地球科学进展 ›› 2023, Vol. 38 ›› Issue (6): 580 -593. doi: 10.11867/j.issn.1001-8166.2023.029

综述与评述 上一篇    下一篇

亚洲三大高原感热变化及其对中国天气气候协同影响研究进展
姚楠 1 , 2( ), 马耀明 1 , 2 , 3 , 4 , 5 , 6( )   
  1. 1.中国科学院青藏高原研究所青藏高原地球系统科学国家重点实验室地气作用与气候效应团队,北京 100101
    2.中国科学院大学地球与行星科学学院,北京 100049
    3.兰州大学大气科学学院,甘肃 兰州 730000
    4.西藏珠穆朗玛特殊大气过程与环境变化国家野外科学观测研究站,西藏 定日 858200
    5.中国科学院加德满都科教中心,北京 100101
    6.中国科学院中国—巴基斯坦地球科学研究中心,伊斯兰堡 45320
  • 收稿日期:2023-01-03 修回日期:2023-04-18 出版日期:2023-06-10
  • 通讯作者: 马耀明 E-mail:nyao@itpcas.ac.cn;ymma@itpcas.ac.cn
  • 基金资助:
    国家自然科学基金项目“珠穆朗玛峰南北坡地区复杂地表地气间水热交换变化规律研究”(42230610);国家科技专项“第二次青藏高原综合科学考察研究”任务一之第3专题“地气相互作用及其气候效应”(2019QZKK0103)

Characteristics over Three Plateaus in Asia and Their Synergistic Impact on Weather and Climate in China: An Overview

Nan YAO 1 , 2( ), Yaoming MA 1 , 2 , 3 , 4 , 5 , 6( )   

  1. 1.Land-Atmosphere Interaction and Its Climatic Effects Group, State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
    2.College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
    3.College of Atmospheric Science, Lanzhou University, Lanzhou 730000, China
    4.National Observation and Research Station for Qomolongma Special Atmospheric Processes and Environmental Changes, Dingri Tibet 858200, China
    5.Kathmandu Center of Research and Education, Chinese Academy of Sciences, Beijing 100101, China
    6.China -Pakistan Joint Research Center on Earth Sciences, Chinese Academy of Sciences, Islamabad 45320, Pakistan
  • Received:2023-01-03 Revised:2023-04-18 Online:2023-06-10 Published:2023-06-07
  • Contact: Yaoming MA E-mail:nyao@itpcas.ac.cn;ymma@itpcas.ac.cn
  • About author:YAO Nan (1996-), female, Nanyang City, Henan Province, Ph.D student. Research areas include climate effects of land-atmosphere interaction over Tibetan Plateau. E-mail: nyao@itpcas.ac.cn
  • Supported by:
    the National Natural Science Foundation of China “The study of land-atmosphere water and heat flux interaction over the complex terrain of north and south slopes of the Qomolangma region”(42230610);The Ministry of Science and Technology of China “Land-atmosphere interaction and its climate effect of the Second Tibetan Plateau Scientific Expedition and Research Program”(2019QZKK0103)

青藏高原、伊朗高原和蒙古高原属于亚洲高海拔地区,3个高原热力作用对同期和后期中国天气气候有重要影响。首先,介绍了3个高原地表感热时空变化特征,结果表明在全球变暖的背景下,3个高原地表感热经历了明显的年际和年代际变化,基本都在20世纪末到21世纪初出现年代际转折,之后探讨了它们之间地表感热可能存在的联系。其次,归纳总结了3个高原春季和夏季地表热力状况对中国天气气候的影响研究进展,结果显示:青藏高原感热对高原低涡的生成、发展和东移有重要作用,在适当的背景环流下会给中国东部地区带来暴雨天气;青藏高原和伊朗高原的“感热气泵”为亚洲季风区提供有利的大尺度上升背景场,而且这2个高原的热力协同作用对中国南方夏季降水的贡献要大于二者的线性叠加;青藏高原、伊朗高原和蒙古高原地表加热激发的次级环流下沉支与中国北方暖干化关系密切,且3个高原感热异常会引起其上空大气环流异常,通过大气遥相关调节中国北方天气气候。最后,在此基础上讨论了现有研究的不足,并对未来关于青藏高原、伊朗高原和蒙古高原感热的天气气候效应的研究进行了展望。

The Tibetan Plateau (TP), Iranian Plateau (IP), and Mongolian Plateau (MP) belong to Asian high-altitude regions. Thermal forcing over the three plateaus is important in contemporaneous and subsequent weather and climate in China. Examination of the spatial and temporal variation characteristics of surface sensible heat over the three plateaus revealed remarkable interannual and interdecadal changes attributable to global warming that occurred from the end of the 20th century to the beginning of the 21st century. Their relationships and possible mechanisms are discussed. A summary of the research progress on the impact of surface thermal conditions over the three plateaus on the weather and climate of China during spring and summer revealed three findings. First, over the TP, sensible heating has a significant impact on the formation, development, and eastward movement of the TP vortex, which induces rainstorms in the eastern part of China with an appropriate circulation background. Second, the Tibetan-Iranian Plateau (TIP) “sensible heat driven air-pump” favors the development of upward flow over the Asian monsoon region. The combined contribution of TIP thermal condition is greater than their linear superposition to the summer precipitation in southern China. Third, the warmer and drier conditions in northern China are closely related to the compensatory downdraft induced by thermal forcing over the TP, IP, and MP. In addition, the abnormal surface heating of the three plateaus triggers abnormalities in local circulation and regulates the weather and climate over northern China through teleconnection patterns. The paper concludes with a discussion of future research considerations and challenges regarding the synergism of the TP, IP, and MP.

