25的高度 当垂直分辨率≤15 hPa时,能较好地模拟出垂直混合导致的层积云层的减少;垂直分辨率较粗时,会低估云的厚度
UW 66 局地(非局地 67 )1.5阶闭合方案

Rig=0.19的高度

Rig<0,该层为对流层;

0<Rig<0.19,该层为稳定层

能更准确地模拟夜间稳定边界层 68 ;不能模拟出干边界层上部轻微的逆梯度稳定分层
MYNN3 69 局地(非局地 70 )2阶闭合方案 TKE减小至1×10-6 m2/s2的高度 能更准确地模拟更深的混合层;能较好地模拟支持辐射雾发展的静态稳定边界层 71
MYJ 72 局地2阶闭合方案 TKE减小至0.1 m2/s2的高度 适用于稳定条件和弱不稳定条件的边界层模拟;在对流边界层的模拟误差大
QNSE 73 局地1.5阶闭合方案 TKE减小至5×10-3 m2/s2的高度 能较好地模拟温廓线、风廓线和边界层高度 74 ;但在不稳定边界层时模拟的边界层冷、湿、高度低 75
MRF 76 非局地1阶闭合方案 Rib=0.5的高度 与局地方案相比,MRF能更准确地模拟不稳定边界层内部的深层混合 77 ;在夜间强风地区模拟的边界层过深 78
YSU 79 非局地1阶闭合方案

Rib=0,不稳定

Rib=0.25,稳定

考虑了顶部的夹卷,能更准确地模拟浮力驱动边界层中较深的垂直混合和强风条件下较浅的混合 79 ;对春季深层对流下边界层模拟过深 80
SH 81 非局地1阶闭合方案 同YSU 对自由大气和稳定状态遵循YSU方案,在不稳定区域,采用尺度感知混合方法 64
ACM2 82 非局地1阶闭合方案 Rib=0.25的高度 能更准确地模拟边界层的位温和风速垂直廓线,以及下午的边界层顶高度 83
BouLac 84 非局地1.5阶闭合方案 θ v > θ v 0 +0.5 K 考虑了热通量非局地向上混合,在静态稳定性较高的情况下,能更好地模拟边界层 85
SMS-3DTKE 59 非局地1.5阶闭合方案 θ v > θ v 0 +0.5 K 可以在中尺度和大涡尺度上以不同分辨率更好地表示干对流边界层内的次网格湍流通量 86
1 YE Duzheng. Seasonal variation of the influence of the Tibetan Plateau on the atmospheric circulation[J]. Acta Meteorologica Sinica, 1952(): 33-47.
叶笃正. 西藏高原对于大气环流影响的季节变化[J]. 气象学报, 1952(): 33-47.
2 LIU X D, CHEN B D. Climatic warming in the Tibetan Plateau during recent decades[J]. International Journal of Climatology, 2000, 20(14): 1 729-1 742.
3 WU Guoxiong. Recent progress in the study of the Qinghai-Xizang Plateau climate dynamics in China[J]. Quaternary Research, 2004(1): 1-9.
吴国雄. 我国青藏高原气候动力学研究的近期进展[J]. 第四纪研究, 2004(1): 1-9.
4 MA Y M, ZHONG L, SU Z B, et al. Determination of regional distributions and seasonal variations of land surface heat fluxes from Landsat-7 enhanced Thematic Mapper data over the central Tibetan Plateau area[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D10). DOI:10.1029/2005JD006742 .
5 MA Y M, MENENTI M, FEDDES R, et al. Analysis of the land surface heterogeneity and its impact on atmospheric variables and the aerodynamic and thermodynamic roughness lengths[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D8). DOI:10.1029/2007JD009124 .
6 STULL R B. An introduction to boundary layer meteorology[M]. Dordrecht: Springer Science & Business Media, 2012.
7 ZUO H C, HU Y Q, LI D L, et al. Seasonal transition and its boundary layer characteristics in Anduo area of Tibetan Plateau[J]. Progress in Natural Science, 2005, 15(3): 239-245.
8 LI Maoshan, DAI Youxue, MA Yaoming, et al. Analysis on structure of atmospheric boundary layer and energy exchange of surface layer over mount Qomolangma region[J]. Plateau Meteorology, 2006, 25(5): 807-813.
李茂善, 戴有学, 马耀明 等. 珠峰地区大气边界层结构及近地层能量交换分析[J]. 高原气象, 2006, 25(5): 807-813.
9 CHE J H, ZHAO P. Characteristics of the summer atmospheric boundary layer height over the Tibetan Plateau and influential factors[J]. Atmospheric Chemistry and Physics, 2021, 21(7): 5 253-5 268.
10 GU L L, YAO J M, HU Z Y, et al. Characteristics of the atmospheric boundary layer’s structure and heating (cooling) rate in summer over the northern Tibetan Plateau[J]. Atmospheric Research, 2022, 269. DOI:10.1016/j.atmosres.2022.106045 .
11 CHEN X L, AÑEL J A, SU Z B, et al. The deep atmospheric boundary layer and its significance to the stratosphere and troposphere exchange over the Tibetan Plateau[J]. PLoS ONE, 2013, 8(2). DOI: 10.1371/journal.pone.0056909 .
12 ZHAO Ping, LI Yueqing, GUO Xueliang, et al. Earth-atmosphere coupling system on Qinghai-Tibet Plateau and its weather and climate effects: the third atmospheric science experiment on Qinghai-Tibet Plateau[J]. Acta Meteorologica Sinica, 2018, 76(6): 833-860.
赵平, 李跃清, 郭学良, 等. 青藏高原地气耦合系统及其天气气候效应: 第三次青藏高原大气科学试验[J]. 气象学报, 2018, 76(6): 833-860.
13 ZHUO Ga, XU Xiangde, CHEN Lianshou. Dynamical effect of boundary layer characteristics of Tibetan Plateau on general circulation[J]. Journal of Applied Meteorological Science, 2002, 13(2): 163-169.
