地球科学进展 ›› 2022, Vol. 37 ›› Issue (10): 991 -1004. doi: 10.11867/j.issn.1001-8166.2022.067

综述与评述    下一篇

深厚大气边界层演变与湍流运动、沙尘滞空的研究
张璐 1( ), 李倩惠 1 , 2, 孟露 3, 张强 4 , 5( ), 张宏昇 1, 何清 3, 赵天良 6   
  1. 1.北京大学物理学院大气与海洋科学系,气候与海—气实验室,北京 100871
    2.天津市气象服务中心,天津市海洋气象重点实验室,天津 300074
    3.中国气象局乌鲁木齐沙漠气象研究所/中国气象局塔克 拉玛干沙漠气象野外科学试验基地/新疆塔克拉玛干沙漠气象国家野外科学观测研究站/新疆沙漠气象 与沙尘暴重点实验室,新疆 乌鲁木齐 830002
    4.中国气象局兰州干旱气象研究所/甘肃省干旱气候 变化与减灾重点实验室/中国气象局干旱气候变化与减灾重点开放实验室,甘肃 兰州 730020
    5.甘肃省气象局,甘肃 兰州 730020
    6.南京信息工程大学大气物理学院,江苏 南京 210044
  • 收稿日期:2022-07-03 修回日期:2022-09-09 出版日期:2022-10-10
  • 通讯作者: 张强 E-mail:luzhang19@pku.edu.cn;zhangqiang@cma.gov.cn
  • 基金资助:
    国家自然科学基金项目“化学天气数值预报系统中大气成分与大气宏微观动力、热力和云过程的双向反馈机制与影响研究”(42090031);“青藏高原夏季热源‘北扩’与塔里木盆地‘滞空’沙尘气溶胶辐射加热的关联及对区域降水变异的影响”(4203000543)

Research on the Development of the Deep Atmospheric Boundary Layer, Turbulent Motion, and Dust Stagnation

Lu ZHANG 1( ), Qianhui LI 1 , 2, Lu MENG 3, Qiang ZHANG 4 , 5( ), Hongsheng ZHANG 1, Qing HE 3, Tianliang ZHAO 6   

  1. 1.Laboratory for Climate and Ocean-Atmosphere Studies, Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
    2.Tianjin Key Laboratory for Oceanic Meteorology, Tianjin Meteorological Service Center, Tianjin 300074, China
    3.Institute of Desert Meteorology, China Meteorological Administration, Urumqi / Taklimakan Desert Meteorology Field Experiment Station of China Meteorological Administration / National Observation and Research Station of Desert Meteorology, Taklimakan Desert of Xinjiang / Xinjiang Key Laboratory of Desert Meteorology and Sandstorm, Urumqi 830002, China
    4.Institute of Arid Meteorology, China Meteorological Administration / Key Laboratory of Arid Climatic Change and Reducing Disaster of Gansu Province / Key Open Laboratory of Arid Climatic Change and Disaster Reduction of China Meteorological Administration, Lanzhou 730020, China
    5.Gansu Meteorological Bureau, Lanzhou 730020, China
    6.School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China
  • Received:2022-07-03 Revised:2022-09-09 Online:2022-10-10 Published:2022-10-18
  • Contact: Qiang ZHANG E-mail:luzhang19@pku.edu.cn;zhangqiang@cma.gov.cn
  • About author:ZHANG Lu (1997-), female, Heze City, Shandong Province, Ph.D student. Research areas include atmospheric boundary layer and dust weather. E-mail: luzhang19@pku.edu.cn
  • Supported by:
    the National Natural Science Foundation of China “Study on the two-way feedback mechanisms and influences between the atmospheric compositions and the atmospheric macro and micro dynamics, thermodynamics and cloud processes in chemical weather numerical prediction system”(42090031);“The ‘northward expansion’ of the summertime heat source from the Tibetan Plateau induced by radiation heating of dust aerosols ‘persistently suspending’ over the Tarim Basin and the influence on regional precipitation variations”(4203000543)

大气边界层是地球表面与大气之间水热、动量、能量和痕量气体等物质交换和输送的重要通道,在天气和气候的演变过程中有着重要作用。深厚大气边界层现象和特征、形成机理以及天气气候效应是大气边界层研究领域的热点问题,也是科学难题。着眼于对天气和气候高敏感、高影响的极端气候区和特殊地理区域,回顾梳理了深厚大气边界层的观测事实,归纳总结了不同地区深厚大气边界层的成因和影响因素,描述深厚大气边界层演变过程中独特的湍流运动图像,解析探讨了深厚大气边界层演变与沙尘滞空之间的关联。最后,提出了深厚大气边界层的未来研究关注重点和实现突破的4个关键科学问题,以期为更加系统地开展深厚大气边界层研究提供参考依据。

The atmospheric boundary layer connects the land surface to the atmosphere through the turbulent exchange of heat, momentum, and trace gases. In addition, it plays an important role in the formation and evolution of weather and climate. The characteristics and formation mechanisms of the deep atmospheric boundary layer have been key focus areas in atmospheric boundary layer research. Focusing on extremely arid regions and special geographical locations, the observational facts and influencing factors of the deep atmospheric boundary layer were reviewed and summarized. Furthermore, a physical description of turbulent motion in the development of the deep atmospheric boundary layer was provided. Using the Taklimakan Desert as an example, the effects of the interactions between the deep atmospheric boundary layer and dust stagnation on weather and climate were discussed. In order to provide a roadmap for future research, this study identified and outlined four key scientific problems related to deep atmospheric boundary layer research.