中图分类号: 

表1 青藏高原大气科学试验和陆—气相互作用过程观测试验(据参考文献[ 12 18 ]修改)
Table 1 Information of the Tibetan Plateau atmospheric field experiments and land-atmospheric interaction process observation experimentsmodified after references1218])
图1 第三极环境观测研究平台台站分布(修改自 http://www.tpe.ac.cn/science/STEP/202003/t20200314_231337.html
Fig. 1 The stations layout on the TPEORPmodified after http://www.tpe.ac.cn/science/STEP/202003/t20200314_231337.html
图2 19792016年青藏高原平均地表感热通量变化曼—肯德尔检验 52
Fig. 2 Mann-KendallMKtest of surface sensible heat flux over the Tibetan Plateau from 1979 to 2016 52
图3 19792014年春季[(a~b)]夏季[(c~d)]伊朗高原北部[(a)和(c)]和南部[(b)和(d)]感热通量指数( I S H )和潜热通量指数( I L H )的年际变化 43
*表示通过0.05显著性水平, r I S H I L H 间去除线性趋势后的相关系数
Fig. 3 Interannual variations of I S H and I L H over western [(aandc)] and eastern [(bandd)] Tibetan Plateau in the spring [(a~b)] and summer [(c~d)] from 1979 to 2014 43
* Means the trend is significant at / above the 0.05 level, r is the correlation coefficient between I S H and I L H after the linear trend removed
图4 19792021年蒙古高原平均地表感热通量和潜热通量的季节变化
Fig. 4 The seasonal variations of surface sensible heat flux and surface latent heat flux over the Mongolian Plateau from 1979 to 2021
图5 蒙古高原全年平均[(a1~a4)]及春[(b1~b4)]、夏[(c1~c4)]、秋[(d1~d4)]、冬[(e1~e4)]季的地表感热通量EOF分解的第1模态[(a1~e1)]、第2模态[(a3~e3)]及对应的时间系数[(a2~e2)]和[(a4~e4)]
EOF右侧数字表示每个模态的贡献率,*表示通过North检验
Fig. 5 The first modes [(a1~e1)], second modes [(a3~e3)] modes of the EOF expansion for the annual average [(a1~a4)],spring [(b1~b4)],summer [(c1~c4)],autumn [(d1~d4)] and winter [(e1~e4)] sensible heat flux over the Mongolian Plateauand the time coefficients [(a2~e2)] and [(a4~e4)]
The contribution rate of each mode is shown in the figures,* indicates passing the significance North test
图6 青藏高原、伊朗高原和蒙古高原地表感热变化特征及其对中国天气气候协同影响规律研究框架
Fig. 6 Research frame of the synergistic impact of surface sensitive heating over Tibetan PlateauIranian Plateau and Mongolian Plateau on weather and climate in China
1 QIU Jane. China: the third pole[J]. Nature,2008,454(7 203):393-396.
2 IMMERZEEL W W, van BEEK L P H, BIERKENS M F P. Climate change will affect the Asian water towers[J]. Science,2010,328(5 984):1 382-1 385.
3 LI Weijing, LUO Siwei. An numerical experiment of the effect of Tibetan Plateau on a synoptic system in its neighbourhood[J]. Plateau Meteorology,1986,5(3):245-255.
李维京,罗四维. 青藏高原对其邻近地区一次天气系统影响的数值试验[J]. 高原气象,1986,5(3):245-255.
4 YEH Tucheng, GU Zhenchao. Influence of Tibetan Plateau on East Asian atmospheric circulation and weather in China[J]. Chinese Science Bulletin,1955,6(6):29-33.
叶笃正,顾震潮. 西藏高原对于东亚大气环流及中国天气的影响[J]. 科学通报,1955,6(6):29-33.
5 SUN Shuqing, DELL’OSSO L. Dynamic effects of the Tibetan Plateau on the large-scale low-level jet in Eastern Asia[J]. Science in China Series B Chemistry, Life Science & Earth Sciences, 1984(6):564-574.
孙淑清, DELL’OSSO L. 青藏高原对东亚大尺度低空急流的动力影响[J]. 中国科学B辑:化学、生物学、农学、医学、地球科学,1984(6):564-574.