卓嘎, 徐祥德, 陈联寿. 青藏高原边界层高度特征对大气环流动力学效应的数值试验[J]. 应用气象学报, 2002, 13(2): 163-169.
14 LI Jialun, HONG Zhongxiang, SUN Shufen. An observational experiment on the atmospheric boundary layer in gerze area of the Tibetan Plateau[J]. Chinese Journal of Atmospheric Sciences, 2000, 24(3): 301-312.
李家伦, 洪钟祥, 孙菽芬. 青藏高原西部改则地区大气边界层特征[J]. 大气科学, 2000, 24(3): 301-312.
15 CHEN Xuelong, MA Yaoming, HU Zeyong, et al. Analysis of atmospheric structure in Gaize region of western Tibetan Plateau during pre-onset and onset of monsoon[J]. Chinese Journal of Atmospheric Sciences, 2010, 34(1): 83-94.
陈学龙, 马耀明, 胡泽勇, 等. 季风爆发前后青藏高原西部改则地区大气结构的初步分析[J]. 大气科学, 2010, 34(1): 83-94.
16 LI Maoshan, MA Yaoming, MA Weiqiang, et al. Structural difference of atmospheric boundary layer between dry and rainy seasons over the central Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2011, 33(1): 72-79.
李茂善, 马耀明, 马伟强, 等. 藏北高原地区干、雨季大气边界层结构的不同特征[J]. 冰川冻土, 2011, 33(1): 72-79.
17 LI Ying, HU Zhili, ZHAO Hongmei. Overview on the characteristic of boundary layer structure in Tibetan Plateau[J]. Plateau and Mountain Meteorology Research, 2012, 32(4): 91-96.
李英, 胡志莉, 赵红梅. 青藏高原大气边界层结构特征研究综述[J]. 高原山地气象研究, 2012, 32(4): 91-96.
18 GERKEN T, BIERMANN T, BABEL W, et al. A modelling investigation into lake-breeze development and convection triggering in the Nam Co Lake Basin, Tibetan Plateau[J]. Theoretical and Applied Climatology, 2014, 117(1): 149-167.
19 SLÄTTBERG N, LAI H W, CHEN X L, et al. Spatial and temporal patterns of planetary boundary layer height during 1979-2018 over the Tibetan Plateau using ERA5[J]. International Journal of Climatology, 2022, 42(6): 3 360-3 377.
20 WANG Chunxiao, MA Yaoming, HAN Cunbo. Research on the atmospheric boundary layer structure and its development mechanism in the Tibetan Plateau[J]. Advances in Earth Science, 2023, 38(4): 414-428.
王春晓, 马耀明, 韩存博. 青藏高原大气边界层结构及其发展机制研究[J]. 地球科学进展, 2023, 38(4): 414-428.
21 WANG Jiemin. Land surface process experiments and interaction study in China—from HEIFE to IMGRASS and GAME-Tibet/TIPEX[J]. Plateau Meteorology, 1999, 18(3): 280-294.
王介民. 陆面过程实验和地气相互作用研究——从HEIFE到IMGRASS和GAME-Tibet/TIPEX[J]. 高原气象,1999,1(3):280-294.
22 WANG Jiemin, QIU Huasheng. Sino Japanese cooperation Asian monsoon experiment—the Tibetan Plateau experiment (GAME-Tibet)[J]. Journal of the Chinese Academy of Sciences, 2000(5): 386-388.
王介民, 邱华盛. 中日合作亚洲季风实验——青藏高原实验(GAME-Tibet)[J]. 中国科学院院刊, 2000(5): 386-388.
23 MA Yaoming, YAO Tandong, WANG Jiemin. Experimental study of energy and water cycle in Tibetan Plateau: the progress introduction on the study of GAME/Tibet and CAMP/Tibet[J]. Plateau Meteorology, 2006, 25(2): 344-351.
马耀明, 姚檀栋, 王介民. 青藏高原能量和水循环试验研究: GAME/Tibet与CAMP/Tibet研究进展[J]. 高原气象, 2006, 25(2): 344-351.
24 WANG Y J, XU X D, LIU H Z, et al. Analysis of land surface parameters and turbulence characteristics over the Tibetan Plateau and surrounding region[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(16): 9 540-9 560.
25 TAO S Y, LUO S W, ZHANG H C. The Qinghai-Xizang Plateau meteorological experiment (Qxpmex) May-August 1979[C]// Proceedings of international symposium on the Qinghai-Xizang Plateau and mountain meteorology. Boston, MA: American Meteorological Society, 1986: 3-13.
26 YANAI M, LI C F. Mechanism of heating and the boundary layer over the Tibetan Plateau[J]. Monthly Weather Review, 1994, 122(2): 305-323.
27 XU Xiangde, CHEN Lianshou. Advances of the study on Tibetan Plateau experiment of atmospheric sciences[J]. Journal of Applied Meteorological Science, 2006, 17(6): 756-772.
徐祥德, 陈联寿. 青藏高原大气科学试验研究进展[J]. 应用气象学报, 2006, 17(6): 756-772.
28 CHEN B J, HU Z Q, LIU L P, et al. Raindrop size distribution measurements at 4,500 m on the Tibetan Plateau during TIPEX-III[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(20): 11 092-11 106.
29 ZHAO P, XU X D, CHEN F, et al. The third atmospheric scientific experiment for understanding the Earth-atmosphere coupled system over the Tibetan Plateau and its effects[J]. Bulletin of the American Meteorological Society, 2018, 99(4): 757-776.
30 CHENG Linsheng. The current status of mesoscale numerical model development and its application prospects[J]. Plateau Meteorology, 1999, 18(3): 350-360.
程麟生. 中尺度大气数值模式发展现状和应用前景[J]. 高原气象, 1999, 18(3): 350-360.
31 ESTOQUE M A. A numerical model of the atmospheric boundary layer[J]. Journal of Geophysical Research, 1963, 68(4): 1 103-1 113.