中图分类号: 

图1 敦煌荒漠戈壁地区夏季晴天深厚大气边界层位温廓线特征 36
FA:自由大气;RML:残余混合层;CBL:对流边界层;SBL:稳定边界层;CIL:逆温层顶盖;RCIL:残余逆温层顶盖
Fig. 1 Diurnal variation of potential temperature profile in the atmospheric boundary layer in Dunhuang Gobi Desert under fair-weather conditions in summer 36
FA:Free Atmosphere;RML:Residual Mixed Layer;CBL:Convective Boundary Layer;SBL:Stable Boundary Layer;CIL:Capping Inversion Layer;RCIL:Residual Capping Inversion Layer
图2 青藏高原地区冬季深厚大气边界层(a)和夏季浅薄大气边界层(b)示意图 27
深蓝色虚线:位温( θ);黑色实线:水汽( q);绿色箭头:地表感热加热
Fig. 2 Schematic illustration of deep atmospheric boundary layer in winteraand shallow atmospheric boundary layer in summerbover the Tibetan Plateau 27
Dark blue dashed line: potential temperature ( θ); black solid line: water vapor ( q); and green arrow: surface sensible heating
图3 大气边界层湍流运动过程示意图 53
CBL:对流边界层,RL:残余层,FA:自由大气;红色实线为位温廓线;数字代表不同的边界层过程: 贯穿对流; 热泡溢出对流边界层顶,到达残余层并返回; 热泡穿透残余层,到达自由大气并返回
Fig. 3 Schematic illustration of turbulent motions in the atmospheric boundary layer 53
CBL: Convective Boundary Layer, RL: Residual Layer; FA: Free Atmosphere; Red line represents the profile of potential temperature; The numbers indicate different boundary-layer processes: penetrative convection; overshooting thermals detrain from the CBL top, reach the RL, and return; overshooting thermals penetrate the RL, reach the FA, and return
图4 对流边界层与残余层之间的正反馈循环增长形成深厚大气边界层示意图 79
Fig. 4 Schematic illustration of deep atmospheric boundary layer formed by the positive feedback between the convective boundary layer and the residual layer 79
22 SEIDEL D J, ZHANG Y H, BELJAARS A, et al. Climatology of the planetary boundary layer over the continental United States and Europe[J]. Journal of Geophysical Research Solid Earth, 2012, 117(17). DOI:10.1029/2012JD018143 .
23 GARRATT J R. The atmospheric boundary layer[M]. Cambridge: Cambridge University Press, 1992.
24 RAMAN S, TEMPLEMAN B, TEMPLEMAN S, et al. Structure of the Indian southwesterly pre-monsoon and monsoon boundary layers: observations and numerical simulation[J]. Atmospheric Environment Part A General Topics, 1990, 24(4): 723-734.
25 TAKEMI T. Structure and evolution of a severe squall line over the arid region in northwest China[J]. Monthly Weather Review, 1999, 127(6 II): 1 301-1 309.
26 GAMO M. Thickness of the dry convection and large-scale subsidence above deserts[J]. Boundary-Layer Meteorology, 1996, 79(3): 265-278.
27 CHEN X L, AÑEL J A, SU Z B, et al. The deep atmospheric boundary layer and its significance to the stratosphere and troposphere exchange over the Tibetan Plateau[J]. PLoS ONE, 2013, 8(2): e56909.
28 CUESTA J, MARSHAM J H, PARKER D J, et al. Dynamical mechanisms controlling the vertical redistribution of dust and the thermodynamic structure of the west Saharan atmospheric boundary layer during summer[J]. Atmospheric Science Letters, 2009, 10(1): 34-42.
29 GARCIA-CARRERAS L, PARKER D J, MARSHAM J H, et al. The turbulent structure and diurnal growth of the Saharan atmospheric boundary layer[J]. Journal of the Atmospheric Sciences, 2015, 72(2): 693-713.
30 HAN B, LÜ S, AO Y H. Development of the convective boundary layer capping with a thick neutral layer in Badanjilin: observations and simulations[J]. Advances in Atmospheric Sciences, 2012, 29(1): 177-192.
31 MARSHAM J H, PARKER D J, GRAMS C M, et al. Observations of mesoscale and boundary-layer scale circulations affecting dust transport and uplift over the Sahara[J]. Atmospheric Chemistry and Physics, 2008, 8(149): 6 979-6 993.