6 CHEN Yuchun, QIAN Zhengan. Numerical simulations of dynamical impact of Qinghai-Xizang Plateau on lower-level jet on its east side in summer[J]. Plateau Meteorology,1993,12(3):312-321.
陈玉春,钱正安. 夏季青藏高原地形对其东侧低空急流动力影响的数值模拟[J]. 高原气象,1993,12(3):312-321.
7 YEH Tucheng, LUO Szuwei, CHU Paochen. The wind structure and heat balance in the lower troposphere over Tibetan Plateau and its surrounding[J]. Acta Meteorologica Sinica,1957(2):108-121.
叶笃正,罗四维,朱抱真. 西藏高原及其附近的流场结构和对流层大气的热量平衡[J]. 气象学报,1957(2):108-121.
8 FLOHN H. Large-scale aspects of the “summer monsoon” in south and East Asia[J]. Journal of the Meteorological Society of Japan Series II,1957,35A:180-186.
9 WANG Jiemin. Land surface process experiments and interaction study in China—from HEIFE to IMGRASS and GAME-Tibet/TIPEX[J]. Plateau Meteorology,1999,18(3):280-294.
王介民. 陆面过程实验和地气相互作用研究:从HEIFE到IMGRASS和GAME-Tibet/TIPEX[J]. 高原气象,1999,18(3):280-294.
10 MA Yaoming, ZHONG Lei, SU Zhongbo,et al. Determination of regional distributions and seasonal variations of land surface heat fluxes from Landsat-7 enhanced thematic mapper data over the central Tibetan Plateau area[J]. Journal of Geophysical Research:Atmospheres,2006,111. DOI:10.1029/2005JD006742 .
11 MA Yaoming, MA Weiqiang, ZHONG Lei,et al. Monitoring and Modeling the Tibetan Plateau’s climate system and its impact on East Asia[J]. Scientific Reports,2017,7. DOI: 10.1038/srep44574 .
12 ZHAO Ping, LI Yaoqing, GUO Xueliang,et al. The Tibetan Plateau surface-atmosphere coupling system and its weather and climate effects: the Third Tibetan Plateau Atmospheric Scientific Experiment[J]. Acta Meteorologica Sinica,2018,76(6):833-860.
赵平,李跃清,郭学良,等. 青藏高原地气耦合系统及其天气气候效应:第三次青藏高原大气科学试验[J]. 气象学报,2018,76(6):833-860.
13 WU Guoxiong, ZHANG Yongsheng. Thermal and mechanical forcing of the Tibetan Plateau and the Asian monsoon onset. part I:situating of the onset[J]. Scientia Atmospherica Sinica,1998,22(6):825-838.
吴国雄,张永生. 青藏高原的热力和机械强迫作用以及亚洲季风的爆发I.爆发地点[J]. 大气科学,1998,22(6):825-838.
14 ZHAO Ping, CHEN Longxun. Climatic characteristics of atmospheric heat source over the Tibetan Plateau and its relationship with precipitation in China in the past 35 years[J]. Science in China Series D: Earth Sciences,2001(4):327-332.
赵平,陈隆勋. 35年来青藏高原大气热源气候特征及其与中国降水的关系[J]. 中国科学D辑:地球科学,2001(4):327-332.
15 WU Guoxiong, ZHANG Yongsheng. Thermal and mechanical forcing of the Tibetan Plateau and Asian monsoon onset part II:timing of the onset[J]. Scientia Atmospherica Sinica,1999,23(1):51-61.
吴国雄,张永生. 青藏高原的热力和机械强迫作用以及亚洲季风的爆发 Ⅱ.爆发时间[J]. 大气科学,1999,23(1):51-61.
16 WU Guoxiong, LIU Yimin, LIU Xin,et al. How the heating over the Tibetan Plateau affects the Asian climate in summer[J]. Chinese Journal of Atmospheric Sciences,2005,29(1):47-56.
吴国雄,刘屹岷,刘新,等. 青藏高原加热如何影响亚洲夏季的气候格局[J]. 大气科学,2005,29(1):47-56.
17 MA Yaoming, HU Zeyong, TIAN Lide,et al. Study progresses of the Tibet Plateau climate system change and mechanism of its impact on East Asia[J]. Advances in Earth Science,2014,29(2):207-215.
马耀明,胡泽勇,田立德,等. 青藏高原气候系统变化及其对东亚区域的影响与机制研究进展[J]. 地球科学进展,2014,29(2):207-215.
18 MA Yaoming, HU Zeyong, WANG Binbin,et al. The review of the observation experiments on land-atmosphere interaction progress on the Qinghai-Xizang(Tibetan) Plateau[J]. Plateau Meteorology,2021,40(6):1 241-1 262.
马耀明,胡泽勇,王宾宾,等. 青藏高原多圈层地气相互作用过程研究进展和回顾[J]. 高原气象,2021,40(6):1 241-1 262.