32 DELAGE Y. A numerical study of the nocturnal atmospheric boundary layer[J]. Quarterly Journal of the Royal Meteorological Society, 1974, 100(425): 351-364.
33 ANDRÉ J C, de MOOR G, LACARRÈRE P, et al. Modeling the 24-hour evolution of the mean and turbulent structures of the planetary boundary layer[J]. Journal of the Atmospheric Sciences, 1978, 35(10): 1 861-1 883.
34 WANG Zhenghong, WANG Jiemin. Development of numerical models for atmospheric boundary layer[J]. Atmospheric Intelligence, 1995, 15(2): 1-5.
王政宏,王介民. 大气边界层数值模式的发展[J]. 大气情报, 1995, 15(2): 1-5.
35 WANG Rong, ZHANG Qiang, YUE Ping, et al. Summary and prospects of numerical simulation research of the atmospheric boundary layer[J]. Advances in Earth Science, 2020, 35(4): 331-349.
王蓉, 张强, 岳平, 等. 大气边界层数值模拟研究与未来展望[J]. 地球科学进展, 2020, 35(4): 331-349.
36 GRELL G A, DUDHIA J, STAUFFER D R. A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5)[Z]. NCAR Technical Note, 1995.
37 COTTON W R, PIELKE SR R A, WALKO R L, et al. RAMS 2001: current status and future directions[J]. Meteorology and Atmospheric Physics, 2003, 82(1): 5-29.
38 XUE M, DROEGEMEIER K K, WONG V. The Advanced Regional Prediction System (ARPS)—a multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: model dynamics and verification[J]. Meteorology and Atmospheric Physics, 2000(75): 161-193.
39 SKAMAROCK W C, KLEMP J B, DUDHIA J, et al. A description of the advanced research WRF model version 4.3[Z]. NCAR Technical Notes, 2021.
40 BALDAUF M, SEIFERT A, FÖRSTNER J, et al. Operational convective-scale numerical weather prediction with the COSMO model: description and sensitivities[J]. Monthly Weather Review, 2011, 139(12): 3 887-3 905.
41 SMAGORINSKY J. Role of numerical modeling[J]. Bulletin of the American Meteorological Society, 1967, 48(2): 89-93.
42 DEARDORFF J W. Numerical investigation of neutral and unstable planetary boundary layers[J]. Journal of the Atmospheric Sciences, 1972, 29(1): 91-115.
43 WOOD N, MASON P. The influence of static stability on the effective roughness lengths for momentum and heat transfer[J]. Quarterly Journal of the Royal Meteorological Society, 1991, 117(501): 1 025-1 056.
44 GRAY M E B, PETCH J, DERBYSHIRE S H, et al. Version 2.3 of the Met Office large eddy model: part II. scientific documentation[Z]. UK:The Met Office,2001.
45 ZHU P. Simulation and parameterization of the turbulent transport in the hurricane boundary layer by large eddies[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D17). DOI:10.1029/2007JD009643 .
46 WU Xiaoming. Introduction to MM5 mode system and applications[J]. Qinghai Meteorology, 2000(3): 59-61.
吴晓鸣. MM5模式系统及应用介绍[J]. 青海气象, 2000(3): 59-61.
47 ZHANG Jinshan, ZHONG Zhong, HUANG Jin. An introduction to meso-scale model MM5[J]. Marine Forecasts, 2005, 22(1): 31-40.
张金善, 钟中, 黄瑾. 中尺度大气模式MM5简介[J]. 海洋预报, 2005, 22(1): 31-40.
48 PIELKE R A, COTTON W R, WALKO R L, et al. A comprehensive meteorological modeling system—RAMS[J]. Meteorology and Atmospheric Physics, 1992, 49(1): 69-91.
49 XUE M, DROEGEMEIER K K, WONG V, et al. The Advanced Regional Prediction System (ARPS)—a multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: model physics and applications[J]. Meteorology and Atmospheric Physics, 2001, 76(3): 143-165.
50 LANG Fengwang, WANG Peng, LI Bo. Introduction of mesoscale meteorological model (ARPS)[J]. Sciences & Wealth, 2011(3): 118-119.
郎丰旺, 王鹏, 李波. 中尺度气象模式(ARPS)介绍[J]. 科学与财富, 2011(3): 118-119.
51 ZHANG Guocai. Progress of Weather Research and Forecast (WRF) modeland application in the United States[J]. Meteorological Monthly, 2004, 30(12): 27-31.
章国材. 美国WRF模式的进展和应用前景[J]. 气象, 2004, 30(12): 27-31.
52 BARROS A P, LETTENMAIER D P. Dynamic modeling of orographically induced precipitation[J]. Reviews of Geophysics, 1994, 32(3): 265-284.
53 TIAN W S, PARKER D J. Two-dimensional simulation of orographic effects on mesoscale boundary-layer convection[J]. Quarterly Journal of the Royal Meteorological Society, 2002, 128(584): 1 929-1 952.
54 COLLAUD C M, PRAZ C, HAEFELE A, et al. Determination and climatology of the planetary boundary layer height above the Swiss Plateau by in situ and remote sensing measurements as well as by the COSMO-2 model[J]. Atmospheric Chemistry and Physics, 2014, 14(23): 13 205-13 221.
55 HUANG Jing, ZHANG Qiang. Mesoscale atmospheric numerical simulation and its progress[J]. Arid Zone Research, 2012, 29 (3): 273-283.
黄菁, 张强. 中尺度大气数值模拟及其进展[J]. 干旱区研究, 2012, 29 (3): 273-283.
56 SUN Wenqi, LI Changyi. A review of atmospheric boundary layer parameterization schemes in numerical models[J]. Journal of Marine Meteorology, 2018, 38(3): 11-19.
孙文奇, 李昌义. 数值模式中的大气边界层参数化方案综述[J]. 海洋气象学报, 2018, 38(3): 11-19.
57 CHE Junhui, ZHAO Ping, SHI Qian, et al. Research progress in atmospheric boundary layer[J]. Chinese Journal of Geophysics, 2021, 64(3): 735-751.