32 WANG M Z, LU H, MING H, et al. Vertical structure of summer clear-sky atmospheric boundary layer over the hinterland and southern margin of Taklamakan Desert[J]. Meteorological Applications, 2016, 23(3): 438-447.
1 HUANG Jianping, CHEN Wen, WEN Zhiping, et al. China’s atmospheric science research since the founding of the People’s Republic of China 70 years ago: climate and climate change[J]. Scientia Sinica (Terrae), 2019, 49(10): 1 607-1 640.
黄建平, 陈文, 温之平, 等. 新中国成立70年以来的中国大气科学研究: 气候与气候变化篇[J]. 中国科学: 地球科学, 2019, 49(10): 1 607-1 640.
2 SHENG Peixuan, MAO Jietai, LI Jianguo, et al. Atmospheric physics[M]. 2nd ed. Beijing: Peking University Press, 2013.
盛裴轩, 毛节泰, 李建国, 等. 大气物理学[M]. 第2版. 北京: 北京大学出版社, 2013.
3 ZHAO Ming, MIAO Manqian, WANG Yanchang. Boundary layer meteorology [M]. Beijing: China Meteorological Press, 1991: II.
赵鸣, 苗曼倩, 王彦昌. 边界层气象学教程 [M]. 北京: 气象出版社, 1991: II.
4 HUANG Ronghui, ZHOU Degang, CHEN Wen, et al. Recent progress in studies of air-land interaction over the arid area of northwest China and its impact on climate[J]. Chinese Journal of Atmospheric Sciences, 2013, 37(2): 189-210.
黄荣辉, 周德刚, 陈文, 等. 关于中国西北干旱区陆—气相互作用及其对气候影响研究的最近进展[J]. 大气科学, 2013, 37(2): 189-210.
5 FINDELL K L, ELTAHIR E A B. Atmospheric controls on soil moisture-boundary layer interactions. Part II: feedbacks within the continental United States[J]. Journal of Hydrometeorology, 2003, 4(3): 570-583.
6 TAYLOR C M, de JEU R A M, GUICHARD F, et al. Afternoon rain more likely over drier soils[J]. Nature, 2012, 489(7 416): 423-426.
7 YANG Xinghua, HE Qing, AJIGULI·SHAYITI, et al. Character analysis of boundary layer during a sandstorm in hinterland of the Taklimakan Desert[J]. Desert and Oasis Meteorology, 2011, 5(6): 11-15.
杨兴华, 何清, 阿吉古丽·沙依提, 等. 塔克拉玛干沙漠腹地沙尘暴过程的大气边界层特征分析[J]. 沙漠与绿洲气象, 2011, 5(6): 11-15.
8 ZHANG Lu, HUANG Qian, ZHANG Hongsheng, et al. Large eddy simulation of turbulence effects on deepconvection triggering over dry and wet surfaces[J]. Acta Meteorologica Sinica, 2021, 79(4): 659-673.
张璐, 黄倩, 张宏昇, 等. 干湿地表的湍流特征及其对深对流影响的大涡模拟[J]. 气象学报, 2021, 79(4): 659-673.
9 WANG Tijian, GAO Taichang, ZHANG Hongsheng, et al. Review of Chinese atmospheric science research over the past 70 years: atmospheric physics and atmospheric environment[J]. Scientia Sinica (Terrae), 2019, 49(12): 1 833-1 874.
王体健, 高太长, 张宏昇, 等. 新中国成立70年来的中国大气科学研究: 大气物理与大气环境篇[J]. 中国科学: 地球科学, 2019, 49(12): 1 833-1 874.
10 LI Q H, WU B G, LIU J L, et al. Characteristics of the atmospheric boundary layer and its relation with PM2.5 [J]. Atmospheric Environment, 2020, 223: 117265.
11 REN Y, ZHANG H S, WEI W, et al. Effects of turbulence structure and urbanization on the heavy haze pollution process[J]. Atmospheric Chemistry and Physics, 2019, 19(2): 1 041-1 057.
12 WEI W, ZHANG H S, WU B G, et al. Intermittent turbulence contributes to vertical dispersion of PM2.5 in the North China Plain: cases from Tianjin[J]. Atmospheric Chemistry and Physics, 2018, 18(17): 12 953-12 967.
13 REN Y, ZHANG H S, WEI W, et al. Comparison of the turbulence structure during light and heavy haze pollution episodes[J]. Atmospheric Research, 2019, 230(C): 104645.
14 REN Y, ZHANG H S, ZHANG X Y, et al. Turbulence barrier effect during heavy haze pollution events[J]. Science of the Total Environment, 2021, 753: 142286.
15 SANTANELLO J, DIRMEYER P, FERGUSON C, et al. Land-atmosphere interactions: the LoCo perspective[J]. Bulletin of the American Meteorological Society, 2017, 99(6): 1 253-1 272.