19 MA Yaoming, ZHUO Benxiu, WU Xiaoming,et al. Characteristics of energy transfer and micrometeorology in the surface layer of the atmosphere above grassy marshland of the Tibetan Plateau area[J]. Scientia Atmospherica Sinica,2000,24(5):715-722.
马耀明,塚本修,吴晓鸣,等. 藏北高原草甸下垫面近地层能量输送及微气象特征[J]. 大气科学,2000,24(5):715-722.
20 ZHONG Lei, MA Yaoming, SU Zhongbo,et al. Atmospheric turbulence and land-atmosphere energy transfer characteristics in the surface layer of the northern slope of Mt. Qomolangma area[J]. Advances in Earth Science,2006,21(12):1 293-1 303.
仲雷,马耀明,苏中波,等. 珠峰北坡地区近地层大气湍流与地气能量交换特征[J]. 地球科学进展,2006,21(12):1 293-1 303.
21 MA Weiqiang, DAI Youxue, MA Yaoming,et al. Seasonal variations of land surface radiation budget and energy on northern slope of Mt. Qomolangma area[J]. Plateau Meteorology,2007,26(6):1 237-1 243.
马伟强,戴有学,马耀明,等. 珠峰北坡地区地表辐射和能量季节变化的初步分析[J]. 高原气象,2007,26(6):1 237-1 243.
22 MA Yaoming, FAN S, ISHIKAWA H,et al. Diurnal and inter-monthly variation of land surface heat fluxes over the central Tibetan Plateau area[J].Theoretical and Applied Climatology,2005,80(2/3/4):259-273.
23 LI Maoshan, SU Zhongbo, MA Yaoming,et al. Characteristics of land-atmosphere energy and turbulent fluxes over the plateau steppe in central Tibetan Plateau[J]. Sciences in Cold and Arid Regions,2016,8(2):103-115.
24 MA Yaoming, WANG Binbin, ZHONG Lei,et al. The regional surface heating field over the heterogeneous landscape of the Tibetan Plateau using MODIS and in situ data[J]. Advances in Atmospheric Sciences,2012,29(1):47-53.
25 HAN Cunbo, MA Yaoming, CHEN Xuelong,et al. Trends of land surface heat fluxes on the Tibetan Plateau from 2001 to 2012[J]. International Journal of Climatology,2017,37(14): 4 757-4 767.
26 WANG Shuzhou, MA Yaoming. On the simulation of sensible heat flux over the Tibetan Plateau using different thermal roughness length parameterization schemes[J].Theoretical and Applied Climatology,2019,137(3/4):1 883-1 893.
27 WANG Shuzhou, MA Yaoming, LIU Yuxin. Simulation of sensible and latent heat fluxes on the Tibetan Plateau from 1981 to 2018[J]. Atmospheric Research,2022,271. DOI:10.1016/j.atmosres.2022.106129 .
28 DUAN Anmin, LIU Yimin, WU Guoxiong,et al. The thermal situation of the Tibetan Plateau from April to June and the anomalies of East Asian precipitation and atmospheric circulation in mid-summer[J]. Science in China Series D:Earth Sciences,2003(10):997-1 004.
段安民,刘屹岷,吴国雄. 4~6月青藏高原热状况与盛夏东亚降水和大气环流的异常[J]. 中国科学D辑:地球科学,2003(10):997-1 004.
29 WU Guoxiong, LIU Yimin, HE Bian,et al. Review of the impact of the Tibetan Plateau sensible heat driven air-pump on the Asian summer monsoon[J]. Chinese Journal of Atmospheric Sciences,2018,42(3):488-504.
吴国雄,刘屹岷,何编,等. 青藏高原感热气泵影响亚洲夏季风的机制[J]. 大气科学,2018,42(3):488-504.
30 CHEN Haishan, TENG Fangda, ZHANG Wanxin,et al. Impacts of anomalous midlatitude cyclone activity over East Asia during summer on the decadal mode of East Asian summer monsoon and its possible mechanism[J]. Journal of Climate,2017,30(2):739-753.
31 CHEN Haishan, YANG Jingqiu, ZHANG Wanxin,et al. Possible linkages among early summer precipitation in northeast China,cold vortex and spring land surface thermal anomaly over West Asia[J]. Journal of Shandong Meteorology,2018,38(1):10-16.
陈海山,杨静秋,张莞昕,等. 中国东北初夏降水与冷涡活动及西亚春季陆面热力异常的可能联系[J]. 海洋气象学报,2018,38(1):10-16.
32 LIU Chao, LIU Yimin, LIU Boqi. Comparison of six sensible heat flux datasets over the Iranian-Tibetan Plateaus[J]. Journal of the Meteorological Sciences,2015,35(4):398-404.
刘超,刘屹岷,刘伯奇. 6种地表热通量资料在伊朗—青藏高原地区的对比分析[J]. 气象科学,2015,35(4):398-404.
33 LIU Yimin, WANG Ziqian, ZHUO Haifeng,et al. Two types of summertime heating over Asian large-scale orography and excitation of potential-vorticity forcing II. sensible heating over Tibetan-Iranian Plateau[J]. Science China:Earth Science,2017,47(3):354-366.