车军辉, 赵平, 史茜, 等. 大气边界层研究进展[J]. 地球物理学报, 2021, 64(3): 735-751.
58 KUROWSKI M J, TEIXEIRA J. A scale-adaptive turbulent kinetic energy closure for the dry convective boundary layer[J]. Journal of the Atmospheric Sciences, 2018, 75(2): 675-690.
59 ZHANG X, BAO J W, CHEN B D, et al. A three-dimensional scale-adaptive turbulent kinetic energy scheme in the WRF-ARW model[J]. Monthly Weather Review, 2018, 146(7): 2 023-2 045.
60 KUELL V, BOTT A. A nonlocal three-dimensional turbulence parameterization (NLT3D) for numerical weather prediction models[J]. Quarterly Journal of the Royal Meteorological Society, 2022, 148(742): 117-140.
61 BANKS R F, TIANA-ALSINA J, BALDASANO J M, et al. Sensitivity of boundary-layer variables to PBL schemes in the WRF model based on surface meteorological observations, lidar, and radiosondes during the HygrA-CD campaign[J]. Atmospheric Research, 2016, 176/177: 185-201.
62 GÓMEZ I, RONDA R J, CASELLES V, et al. Implementation of non-local boundary layer schemes in the Regional Atmospheric Modeling System and its impact on simulated mesoscale circulations[J]. Atmospheric Research, 2016, 180: 24-41.
63 ONWUKWE C, JACKSON P L. Meteorological downscaling with WRF model, version 4.0, and comparative evaluation of planetary boundary layer schemes over a complex coastal airshed[J]. Journal of Applied Meteorology and Climatology, 2020, 59(8): 1 295-1 319.
64 MANTOVANI J A, ARAVÉQUIA J A, CARNEIRO R G, et al. Evaluation of PBL parameterization schemes in WRF model predictions during the dry season of the central Amazon Basin [J]. Atmosphere, 2023, 14(5). DOI:10.3390/atmos14050850 .
65 GRENIER H, BRETHERTON C S. A moist PBL parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers[J]. Monthly Weather Review, 2001, 129(3): 357-377.
66 BRETHERTON C S, PARK S. A new moist turbulence parameterization in the community atmosphere model[J]. Journal of Climate, 2009, 22(12): 3 422-3 448.
67 WEI W, PENG X D, LIN Y L, et al. Extension and evaluation of university of Washington moist turbulence scheme to gray-zone scales[J]. Journal of Advances in Modeling Earth Systems, 2022, 14(8). DOI:10.1029/2021MS002978 .
68 HOLTSLAG A A M, BOVILLE B A. Local versus nonlocal boundary-layer diffusion in a global climate model[J]. Journal of Climate, 1993, 6(10): 1 825-1 842.
69 NAKANISHI M, NIINO H. An improved mellor-Yamada level-3 model with condensation physics: its design and verification[J]. Boundary-Layer Meteorology, 2004, 112(1): 1-31.
70 LU Xulan, PENG Xindong. Parametric improvement of scale adaptive atmospheric boundary layer and its numerical simulation of a sea fog[J]. Acta Meteorologica Sinica, 2021, 79(1): 119-131.
卢绪兰, 彭新东. 尺度自适应大气边界层参数化改进及其对一次海雾的数值模拟研究[J]. 气象学报, 2021, 79(1): 119-131.
71 NAKANISHI M, NIINO H. An improved mellor-Yamada level-3 model: its numerical stability and application to a regional prediction of advection fog[J]. Boundary-Layer Meteorology, 2006, 119(2): 397-407.
72 JANJIĆ Z I. Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP meso model[Z]. UCAR Scientific Visitor, 2001.
73 SUKORIANSKY S, GALPERIN B, PEROV V. Application of a new spectral theory of stably stratified turbulence to the atmospheric boundary layer over sea ice[J]. Boundary-Layer Meteorology, 2005, 117(2): 231-257.
74 KOSOVIĆ B, CURRY J A. A large eddy simulation study of a quasi-steady, stably stratified atmospheric boundary layer[J]. Journal of the Atmospheric Sciences, 2000, 57(8): 1 052-1 068.
75 COHEN A E, CAVALLO S M, CONIGLIO M C, et al. A review of planetary boundary layer parameterization schemes and their sensitivity in simulating southeastern U.S. cold season severe weather environments[J]. Weather and Forecasting, 2015, 30(3): 591-612.
76 HONG S Y, PAN H L. Nonlocal boundary layer vertical diffusion in a medium-range forecast model[J]. Monthly Weather Review, 1996, 124(10): 2 322-2 339.
77 WYNGAARD J C, BROST R A. Top-down and bottom-up diffusion of a scalar in the convective boundary layer[J]. Journal of the Atmospheric Sciences, 1984, 41(1): 102-112.
78 MASS C F, OVENS D, WESTRICK K, et al. Does increasing horizontal resolution produce more skillful forecasts?[J]. Bulletin of the American Meteorological Society, 2002, 83(3): 407-430.
79 HONG S Y, NOH Y, DUDHIA J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Monthly Weather Review, 2006, 134(9): 2 318-2 341.
80 CONIGLIO M C, CORREIA J, MARSH P T, et al. Verification of convection-allowing WRF model forecasts of the planetary boundary layer using sounding observations[J]. Weather and Forecasting, 2013, 28(3): 842-862.
81 SHIN H H, HONG S Y. Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions[J]. Monthly Weather Review, 2015, 143(1): 250-271.
82 PLEIM J E. A combined local and nonlocal closure model for the atmospheric boundary layer. part I: model description and testing[J]. Journal of Applied Meteorology and Climatology, 2007, 46(9): 1 383-1 395.
83 PLEIM J E. A combined local and nonlocal closure model for the atmospheric boundary layer. part II: application and evaluation in a mesoscale meteorological model[J]. Journal of Applied Meteorology and Climatology, 2007, 46(9): 1 396-1 409.