16 ZHANG H S, ZHANG X Y, LI Q H, et al. Research progress on estimation of the atmospheric boundary layer height[J]. Journal of Meteorological Research, 2020, 34(3): 482-498.
17 ZHANG Hongsheng, ZHANG Xiaoye, LI Qianhui, et al. Research progress on estimation of atmospheric boundary layer height[J]. Acta Meteorologica Sinica, 2020, 78(3): 522-536.
张宏昇, 张小曳, 李倩惠, 等. 大气边界层高度确定及应用研究进展[J]. 气象学报, 2020, 78(3): 522-536.
18 LI Q H, ZHANG H S, CAI X H, et al. The impacts of the atmospheric boundary layer on regional haze in North China[J]. Npj Climate and Atmospheric Science, 2021, 4: 9.
19 LI Q H, ZHANG H S, JIN X P, et al. Mechanism of haze pollution in summer and its difference with winter in the North China Plain[J]. Science of the Total Environment, 2022, 806: 150625.
20 STULL R B. An introduction to boundary layer meteorology[M]. Dordrecht: Kluwer Academic Publishers, 1988.
21 GUO J P, MIAO Y C, ZHANG Y, et al. The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data[J]. Atmospheric Chemistry and Physics, 2016, 16(20): 13 309-13 319.
33 WANG M Z, WEI W S, HE Q, et al. Summer atmospheric boundary layer structure in the hinterland of Taklimakan Desert, China[J]. Journal of Arid Land, 2016, 8(6): 846-860.
34 WANG M Z, XU X D, XU H X, et al. Features of the deep atmospheric boundary layer over the Taklimakan Desert in the summertime and its influence on regional circulation[J]. Journal of Geophysical Research Atmospheres, 2019, 124(23): 12 755-12 772.
35 QIAO Juan, ZHANG Qiang, ZHANG Jie, et al. Comparison of atmospheric boundary layer in winter and summer over arid region of northwest China[J]. Journal of Desert Research, 2010, 30(2): 422-431.
乔娟, 张强, 张杰, 等. 西北干旱区冬、夏季大气边界层结构对比研究[J]. 中国沙漠, 2010, 30(2): 422-431.
36 ZHANG Qiang, WANG Sheng. A study on atmospheric boundary layer structure on a clear day in the arid region in northwest China[J]. Acta Meteorologica Sinica, 2008, 66(4): 599-608.
张强, 王胜. 西北干旱区夏季大气边界层结构及其陆面过程特征[J]. 气象学报, 2008, 66(4): 599-608.
37 ZHANG Qiang, WEI Guoan, HOU Ping. Observation studies of atmosphere boundary layer characteristic over Dunhuang Gobi in early summer[J]. Plateau Meteorology, 2004, 23(5): 587-597.
张强, 卫国安, 侯平. 初夏敦煌荒漠戈壁大气边界结构特征的一次观测研究[J]. 高原气象, 2004, 23(5): 587-597.
38 ZHANG Qiang, ZHAO Yingdong, WANG Sheng, et al. A study on atmospheric thermal boundary layer structure in extremely arid desert and Gobi region on the clear day in summer[J]. Advances in Earth Science, 2007, 22(11): 1 150-1 159.
张强, 赵映东, 王胜, 等. 极端干旱荒漠区典型晴天大气热力边界层结构分析[J]. 地球科学进展, 2007, 22(11): 1 150-1 159.
39 ZHAO Cailing, Shihua LÜ, LI Zhaoguo, et al. Numerical simulation of influence of land surface thermal condition on Badain Jaran Desert atmospheric boundary layer height in summer[J]. Plateau Meteorology, 2014, 33(6): 1 526-1 533.
赵采玲, 吕世华, 李照国, 等. 夏季巴丹吉林沙漠陆面热状况对边界层高度影响的模拟实验[J]. 高原气象, 2014, 33(6): 1 526-1 533.
40 HUANG J P, WANG T H, WANG W C, et al. Climate effects of dust aerosols over East Asian arid and semiarid regions[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(19): 11 398-11 416.
41 LIU Y Z, LI Y H, HUANG J P, et al. Attribution of the Tibetan Plateau to northern drought[J]. National Science Review, 2019, 7(3): 489-492.
42 LI Yaohui, MENG Xianhong, ZHANG Hongsheng, et al. Advances and key scientific issues of land-atmosphere coupling between the Tibet Plateau and the northern desert and its impact on northern China drought[J]. Advances in Earth Science, 2021, 36(3): 265-275.
李耀辉, 孟宪红, 张宏升, 等. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
43 CHEN X L, ŠKERLAK B, ROTACH M W, et al. Reasons for the extremely high-ranging planetary boundary layer over the western Tibetan Plateau in winter[J]. Journal of the Atmospheric Sciences, 2016, 73(5): 2 021-2 038.