刘屹岷,王子谦,卓海峰,等. 夏季亚洲大地形双加热及近对流层顶位涡强迫的激发Ⅱ:伊朗高原—青藏高原感热加热[J]. 中国科学:地球科学,2017,47(3):354-366.
34 JIANG Liguang, YAO Zhijun, HUANG Heqing. Climate variability and change on the Mongolian Plateau:historical variation and future predictions[J]. Climate Research,2016,67(1):1-14.
35 ZHANG Yinsheng, ISHIKAWA M, KADOTA T,et al. Observational study of hydrological land-surface processes on semi-arid grassland underlain by warm permafrost in Mongolia[C]// Proceedings of the 6th international study conference on GEWEX in Asia and GAME,2004:3-5.
36 QIN Fuying, JIA Gensuo, YANG Jie,et al. Spatiotemporal variability of precipitation during 1961-2014 across the Mongolian Plateau[J]. Journal of Mountain Science,2018,15(5):992-1 005.
37 SHI Zhengguo, LIU Xiaodong, LIU Yimin,et al. Impact of Mongolian Plateau versus Tibetan Plateau on the westerly jet over North Pacific Ocean[J]. Climate Dynamics,2015,44(11/12):3 067-3 076.
38 SHA Yingying, SHI Zhengguo, LIU Xiaodong,et al. Distinct impacts of the Mongolian and Tibetan Plateaus on the evolution of the East Asian monsoon[J]. Journal of Geophysical Research:Atmospheres,2015,120(10):4 764-4 782.
39 SHA Yingying, REN Xin, SHI Zhengguo,et al. Influence of the Tibetan Plateau and its northern margins on the mid-latitude Westerly Jet over Central Asia in summer[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2020,544. DOI:10.1016/jpalaeo.2020.109611 .
40 YAO Tandong, WU Guangjian, XU Baiqing,et al. Asian water tower change and its impacts[J]. Bulletin of the Chinese Academy of Sciences,2019,34(11):1 203-1 209.
姚檀栋,邬光剑,徐柏青,等. “亚洲水塔” 变化与影响[J]. 中国科学院院刊,2019,34(11):1 203-1 209.
41 YANG Kun, WU Hui, QIN Jun,et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle:a review[J]. Global and Planetary Change,2014,112:79-91.
42 WANG Di, CHEN Haishan, ZHAO Changyu. Connection between spring land surface thermal anomalies over West Asia and decadal variation of early summer cold Vortex in northeast China[J]. Chinese Journal of Atmospheric Sciences,2018,42(1):70-80.
王迪,陈海山,赵昶昱. 春季西亚地表热力异常与初夏东北冷涡活动年代际变化的联系[J]. 大气科学,2018,42(1):70-80.
43 ZHANG Haoxing, LI Weijing, LI Weiping. Spatial and temporal distribution characteristics of surface heat fluxes over both Tibetan Plateau and Iranian Plateau in boreal spring and summer and their relationships[J]. Acta Meteorologica Sinica,2017,75(2):260-274.
张浩鑫,李维京,李伟平. 春夏季青藏高原与伊朗高原地表热通量的时空分布特征及相互联系[J]. 气象学报,2017,75(2):260-274.
44 CHEN Jie, HUANG Wei, ZHANG Qiong,et al. Origin of the spatial consistency of summer precipitation variability between the Mongolian Plateau and the mid-latitude East Asian summer monsoon region[J].Science China: Earth Sciences,2020,63(8):1 199-1 208.
45 LIN Zhongda, YANG Qin. Three leading coupled modes of summer rainfall with atmospheric circulations over northern East Asia[J]. International Journal of Climatology,2022,42(11):5 916-5 934.
46 ZHANG Guoqing. Changes in lakes on the Tibetan Plateau observed from satellite data and their responses to climate variations[J]. Progress in Geography,2018,37(2):214-223.
张国庆. 青藏高原湖泊变化遥感监测及其对气候变化的响应研究进展[J]. 地理科学进展,2018,37(2):214-223.
47 TAO Shengli, FANG Jingyun, ZHAO Xia,et al. Rapid loss of lakes on the Mongolian Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(7):2 281-2 286.
48 LI Guangshuai, YU Lingxue, LIU Tingxiang,et al. Modeling potential impacts on regional climate due to land surface changes across Mongolia Plateau[J]. Remote Sensing,2022,14(12). DOI:10.3390/rs14122947 .
49 CHEN Fahu, CHEN Jie, HUANG Wei. Weakened East Asian summer monsoon triggers increased precipitation in Northwest China[J]. Science China Earth Sciences,2021,64(5):835-837.
50 BAO Gang, BAO Yuhai, QIN Zhihao,et al. Vegetation cover changes in Mongolian Plateau and its response to seasonal climate changes in recent 10 years[J]. Scientia Geographica Sinica,2013,33(5):613-621.