84 BOUGEAULT P, LACARRERE P. Parameterization of orography-induced turbulence in a mesobeta: scale model[J]. Monthly Weather Review, 1989, 117(8): 1 872-1 890.
85 SHIN H H, HONG S Y. Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99[J]. Boundary-Layer Meteorology, 2011, 139(2): 261-281.
86 YE G J, ZHANG X, YU H. Modifications to three-dimensional turbulence parameterization for tropical cyclone simulation at convection-permitting resolution[J]. Journal of Advances in Modeling Earth Systems, 2023, 15(4). DOI:10.1029/2022MS003530 .
87 ZHOU Mingyu, XU Xiangde, BIAN Lingen, et al. Observational analysis and dynamic study of the atmospheric boundary layer on the Qinghai Tibet Plateau[M]. Beijing: China Meteorological Press, 2000.
周明煜, 徐祥德, 卞林根, 等. 青藏高原大气边界层观测分析与动力学研究[M].北京:中国气象出版社, 2000.
88 XU X D, ZHOU M Y, CHEN J Y, et al. A comprehensive physical pattern of land-air dynamic and thermal structure on the Qinghai-Xizang Plateau[J]. Science in China Series D: Earth Sciences, 2002, 45(7): 577-594.
89 YANG K, KOIKE T, FUJII H, et al. The daytime evolution of the atmospheric boundary layer and convection over the Tibetan Plateau: observations and simulations[J]. Journal of the Meteorological Society of Japan Series II, 2004, 82(6): 1 777-1 792.
90 ZHOU Wen, YANG Shengpeng, JIANG Xi, et al. Estimating planetary boundary layer height over the Tibetan Plateau using COSMIC radio occultation data[J]. Acta Meteorologica Sinica, 2018, 76(1): 117-133.
周文, 杨胜朋, 蒋熹, 等. 利用COSMIC掩星资料研究青藏高原地区大气边界层高度[J]. 气象学报, 2018, 76(1): 117-133.
91 LIU Hongyan, MIAO Manqian. Preliminary analysis on Characteristics of boundary layer in Qinghai-Tibet Paleau[J]. Journal of Nanjing University (Natural Sciences), 2001, 37(3): 348-357.
刘红燕,苗曼倩. 青藏高原大气边界层特征初步分析[J]. 南京大学学报(自然科学版), 2001, 37(3): 348-357.
92 CHOU Yan. Simulation study on the formation of deep boundary layer and its effects on near-surface ozone concentration[D]. Lanzhou: Lanzhou University,2022.
丑岩. 青藏高原深厚大气边界层的形成及其对臭氧传输影响的数值模拟研究[D]. 兰州:兰州大学,2022.
93 ZHOU Qiang, LI Guoping. Impact of the different boundary layer parameterization schemes on numerical simulation of plateau vortex moving eastward[J]. Plateau Meteorology, 2013, 32(2): 334-344.
周强, 李国平. 边界层参数化方案对高原低涡东移模拟的影响[J]. 高原气象, 2013, 32(2): 334-344.
94 WANG Qianru. Numerical simulation of the influence of atmospheric boundary layer height on plateau vortex in Tibetan Plateau[D]. Chengdu:Chengdu University of Information Engineering,2018.
王倩茹. 青藏高原大气边界层高度对高原涡影响的数值模拟[D]. 成都:成都信息工程大学,2018.
95 LI Maoshan, MA Yaoming, Shihua LÜ, et al. Modeling of near surface energy and characteristic of boundary layer in the northern Tibetan Plateau[J]. Plateau Meteorology, 2008, 27(1): 36-45.
李茂善, 马耀明, 吕世华, 等. 藏北高原地表能量和边界层结构的数值模拟[J]. 高原气象, 2008, 27(1): 36-45.
96 LI Fei, ZOU Han, ZHOU Libo, et al. Study of boundary layer parameterization schemes’ applicability of WRF model over complex underlying surfaces in southeast Tibet[J]. Plateau Meteorology, 2017, 36(2): 340-357.
李斐, 邹捍, 周立波, 等. WRF模式中边界层参数化方案在藏东南复杂下垫面适用性研究[J]. 高原气象, 2017, 36(2): 340-357.
97 XU Lujun, LIU Huizhi, XU Xiangde, et al. Evaluation of the WRF model to simulate atmospheric boundary layer simulation over Nagqu area in the Tibetan [J]. Acta Meteorologica Sinica, 2018, 76(6): 955-967.
许鲁君, 刘辉志, 徐祥德,等. WRF模式对青藏高原那曲地区大气边界层模拟适用性研究[J]. 气象学报, 2018, 76(6): 955-967.
98 XU Pei, LI Maoshan, CHANG Na, et al. Parameterized adaptation of the winter atmospheric boundary layer in the Nyingchi region of southeast Tibet[J]. Advances in Earth Science, 2023, 38(9): 954-966.
胥佩, 李茂善, 常娜, 等. 藏东南林芝地区冬季大气边界层参数化方案适应性研究[J]. 地球科学进展, 2023, 38(9): 954-966.
99 WANG Qianru, FAN Guangzhou, GE Fei, et al. Climatic characteristics of the diurnal variation boundary layer height over the Qinghai-Tibetan Plateau based on CERA-20C[J]. Plateau Meteorology, 2018, 37(6): 1 486-1 498.
王倩茹, 范广洲, 葛非, 等. 基于CERA-20C资料青藏高原边界层高度日变化气候特征分析[J]. 高原气象, 2018, 37(6): 1 486-1 498.
100 LAI Y, CHEN X L, MA Y M, et al. Impacts of the westerlies on planetary boundary layer growth over a valley on the north side of the central Himalayas[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(3). DOI:10.1029/2020JD033928 .
101 CHEN X L, ŠKERLAK B, ROTACH M W, et al. Reasons for the extremely high-ranging planetary boundary layer over the western Tibetan Plateau in winter[J]. Journal of the Atmospheric Sciences, 2016, 73(5): 2 021-2 038.
102 ZHAO C L, MENG X H, ZHAO L, et al. Energy mechanism of atmospheric boundary layer development over the Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2023,128(6). DOI:10.1029/2022JD037332 .