44 ZHANG Qiang, YUE Ping, ZHANG Liang, et al. Land-atmosphere interaction over the summer monsoon transition zone in China: a review and prospects[J]. Acta Meteorologica Sinica, 2019, 77(4): 758-773.
张强, 岳平, 张良, 等. 夏季风过渡区的陆—气相互作用: 述评与展望[J]. 气象学报, 2019, 77(4): 758-773.
45 CHEN Yaning, LI Yupeng, LI Zhi, et al. Analysis of the impact of global climate change on dryland areas[J]. Advances in Earth Science, 2022, 37(2): 111-119.
陈亚宁, 李玉朋, 李稚, 等. 全球气候变化对干旱区影响分析[J]. 地球科学进展, 2022, 37(2): 111-119.
46 XU D Z, LIN Y L. Impacts of irrigation and vegetation growth on summer rainfall in the Taklimakan Desert[J]. Advances in Atmospheric Sciences, 2021, 38(11): 1 863-1 872.
47 HE Qing, JIN Lili. Observation and simulation of land-air interaction in the Taklimakan Desert[M]. Beijing: China Meteorological Press, 2020.
何清, 金莉莉. 塔克拉玛干沙漠陆气相互作用观测与模拟研究[M]. 北京: 气象出版社, 2020.
48 WANG Jinsong, YAO Yubi, WANG Ying, et al. Meteorological droughts in the Qinghai-Tibet Plateau: research progress and prospects[J]. Advances in Earth Science, 2022, 37(5): 441-461.
王劲松, 姚玉璧, 王莺, 等. 青藏高原地区气象干旱研究进展与展望[J]. 地球科学进展, 2022, 37(5): 441-461.
49 WANG Q, ZHAI P M, QIN D H. New perspectives on ‘warming-wetting’ trend in Xinjiang, China[J]. Advances in Climate Change Research, 2020, 11(3): 252-260.
50 ZHANG Q, SINGH V P, LI J F, et al. Spatio-temporal variations of precipitation extremes in Xinjiang, China[J]. Journal of Hydrology, 2012, 434/435: 7-18.
51 ZHOU Xueying, JIA Jian, LIU Guoqiang, et al. Characteristics of precipitation at hinterland of Taklimakan Desert, China[J]. Journal of Desert Research, 2019, 39(1): 187-194.
周雪英, 贾健, 刘国强, 等. 1997—2017年塔克拉玛干沙漠腹地降水特征[J]. 中国沙漠, 2019, 39(1): 187-194.
52 WEI W, WANG M Z, ZHANG H S, et al. Diurnal characteristics of turbulent intermittency in the Taklimakan Desert[J]. Meteorology and Atmospheric Physics, 2019, 131(3): 287-297.
53 ZHANG L, ZHANG H, LI Q, et al. Turbulent mechanisms for the deep convective boundary layer in the Taklimakan Desert [J]. Geophysical Research Letters, 2022, 49(15): e2022GL099447.
54 ZHANG Qiang, HUANG Ronghui, WANG Sheng, et al. NWC-ALIEX and its research advances[J]. Advances in Earth Science, 2005, 20(4): 427-441.
张强, 黄荣辉, 王胜, 等. 西北干旱区陆—气相互作用试验(NWC-ALIEX)及其研究进展[J]. 地球科学进展, 2005, 20(4): 427-441.
55 ZHANG Qiang, ZHANG Jie, QIAO Juan, et al. Study on the relationship between deep atmospheric boundary layer and land surface thermodynamic process in arid areas of China[J]. Scientia Sinica (Terrae), 2011, 41(9): 1 365-1 374.
张强, 张杰, 乔娟, 等. 我国干旱区深厚大气边界层与陆面热力过程的关系研究[J]. 中国科学: 地球科学, 2011, 41(9): 1 365-1 374.
56 CUESTA J, EDOUART D, MIMOUNI M, et al. Multiplatform observations of the seasonal evolution of the Saharan atmospheric boundary layer in Tamanrasset, Algeria, in the framework of the African Monsoon Multidisciplinary Analysis field campaign conducted in 2006[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D23). DOI:10.1029/2007JD009417 .
57 MESSAGER C, PARKER D J, REITEBUCH O, et al. Structure and dynamics of the Saharan atmospheric boundary layer during the West African monsoon onset: observations and analyses from the research flights of 14 and 17 July 2006[J]. Quarterly Journal of the Royal Meteorological Society, 2010, 136(): 107-124.
58 PARKER D J, THORNCROFT C D, BURTON R R, et al. Analysis of the African easterly jet, using aircraft observations from the JET2000 experiment[J]. Quarterly Journal of the Royal Meteorological Society, 2005, 131(608): 1 461-1 482.
59 LI Jiangang, AO Yinhuan, LI Zhaoguo, et al. Characteristics of atmospheric boundary layer over the Badain Jaran Desert in summer[J]. Journal of Desert Research, 2014, 34(2): 488-497.