包刚,包玉海,覃志豪,等. 近10年蒙古高原植被覆盖变化及其对气候的季节响应[J]. 地理科学,2013,33(5):613-621.
51 MA Yaoming, WANG Yuyang, HAN Cunbo. Regionalization of land surface heat fluxes over the heterogeneous landscape:from the Tibetan Plateau to the Third Pole region[J]. International Journal of Remote Sensing,2018,39(18):5 872-5 890.
52 HAN Yizhe, MA Weiqiang, MA Yaoming,et al. Long-term variation characteristics of surface heat flux over the Tibetan Plateau before and after the onset of the South Asian summer monsoon[J]. Acta Meteorologica Sinica,2018,76(6):920-929.
韩熠哲,马伟强,马耀明,等. 南亚夏季风爆发前后青藏高原地表热通量的长期变化特征分析[J]. 气象学报,2018,76(6):920-929.
53 YANG Kun, GUO Xiaofeng, HE Jie,et al. On the climatology and trend of the atmospheric heat source over the Tibetan Plateau:an experiments-supported revisit[J]. Journal of Climate,2011,24:1 525-1 541.
54 DUAN Anmin, WANG Meirong, LEI Yonghui,et al. Trends in summer rainfall over China associated with the Tibetan Plateau sensible heat source during 1980-2008[J]. Journal of Climate,2013,26(1):261-275.
55 YU Wei, LIU Yimin, YANG Xiuqun,et al. The interannual and decadal variation characteristics of the surface sensible heating at different elevations over the Qinghai-Tibetan Plateau and attribution analysis[J]. Plateau Meteorology,2018,37(5):1 161-1 176.
于威,刘屹岷,杨修群,等. 青藏高原不同海拔地表感热的年际和年代际变化特征及其成因分析[J]. 高原气象,2018,37(5):1 161-1 176.
56 YANG Jingqiu, CHEN Haishan, SONG Yidi,et al. Atmospheric circumglobal teleconnection triggered by spring land thermal anomalies over West Asia and its possible impacts on early summer climate over northern China[J]. Journal of Climate,2021. DOI:10.1175/JCLI-D-20-0911.1 .
57 MUOZ-SABATER J, DUTRA E, AGUSTÍ-PANAREDA A,et al. ERA5-Land:a state-of-the-art global reanalysis dataset for land applications[J]. Copernicus GmbH,2021,13(9). DOI:10.5194/essd-13-4349-2021 .
58 ZHOU Liantong. Characteristics of temporal and spatial variations of sensible heat flux in the arid and semi-arid region of Eurasia[J]. Transactions of Atmospheric Sciences,2010,33(3):299-306.
周连童. 欧亚大陆干旱半干旱区感热通量的时空变化特征[J]. 大气科学学报,2010,33(3):299-306.
59 HUANG Rouhui, ZHOU Degang, CHEN Wen,et al. Recent progress in studies of air-land interaction over the arid area of northwest China and its impact on climate[J]. Chinese Journal of Atmospheric Sciences,2013,37(2):189-210.
黄荣辉,周德刚,陈文,等. 关于中国西北干旱区陆—气相互作用及其对气候影响研究的最近进展[J]. 大气科学,2013,37(2):189-210.
60 MA Yaoming, HU Zeyong, XIE Zhipeng,et al. A long-term(2005-2016) dataset of hourly integrated land-atmosphere interaction observations on the Tibetan Plateau[J]. Earth System Science Data,2020,12(4):2 937-2 957.
61 LIU Xin, WU Guoxiong, LI Weiping. The diurnal variation of the atmospheric circulation and diabatic heating over the Tibetan Plateau[J]. Advances in Earth Science,2006,21(12):1 273-1 282.
刘新,吴国雄,李伟平. 夏季青藏高原加热和环流场的日变化[J]. 地球科学进展,2006,21(12):1 273-1 282.
62 LIN Zhiqiang, YAO Xiuping, GUO Weidong,et al. Vertical structure of Tibetan Plateau vortex in boreal summer[J]. Theoretical and Applied Climatology,2021,145(1/2):427-440.
63 TIAN Shanru, DUAN Anmin, WANG Ziqian,et al. Interaction of surface heating,the Tibetan Plateau vortex,and a convective system:a case study[J]. Chinese Journal of Atmospheric Sciences,2015,39(1):125-136.
田珊儒,段安民,王子谦,等. 地面加热与高原低涡和对流系统相互作用的一次个例研究[J]. 大气科学,2015,39(1):125-136.
64 LI Guoping, ZHAO Bangjie, YANG Jinqing. A dynamical study of the role of surface sensible heating in the structure and intensification of the Tibetan Plateau vortices[J]. Chinese Journal of Atmospheric Sciences,2002,26(4):519-525.
李国平,赵邦杰,杨锦青. 地面感热对青藏高原低涡流场结构及发展的作用[J]. 大气科学,2002,26(4):519-525.