103 MA M J, PU Z X, WANG S G, et al. Characteristics and numerical simulations of extremely large atmospheric boundary-layer heights over an arid region in north-west China[J]. Boundary-Layer Meteorology, 2011, 140(1): 163-176.
104 GAO Dengyi. Glacier winds in the Rongbu valley of mount Qomolangma[J]. Journal of Glaciology and Geocryology, 1985, 7(3): 249-256.
高登义. 珠穆朗玛峰绒布河谷的冰川风[J]. 冰川冻土, 1985, 7(3): 249-256.
105 LIU Yu, ZOU Han, HU Fei. Observation study on atmospheric surface layer in rongbu valley in Zumolama Peak area of Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2004, 23(4): 512-518.
刘宇, 邹捍, 胡非. 青藏高原珠峰绒布河谷地区大气近地层观测研究[J]. 高原气象, 2004, 23(4): 512-518.
106 ZHONG Lei, MA Yaoming, LI Maoshan. An analysis of atmosphere turbulence and energy transfer characteristics of surface layer over rongbu valley in Mt. Qomolangma area[J]. Chinese Journal of Atmospheric Sciences, 2007, 31(1): 48-56.
仲雷, 马耀明, 李茂善. 珠穆朗玛峰绒布河谷近地层大气湍流及能量输送特征分析[J]. 大气科学, 2007, 31(1): 48-56.
107 SUN Fanglin, MA Yaoming, MA Weiqiang, et al. One observational study on atmospheric boundary layer structure in Mt. Qomolangma region[J]. Plateau Meteorology, 2006, 25(6): 1 014-1 019.
孙方林, 马耀明, 马伟强, 等. 珠峰地区大气边界层结构的一次观测研究[J]. 高原气象, 2006, 25(6): 1 014-1 019.
108 SONG Y, ZHU T, CAI X H, et al. Glacier winds in the Rongbuk Valley, north of Mount Everest: 1. meteorological modeling with remote sensing data[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D11). DOI:10.1029/2006JD007868 .
109 ZHU Lingyun, ZHANG Meigen, MA Shupo, et al. Numerical simulation of atmospheric boundary layer structure over Rongbuk valley of Mt. Qomolangma[J]. Plateau Meteorology, 2007, 26(6): 1 208-1 213.
朱凌云, 张美根, 马舒坡, 等. 珠峰绒布河谷大气边界层结构的数值模拟[J]. 高原气象, 2007, 26(6): 1 208-1 213.
110 CAI X H, SONG Y, ZHU T, et al. Glacier winds in the Rongbuk valley, north of Mount Everest: 2. their role in vertical exchange processes[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D11). DOI: 10.1029/2006JD007867 .
111 SUN F L, MA Y M, HU Z Y, et al. Mechanism of daytime strong winds on the northern slopes of Himalayas, near mount Everest: observation and simulation[J]. Journal of Applied Meteorology and Climatology, 2018, 57(2): 255-272.
112 Yaqiong LÜ, MA Yaoming, LI Maoshan, et al. Study on characteristic of atmospheric boundary layer over lake Namco region, Tibetan Plateau[J]. Plateau Meteorology, 2008, 27(6): 1 205-1 210.
吕雅琼, 马耀明, 李茂善, 等. 青藏高原纳木错湖区大气边界层结构分析[J]. 高原气象, 2008, 27(6): 1 205-1 210.
113 YOU Qinglong, KANG Shichang, LI Chaoliu, et al. Variation features of meteorological elements at Namco station, Tibetan Plateau[J]. Meteorological Monthly, 2007, 33(3): 54-60.
游庆龙, 康世昌, 李潮流, 等. 青藏高原纳木错气象要素变化特征[J]. 气象, 2007, 33(3): 54-60.
114 LI Zhaoguo, Shihua LÜ, WEN Lijuan, et al. Influence of incursion of dry cold air on atmospheric boundary layer process in Ngoring lake basin[J]. Plateau Meteorology, 2016, 35(5): 1 200-1 211.
李照国, 吕世华, 文莉娟, 等. 一次干冷空气过境对鄂陵湖地区大气边界层过程的影响[J]. 高原气象, 2016, 35(5): 1 200-1 211.
115 Yaqiong LÜ, MA Yaoming, LI Maoshan, et al. Numerical simulation of typical atmospheric boundary layer characteristics over lake Namco region, Tibetan Plateau in summer[J]. Plateau Meteorology, 2008, 27(4): 733-740.
吕雅琼, 马耀明, 李茂善, 等. 纳木错湖夏季典型大气边界层特征的数值模拟[J]. 高原气象, 2008, 27(4): 733-740.
116 YANG Xianyu, WEN Jun. Numerical simulation of characteristic of atmospheric boundary layer over lake Gyaring and Ngoring[J]. Plateau Meteorology, 2012, 31(4): 927-934.
杨显玉, 文军. 扎陵湖和鄂陵湖大气边界层特征的数值模拟[J]. 高原气象, 2012, 31(4): 927-934.
117 ZHANG Y S, HAN C B, MA Y M, et al. Influence of lake breezes on the triggering of moist convection on the Tibetan Plateau: a large-eddy simulation study[J]. Journal of the Atmospheric Sciences, 2024, 81(6): 983-998.
118 ZHANG Yunshuai, HUANG Qian, MA Yaoming, et al. Large eddy simulation study of the turbulent structure characteristics of the convective boundary layer over Ngoring lake and surrounding grassland in thesource region of the Yellow River[J]. Chinese Journal of Atmospheric Sciences, 2021, 45(2): 435-455.
张蕴帅, 黄倩, 马耀明,等. 黄河源区鄂陵湖湖面和湖边草地对流边界层湍流结构特征的大涡模拟研究[J]. 大气科学, 2021, 45(2): 435-455.
119 ZHANG Y S, HUANG Q, MA Y M, et al. Large eddy simulation of boundary-layer turbulence over the heterogeneous surface in the source region of the Yellow River[J]. Atmospheric Chemistry and Physics, 2021, 21(20): 15 949-15 968.