李建刚, 奥银焕, 李照国, 等. 巴丹吉林沙漠夏季大气边界层结构[J]. 中国沙漠, 2014, 34(2): 488-497.
60 ZHAO Cailing, Shihua LYU, HAN Bo, et al. Relationship between the convective boundary layer and residual layer over Badain Jaran Desert in summer[J]. Plateau Meteorology, 2016, 35(4): 1 004-1 014.
赵采玲, 吕世华, 韩博, 等. 夏季巴丹吉林沙漠残余层与深厚对流边界层的关系研究[J]. 高原气象, 2016, 35(4): 1 004-1 014.
61 YE Duzheng. Seasonal variation of Tibetan Plateau’s influence on atmospheric circulation[J]. Acta Meteorologica Sinica, 1952, 10(S1): 33-47.
叶笃正. 西藏高原对于大气环流影响的季节变化[J]. 气象学报, 1952, 10(S1): 33-47.
62 YE Duzheng, GU Zhenchao. Influence of Tibetan Plateau on east Asian atmospheric circulation and weather in China[J]. Cinese Science Bulletin, 1955(6): 29-33.
叶笃正, 顾震潮. 西藏高原对于东亚大气环流及中国天气的影响[J]. 科学通报, 1955(6): 29-33.
63 YE Duzheng, LUO Siwei, ZHU Baozhen. The wind structure and heat balance in the lower troposphere over Tibetan Plateau and its surrounding[J]. Acta Meteorologica Sinica, 1957, 15(2): 108-121.
叶笃正, 罗四维, 朱抱真. 西藏高原及其附近的流场结构和对流层大气的热量平衡[J]. 气象学报, 1957, 15(2): 108-121.
64 SKERLAK B, SPRENGER M, WERNLI H. A global climatology of stratosphere-troposphere exchange using the ERA-Interim data set from 1979 to 2011[J]. Atmospheric Chemistry and Physics, 2014, 14: 913-937.
65 YANG F, HE Q, HUANG J P, et al. Desert environment and climate observation network over the Taklimakan Desert[J]. Bulletin of the American Meteorological Society, 2021, 102(6): 1 172-1 191.
66 MA M J, PU Z X, WANG S G, et al. Characteristics and numerical simulations of extremely large atmospheric boundary-layer heights over an arid region in north-west China[J]. Boundary-Layer Meteorology, 2011, 140(1): 163-176.
67 XU H X, WANG M Z, WANG Y J, et al. Performance of WRF large eddy simulations in modeling the convective boundary layer over the Taklimakan desert, China[J]. Journal of Meteorological Research, 2018, 32(6): 1 011-1 025.
68 WANG Rong, HUANG Qian, ZHANG Qiang. Large eddy simulation of the effect of the intensity of capping inversion on a super-thick convective boundary layer in an arid area[J]. Arid Zone Research, 2020, 37(4): 925-935.
王蓉, 黄倩, 张强. 覆盖逆温强度对干旱区超厚对流边界层影响的大涡模拟[J]. 干旱区研究, 2020, 37(4): 925-935.
69 FREIRE L S, DIAS N L. Residual layer effects on the modeling of convective boundary layer growth rates with a slab model using FIFE data[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(23): 12 869-12 878.
70 BLAY-CARRERAS E, PINO D, de ARELLANO J V G, et al. Role of the residual layer and large-scale subsidence on the development and evolution of the convective boundary layer[J]. Atmospheric Chemistry and Physics, 2014, 14(9): 4 515-4 530.
71 REEN B P, STAUFFER D R, DAVIS K J. Land-surface heterogeneity effects in the planetary boundary layer[J]. Boundary-Layer Meteorology, 2014, 150(1): 1-31.
72 WANG Minzhong, XU Hongxiong, WANG Yinjun, et al. Large-eddy simulation of summer clear sky convective boundary layer in the Taklimakan Desert[J]. Journal of Desert Research, 2018, 38(6): 1 275-1 286.
王敏仲, 徐洪雄, 王寅钧, 等. 塔克拉玛干沙漠夏季晴空对流边界层大涡模拟[J]. 中国沙漠, 2018, 38(6): 1 275-1 286.
73 HUANG Qian, WANG Rong, TIAN Wenshou, et al. Study of the impacts of wind shear on boundary layer convection based on the large eddy simulation[J]. Acta Meteorologica Sinica, 2014, 72(1): 100-115.
黄倩, 王蓉, 田文寿, 等. 风切变对边界层对流影响的大涡模拟研究[J]. 气象学报, 2014, 72(1): 100-115.
74 WANG Rong, HUANG Qian, TIAN Wenshou, et al. Study of a large eddy simulation of the effects of boundary layer convection tracer uplift and transmission[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(4): 731-746.
王蓉, 黄倩, 田文寿, 等. 边界层对流对示踪物抬升和传输影响的大涡模拟研究[J]. 大气科学, 2015, 39(4): 731-746.