65 LI Guoping, LU Huiguo, HUANG Chuhui,et al. A climatology of the surface heat source on the Tibetan Plateau in summer and its impacts on the formation of the Tibetan Plateau vortex[J]. Chinese Journal of Atmospheric Sciences,2016,40(1):131-141.
李国平,卢会国,黄楚惠,等. 青藏高原夏季地面热源的气候特征及其对高原低涡生成的影响[J]. 大气科学,2016,40(1):131-141.
66 ZHANG Tianyue, LI Guoping. Temporal-spatial distribution of surface sensible heat flux over the Tibetan Plateau in summer and its possible correlation with the formation of Tibetan Plateau vortex[J]. Desert and Oasis Meteorology,2018,12(2):1-6.
张恬月,李国平. 青藏高原夏季地面感热通量与高原低涡生成的可能联系[J]. 沙漠与绿洲气象,2018,12(2):1-6.
67 ZHANG Tianyue, LI Guoping. The diurnal variation of the surface heat source on the Tibetan Plateau and the generating frequency of Tibetan Plateau vortex in summer[J]. Desert and Oasis Meteorology,2016,10(2):70-76.
张恬月,李国平. 夏季青藏高原地面热源和高原低涡生成频数的日变化[J]. 沙漠与绿洲气象,2016,10(2):70-76.
68 GUAN Liang. Activity characteristics of Tibetan Plateau vortex and the connection of Tibetan Plateau vortex and surface sensitive heat[D]. Nanjing:Nanjing University of Information Science and Technology,2018.
关良.青藏高原低涡活动特征及其与地面感热的关系[D]. 南京:南京信息工程大学,2018.
69 MA Ting, LIU Yimin, WU Guoxiong,et al. Effect of potential vorticity on the formation,development,and eastward movement of a Tibetan Plateau Vortex and its influence on downstream precipitation[J]. Chinese Journal of Atmospheric Sciences,2020,44(3):472-486.
马婷,刘屹岷,吴国雄,等. 青藏高原低涡形成、发展和东移影响下游暴雨天气个例的位涡分析[J]. 大气科学,2020,44(3):472-486.
70 WU Guoxiong, LIU Yimin, HE Bian,et al. Thermal controls on the Asian summer monsoon[J]. Scientific Reports,2012,2(1):1-7.
71 WU Guoxiong, ZHUO Haifeng, WANG Ziqian,et al. Two types of summertime heating over the Asian large-scale orography and excitation of potential-vorticity forcing Ⅰ. over Tibetan Plateau[J]. Science China: Earth Sciences,2016,46(9):1 209-1 222.
吴国雄,卓海峰,王子谦,等. 夏季亚洲大地形双加热及近对流层顶位涡强迫的激发(Ⅰ):青藏高原主体加热[J]. 中国科学:地球科学,2016,46(9):1 209-1 222.
72 ZHANG Yingying, LI Zhongxian, LIU Boqi. Interannual variability of surface sensible heating over the Tibetan Plateau in boreal spring and its influence on the onset time of the Indian summer monsoon[J]. Chinese Journal of Atmospheric Sciences,2015,39(6):1 059-1 072.
张盈盈,李忠贤,刘伯奇. 春季青藏高原表面感热加热的年际变化特征及其对印度夏季风爆发时间的影响[J]. 大气科学,2015,39(6):1 059-1 072.
73 LI Xiuzhen, TANG Xuzi, LI Shihua,et al. Impact of the spring sensible heat flux over the Tibetan Plateau on summer rainfall over east China and its role in rainfall prediction [J]. Acta Meteorologica Sinica,2018,76(6):930-943.
李秀珍,唐旭紫,李施华,等. 春季青藏高原感热对中国东部夏季降水的影响和预测作用[J]. 气象学报,2018,76(6):930-943.
74 WU Guoxiong, LIU Xin, ZHANG Qiong,et al. Progresses in the study of the climate impacts of the elevated heating over the Tibetan Plateau[J]. Climatic and Environmental Research,2002,7(2):184-201.
吴国雄,刘新,张琼,等. 青藏高原抬升加热气候效应研究的新进展[J]. 气候与环境研究,2002,7(2):184-201.
75 XU Xiangde, ZHOU Mingyu, CHEN Jiayi,et al. A comprehensive physical image of the dynamic and thermodynamic structure of the air-atmosphere process over the Tibetan Plateau[J]. Science in China Series D: Earth Sciences,2001(5):428-441.
徐祥德,周明煜,陈家宜,等. 青藏高原地—气过程动力、热力结构综合物理图象[J]. 中国科学D辑:地球科学,2001(5):428-441.
76 DING Yihui, SUN Ying, LIU Yunyun,et al. Interdecadal and interannual variabilities of the Asian Summer Monsoon and its projection of future change[J]. Chinese Journal of Atmospheric Sciences,2013,37(2):253-280.
丁一汇,孙颖,刘芸芸,等. 亚洲夏季风的年际和年代际变化及其未来预测[J]. 大气科学,2013,37(2):253-280.