120 LI Zhaoguo, Shihua LÜ, AO Yinhuan, et al. Numerical simulation of impact of ecological environment change on lake effect in the source region of the Yellow River[J]. Plateau Meteorology, 2012, 31(6): 1 591-1 600.
李照国, 吕世华, 奥银焕, 等. 黄河源区生态环境变化对湖泊效应影响的数值模拟[J]. 高原气象, 2012, 31(6): 1 591-1 600.
121 HE You, YANG Kun, YAO Tandong, et al. Numerical simulation of a heavy precipitation in Qinghai-Xizang Plateau based on WRF model[J]. Plateau Meteorology, 2012, 31(5): 1 183-1 191.
何由, 阳坤, 姚檀栋, 等. 基于WRF模式对青藏高原一次强降水的模拟[J]. 高原气象, 2012, 31(5): 1 183-1 191.
122 LUAN Lan, MENG Xianhong, Shihua LÜ, et al. Impacts of microphysics and PBL physics parameterization on a convective precipitation over the Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2017, 36(2): 283-293.
栾澜, 孟宪红, 吕世华, 等. 青藏高原一次对流降水模拟中边界层参数化和云微物理的影响研究[J]. 高原气象, 2017, 36(2): 283-293.
123 XU G R, XIE Y F. Sensitivity of the summer precipitation simulated with WRF model to planetary boundary layer parameterization over the Tibetan Plateau and its downstream areas[J]. Journal of Geology & Geophysics, 2016, 5(4): 249-260.
124 ZHOU P F, MA M N, SHAO M, et al. Sensitivity of summer precipitation simulation to the physical parameterizations in WRF over the Tibetan Plateau: a case study of 2018[J]. Atmospheric Research, 2024, 299. DOI:10.1016/j.atmosres.2023.107174 .
125 XU L J, LIU H Z, DU Q, et al. The assessment of the plane- tary boundary layer schemes in WRF over the central Tibetan Plateau[J]. Atmospheric Research, 2019, 230. DOI: 10.1016/j.atmosres. 2019.104644 .
126 WANG Yinjun. Comparative study on simulation and observation of WRF boundary layer in southeastern Qinghai-Tibet Plateau[D].Nanjing: Nanjing University of Information Science & Technology, 2011.
王寅钧. 青藏高原东南部WRF边界层模拟与观测对比探讨研究[D]. 南京: 南京信息工程大学, 2011.
127 WEI Wei, BAI Jiayi. Research progress on the numerical simulation at gray-zone scales of the convective boundary layer[J]. Advances in Earth Science, 2024, 39(3): 221-231.
魏伟, 白嘉怡. 对流边界层灰区尺度数值模拟研究进展[J]. 地球科学进展, 2024, 39(3): 221-231.
128 GU H H, YU Z B, PELTIER W R, et al. Sensitivity studies and comprehensive evaluation of RegCM4.6.1 high-resolution climate simulations over the Tibetan Plateau[J]. Climate Dynamics, 2020, 54(7): 3 781-3 801.
129 LIN C G, CHEN D L, YANG K, et al. Impact of model resolution on simulating the water vapor transport through the central Himalayas: implication for models’ wet bias over the Tibetan Plateau[J]. Climate Dynamics, 2018, 51(9): 3 195-3 207.
130 MAUSSION F, SCHERER D, FINKELNBURG R, et al. WRF simulation of a precipitation event over the Tibetan Plateau, China—an assessment using remote sensing and ground observations[J]. Hydrology and Earth System Sciences, 2011, 15(6): 1 795-1 817.
131 BAO Yansong, JI Lingxiao, LI Huan, et al. Application of large eddy simulation on Qinghai-Xizang Plateau wind for airdrop[J]. Plateau Meteorology, 2024, 43(2): 293-302.
鲍艳松, 季凌潇, 李欢, 等. 面向空投的青藏高原风场大涡模拟研究[J]. 高原气象, 2024, 43(2): 293-302.
132 WU Yao, LI Yueqing, JIANG Xingwen, et al. Influence of two planetary boundary layer parameterization schemes on summer rain in 2013 on Tibet Plateau by WRF model[J]. Plateau and Mountain Meteorology Research, 2015, 35(2): 7-16.
吴遥, 李跃清, 蒋兴文, 等. 两种边界层参数化方案对WRF模拟青藏高原2013年夏季降水的影响[J]. 高原山地气象研究, 2015, 35(2): 7-16.
133 TANG Jie, GUO Xueliang, CHANG Yi. Cloud microphysics and regional water budget of a summer precipitation process at Naqu over the Tibetan Plateau[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(6): 1 327-1 343.
唐洁, 郭学良,常祎. 青藏高原那曲地区夏季一次对流云微物理及区域水分收支特征[J]. 大气科学, 2018, 42(6): 1 327-1 343.
134 LIU H C, ZHAO X N, DUAN K Q, et al. Optimizing simula- tion of summer precipitation by weather research and forecast- ing model over the mountainous southern Tibetan Plateau[J]. Atmospheric Research,2023,281. DOI: 10.1016/j.atmosres.2022.106484 .
135 LU Mingzhi, ZHOU Mingyu. A study on the entrainment effect in the convective boundary layer[J]. Chinese Journal of Atmospheric Science, 1988, 12(4): 420-429.
鲁明之,周明煜. 对流边界层中夹卷作用的研究[J]. 大气科学, 1988, 12(4): 420-429.
136 CHEN H, ZHU Q A, PENG C H, et al. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau[J]. Global Change Biology, 2013, 19(10): 2 940-2 955.
137 PREIN A F, LANGHANS W, FOSSER G, et al. A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges[J]. Reviews of Geophysics, 2015, 53(2): 323-361.
138 GAO Y H, XIAO L H, CHEN D L, et al. Comparison between past and future extreme precipitations simulated by global and regional climate models over the Tibetan Plateau[J]. International Journal of Climatology, 2018, 38(3): 1 285-1 297.