75 LIU Shuhua, JIANG Haoyu, HU Fei, et al. Applicability research in the simulation of radiation and ground layer air temperature in Heife region[J]. Acta Meteorologica Sinica, 2007, 65(6): 928-937.
刘树华, 蒋浩宇, 胡非, 等. 黑河地区近地面层辐射和温度的适用性模拟研究[J]. 气象学报, 2007, 65(6): 928-937.
76 LI Yanying, ZHANG Qiang, ZHANG Aiping, et al. Analysis on atmosphere boundary layer variation characteristics and their impact factors in arid region and semi-arid region over northwest China[J]. Plateau Meteorology, 2016, 35(2): 385-396.
李岩瑛, 张强, 张爱萍, 等. 干旱半干旱区边界层变化特征及其影响因子分析[J]. 高原气象, 2016, 35(2): 385-396.
77 ZHAO Jianhua, ZHANG Qiang, WANG Sheng. A simulative study of the thermal mechanism for development of the convective boundary layer in the arid zone of northwest China[J]. Acta Meteorologica Sinica, 2011, 69(6): 1 029-1 037.
赵建华, 张强, 王胜. 西北干旱区对流边界层发展的热力机制模拟研究[J]. 气象学报, 2011, 69(6): 1 029-1 037.
78 HAN B, ZHAO C L, LÜ S, et al. A diagnostic analysis on the effect of the residual layer in convective boundary layer development near Mongolia using 20th century reanalysis data[J]. Advances in Atmospheric Sciences, 2015, 32(6): 807-820.
79 ZHANG Qiang, QIAO Liang, YUE Ping, et al. The energy mechanism controlling the continuous development of a super-thick atmospheric convective boundary layer during continuous summer sunny periods in an arid area[J]. Chinese Science Bulletin, 2019, 64(15): 1 637-1 650.
张强, 乔梁, 岳平, 等. 干旱区夏季晴空期超厚对流边界层发展的能量机制[J]. 科学通报, 2019, 64(15): 1 637-1 650.
80 ZHAO L, HAN B, LÜ S H, et al. The different influence of the residual layer on the development of the summer convective boundary layer in two deserts in northwest China[J]. Theoretical and Applied Climatology, 2018, 131(3): 877-888.
81 HUANG Q, MARSHAM J H, PARKER D J, et al. Simulations of the effects of surface heat flux anomalies on stratification, convective growth, and vertical transport within the Saharan boundary layer [J]. Journal of Geophysical Research, 2010, 115(D5): D05201.
82 PAPANGELIS G, TOMBROU M, KALOGIROS J. The Saharan convective boundary layer structure over large scale surface heterogeneity: a large eddy simulation study[J]. Atmospheric Research, 2021, 248: 105250.
83 BIRCH C E, PARKER D J, MARSHAM J H, et al. The effect of orography and surface albedo on stratification in the summertime Saharan boundary layer: dynamics and implications for dust transport[J]. Journal of Geophysical Research Solid Earth, 2012, 117(5). DOI:10.1029/2011JD015965 .
84 CHEN Siyu, HUANG Jianping, LI Jingxin, et al. Comparison of dust emissions, transport, and deposition between the Taklimakan Desert and Gobi Desert from 2007 to 2011[J]. Scientia Sinica (Terrae), 2017, 47(8): 939-957.
陈思宇, 黄建平, 李景鑫, 等. 塔克拉玛干沙漠和戈壁沙尘起沙、传输和沉降的对比研究[J]. 中国科学: 地球科学, 2017, 47(8): 939-957.
85 MENG Lu, ZHAO Tianliang, HE Qing, et al. Climatic characteristics of dusty weather and persistent dusty stagnation in Tarim Basin in recent 30 years[J]. Acta Meteorologica Sinica, 2022, 80(2): 322-333.
孟露, 赵天良, 何清, 等. 近30年塔里木盆地浮尘天气及持续浮尘滞空的气候特征[J]. 气象学报, 2022, 80(2): 322-333.
86 MENG L, ZHAO T L, HE Q, et al. Dust radiative effect characteristics during a typical springtime dust storm with persistent floating dust in the Tarim Basin, northwest China[J]. Remote Sensing, 2022, 14(5): 1167.
87 FIEDLER S, SCHEPANSKI K, HEINOLD B, et al. Climatology of nocturnal low-level jets over North Africa and implications for modeling mineral dust emission[J]. Journal of Geophysical Research Atmospheres, 2013, 118(12): 6 100-6 121.
88 GE J M, LIU H Y, HUANG J P, et al. Taklimakan Desert nocturnal low-level jet: climatology and dust activity[J]. Atmospheric Chemistry and Physics, 2016, 16(12): 7 773-7 783.
89 MENG L, YANG X H, ZHAO T L, et al. Modeling study on three-dimensional distribution of dust aerosols during a dust storm over the Tarim Basin, Northwest China[J]. Atmospheric Research, 2019, 218: 285-295.