77 XU Xiangde, ZHAO Tianliang, SHI Xiaohui,et al. A study of the role of the Tibetan Plateau’s thermal forcing in modulating rainband and moisture transport in eastern China [J]. Acta Meteorologica Sinica,2015,73(1):20-35.
徐祥德,赵天良,施晓晖,等. 青藏高原热力强迫对中国东部降水和水汽输送的调制作用[J]. 气象学报,2015,73(1):20-35.
78 XU Li, BI Yun, QIAN Yongfu. Relation between upper-level thermodynamic anomaly over Qinghai-Xizang and Iranian Plateaus in spring and summer and China air temperature in summer[J]. Plateau Meteorology,2004,23(3):323-329.
许利,毕云,钱永甫. 青藏、伊朗高原春夏季高层热力异常与我国夏季气温的关系[J]. 高原气象,2004,23(3):323-329.
79 ZHANG Ping, JEONG Jeehoon, YOON Jinho,et al. Abrupt shift to hotter and drier climate over inner East Asia beyond the tipping point[J]. Science,2020,370(6 520):1 095-1 099.
80 LI Yaohui, MENG Xianhong, ZHANG Hongsheng,et al. Advances and key scientific issues of land-atmosphere coupling between the Tibet Plateau and the northern desert and its impact on Northern China drought[J]. Advances in Earth Science,2021,36(3):265-275.
李耀辉,孟宪红,张宏升,等. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展,2021,36(3):265-275.
81 WU Tongwen, QIAN Zhengan. The relation between the Tibetan winter snow and the Asian summer monsoon and rainfall:an observational investigation[J]. Journal of Climate,2003,16(12):2 038-2 051.
82 SUN Hui, LIU Xiaodong. Impacts of dynamic and thermal forcing by the Tibetan Plateau on the precipitation distribution in the Asian arid and monsoon regions[J].Climate Dynamics,2021,56(7/8):2 339-2 358.
83 LUO Hongyu, YU Haipeng, HU Zeyong,et al. Progress of the impact of the Qinghai-Xizang Plateau heat sources on climate anomalies in drylands of China[J]. Plateau Meteorology,2023,42(2): 257-271.
罗红羽,于海鹏,胡泽勇,等. 青藏高原热源对我国旱区气候异常影响研究进展[J]. 高原气象,2023,42(2):257-271.
84 HAN Yizhe, MA Weiqiang, YANG Yaoxian,et al. Impacts of the Silk Road pattern on the interdecadal variations of the atmospheric heat source over the Tibetan Plateau[J]. Atmospheric Research,2021,260. DOI:10.1016/j.atmosres.2021.105696 .
85 LIN Zhongda, WANG Bin. Northern East Asian low and its impact on the interannual variation of East Asian summer rainfall[J]. Climate Dynamics,2016,46(1):83-97.
86 CHEN Chunzhu, ZHANG Xiaojian, LU Huayu,et al. Increasing summer precipitation in arid Central Asia linked to the weakening of the East Asian summer monsoon in the recent decades[J]. International Journal of Climatology,2021,41(2): 1 024-1 038.
[1] 李育, 段俊杰, 李海烨, 高铭君, 张宇欣, 薛雅欣. 全新世青藏高原及周边典型湖泊演化模拟[J]. 地球科学进展, 2023, 38(4): 388-400.
[2] 薄立明, 魏伟, 赵浪, 尹力, 夏俊楠. 青藏高原水生态空间格局时空演化特征及驱动机制[J]. 地球科学进展, 2023, 38(4): 401-413.
[3] 王春晓, 马耀明, 韩存博. 青藏高原大气边界层结构及其发展机制研究[J]. 地球科学进展, 2023, 38(4): 414-428.
[4] 王劲松, 姚玉璧, 王莺, 王素萍, 刘晓云, 周悦, 杜昊霖, 张宇, 任余龙. 青藏高原地区气象干旱研究进展与展望[J]. 地球科学进展, 2022, 37(5): 441-461.
[5] 柴磊, 王小萍. 青藏高原持久性有机污染物研究现状与展望[J]. 地球科学进展, 2022, 37(2): 187-201.
[6] 李虎, 潘小多. 青藏高原水汽输送过程及水汽源地研究方法综述[J]. 地球科学进展, 2022, 37(10): 1025-1036.
[7] 张璐, 李倩惠, 孟露, 张强, 张宏昇, 何清, 赵天良. 深厚大气边界层演变与湍流运动、沙尘滞空的研究[J]. 地球科学进展, 2022, 37(10): 991-1004.
[8] 昝金波, 宁文晓, 杨胜利, 方小敏, 康健, 罗元龙. 表土磁学特征揭示的青藏高原及其周边地区的气候边界[J]. 地球科学进展, 2022, 37(1): 14-25.
[9] 杨晓新. 水体稳定同位素在青藏高原大气环流研究中的应用[J]. 地球科学进展, 2022, 37(1): 87-98.
[10] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[11] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[12] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[13] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[14] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[15] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
阅读次数
全文


摘要