139 ZHOU X, YANG K, BELJAARS A, et al. Dynamical impact of parameterized turbulent orographic form drag on the simulation of winter precipitation over the western Tibetan Plateau[J]. Climate Dynamics, 2019, 53(1): 707-720.
140 LIU Jia, CHEN Yan, WANG Man, et al. Comparison of the applicability between ERA-Interim and ERA5 reanalysis in complex terrain area of southwest China[J]. Plateau and Mountain Meteorology Research, 2023, 43(1): 95-103.
刘佳, 陈艳, 王曼, 等. ERA-Interim及ERA5 在中国西南复杂地形区的适用性对比分析[J]. 高原山地气象研究, 2023, 43(1): 95-103.
141 LIU Tingting, ZHU Xiufang, ZHANG Shizhe, et al. Applicability analysis of ERA5 reanalysis surface air temperature data in China[J]. Journal of Tropical Meteorology, 2023, 39(1): 78-88.
刘婷婷, 朱秀芳, 张世喆, 等. ERA5再分析地面气温数据在中国区域的适用性分析[J]. 热带气象学报, 2023, 39(1): 78-88.
142 ZHU Zhi, SHI Chunxiang, ZHANG Tao, et al. Applicability analysis of various reanalyzed land surface temperature datasets in China[J]. Journal of Glaciology and Geocryology, 2015, 37(3): 614-624.
朱智, 师春香, 张涛, 等. 多种再分析地表温度资料在中国区域的适用性分析[J]. 冰川冻土, 2015, 37(3): 614-624.
143 ZHOU X, YANG K, WANG Y. Implementation of a turbulent orographic form drag scheme in WRF and its application to the Tibetan Plateau[J]. Climate Dynamics, 2018, 50(7): 2 443-2 455.
144 XIE J B, ZHANG M H, ZENG Q C, et al. Implementation of an orographic drag scheme considering orographic anisotropy in all flow directions in the Earth system model CAS-ESM 2.0[J]. Journal of Advances in Modeling Earth Systems, 2021, 13(12). DOI: 10.1029/2021MS002585 .
145 HU Wei, MA Weiqiang, MA Yaoming, et al. Evaluating performance of Noah-MP LSM with GLDAS forcing data over Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2020, 39(3): 486-498.
胡伟, 马伟强, 马耀明, 等. GLDAS资料驱动的Noah-MP陆面模式青藏高原地表能量交换模拟性能评估[J]. 高原气象, 2020, 39(3): 486-498.
146 MA S P, ZHOU L B, LI F, et al. Evaluation of WRF land surface schemes in land-atmosphere exchange simulations over grassland in Southeast Tibet[J]. Atmospheric Research, 2020, 234. DOI:10.1016/j.atmosres.2019.104739 .
[1] 范亚伟, 杜鹤强, 杨胜飞, 颜长珍, 刘秀帆, 刘欣雷. 沙尘气溶胶数值模式与资料同化的研究进展、问题与展望[J]. 地球科学进展, 2024, 39(8): 813-822.
[2] 沈淑婧, 史月琴, 刘卫国, 花少烽, 孙晶. 云降水和人工影响天气暖云催化数值模式研发与应用进展[J]. 地球科学进展, 2024, 39(7): 671-684.
[3] 刘锦波, 张勇, 刘时银, 王欣, 蒋宗立. 青藏高原及周边石冰川识别、冰储量及动力学过程研究进展[J]. 地球科学进展, 2024, 39(4): 391-404.
[4] 程久菊, 吕新苗, 朱立平, 马庆峰, SIMA HUMAGAIN, KHUM PAUDAYAL N. 珠穆朗玛峰北坡桤木属大气花粉传输路径与来源[J]. 地球科学进展, 2024, 39(4): 419-428.
[5] 魏伟, 白嘉怡. 对流边界层灰区尺度数值模拟研究进展[J]. 地球科学进展, 2024, 39(3): 221-231.
[6] 兰措. 气候变化背景下陆面模式研究进展及不足[J]. 地球科学进展, 2024, 39(1): 46-55.
[7] 胥佩, 李茂善, 常娜, 龚铭, 伏薇. 藏东南林芝地区冬季大气边界层参数化方案适应性研究[J]. 地球科学进展, 2023, 38(9): 954-966.
[8] 刘操, 饶维龙, 孙文科. 利用大地测量手段推算印度板块与欧亚板块初始碰撞时间[J]. 地球科学进展, 2023, 38(7): 745-756.
[9] 姚楠, 马耀明. 亚洲三大高原感热变化及其对中国天气气候协同影响研究进展[J]. 地球科学进展, 2023, 38(6): 580-593.
[10] 李育, 段俊杰, 李海烨, 高铭君, 张宇欣, 薛雅欣. 全新世青藏高原及周边典型湖泊演化模拟[J]. 地球科学进展, 2023, 38(4): 388-400.
[11] 薄立明, 魏伟, 赵浪, 尹力, 夏俊楠. 青藏高原水生态空间格局时空演化特征及驱动机制[J]. 地球科学进展, 2023, 38(4): 401-413.
[12] 王春晓, 马耀明, 韩存博. 青藏高原大气边界层结构及其发展机制研究[J]. 地球科学进展, 2023, 38(4): 414-428.
[13] 吴景全, 李全莲, 武小波, 王宁练, 康世昌, 王世金. 青藏高原不同载体中微生物类脂物 GDGTs的研究进展及展望[J]. 地球科学进展, 2023, 38(11): 1158-1172.
[14] 王劲松, 姚玉璧, 王莺, 王素萍, 刘晓云, 周悦, 杜昊霖, 张宇, 任余龙. 青藏高原地区气象干旱研究进展与展望[J]. 地球科学进展, 2022, 37(5): 441-461.
[15] 柴磊, 王小萍. 青藏高原持久性有机污染物研究现状与展望[J]. 地球科学进展, 2022, 37(2): 187-201.
阅读次数
全文


摘要