90 WEI W, ZHANG H, YE X. Comparison of low-level jets along the north coast of China in summer[J]. Journal of Geophysical Research Atmospheres, 2014, 119(16): 9 692-9 706.
91 ALLEN C J T, WASHINGTON R, ENGELSTAEDTER S. Dust emission and transport mechanisms in the central Sahara: fennec ground-based observations from Bordj Badji Mokhtar, June 2011[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(12): 6 212-6 232.
92 GE J M, HUANG J P, XU C P, et al. Characteristics of Taklimakan dust emission and distribution: a satellite and reanalysis field perspective[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(20): 11 772-11 783.
93 HUANG J, FU Q, SU J, et al. Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints[J]. Atmospheric Chemistry and Physics, 2009, 9(171): 4 011-4 021.
94 ZHOU C L, LIU Y Z, ZHU Q Z, et al. In situ observation of warm atmospheric layer and the heat contribution of suspended dust over the Tarim Basin[J]. Atmospheric Chemistry and Physics, 2022, 22(8): 5 195-5 207.
95 BANKS J R, BRINDLEY H E, HOBBY M, et al. The daytime cycle in dust aerosol direct radiative effects observed in the central Sahara during the Fennec campaign in June 2011[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(24): 13 861-13 876.
96 MARSHAM J H, PARKER D J, TODD M C, et al. The contrasting roles of water and dust in controlling daily variations in radiative heating of the summertime Saharan Heat Low[J]. Atmospheric Chemistry and Physics Discussions, 2015, 15(14): 19 447-19 476.
97 MA Y J, XIN J Y, WANG Z F, et al. How do aerosols above the residual layer affect the planetary boundary layer height? [J]. Science of the Total Environment, 2022, 814: 151953.
98 ZHANG X Y, CAI C J, HU X M, et al. Aerosols consistently suppress the convective boundary layer development[J]. Atmospheric Research, 2022, 269: 106032.
99 HAYWOOD J, BOUCHER O. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review[J]. Reviews of Geophysics, 2000, 38(4): 513-543.
100 LIU Y, SATO Y, JIA R, et al. Modeling study on the transport of summer dust and anthropogenic aerosols over the Tibetan Plateau[J]. Atmospheric Chemistry and Physics, 2015, 15(21): 12 581-12 594.
101 LIU Y Z, ZHU Q Z, HUA S, et al. Tibetan Plateau driven impact of Taklimakan dust on northern rainfall[J]. Atmospheric Environment, 2020, 234(prepublish): 117583.
102 LIU Y Z, ZHU Q Z, HUANG J P, et al. Impact of dust-polluted convective clouds over the Tibetan Plateau on downstream precipitation[J]. Atmospheric Environment, 2019, 209: 67-77.
103 XU Xiangde, ZHOU Mingyu, CHEN Jiayi, et al. Comprehensive physical image of dynamic and thermodynamic structure of the earth-atmosphere process in Qinghai-Tibet Plateau[J]. Science in China Series D: Earth Science, 2001, 31(5): 428-441.
徐祥德, 周明煜, 陈家宜, 等. 青藏高原地—气过程动力、热力结构综合物理图象[J]. 中国科学D辑: 地球科学, 2001, 31(5): 428-441.
104 XU Xiangde, CHEN Lianshou. Advances of the study on Tibetan Plateau experiment of atmospheric sciences[J]. Journal of Applied Meteorological Science, 2006, 17(6): 756-772.
徐祥德, 陈联寿. 青藏高原大气科学试验研究进展[J]. 应用气象学报, 2006, 17(6): 756-772.
105 MENG Zhiyong, ZHANG Fuqing, LUO Dehai, et al. Review of Chinese atmospheric science research over the past 70 years: synoptic meteorology[J]. Scientia Sinica (Terrae), 2019, 49(12): 1 875-1 918.
孟智勇, 张福青, 罗德海, 等. 新中国成立70年来的中国大气科学研究: 天气篇[J]. 中国科学: 地球科学, 2019, 49(12): 1 875-1 918.
106 WANG S S, HUANG J P, HUANG G, et al. Enhanced impacts of Indian Ocean Sea surface temperature on the dry/wet variations over northwest China[J]. Journal of Geophysical Research Atmospheres, 2022, 127(11). DOI:10.1029/2022JD036533 .
107 GUO J P, LI Y, COHEN J, et al. Shift in the temporal trend of boundary layer height in China using long-term (1979-2016) radiosonde data[J]. Geophysical Research Letters, 2019,46(11): 6 080-6 089.
[1] 王劲松, 姚玉璧, 王莺, 王素萍, 刘晓云, 周悦, 杜昊霖, 张宇, 任余龙. 青藏高原地区气象干旱研究进展与展望[J]. 地球科学进展, 2022, 37(5): 441-461.
[2] 柴磊, 王小萍. 青藏高原持久性有机污染物研究现状与展望[J]. 地球科学进展, 2022, 37(2): 187-201.
[3] 李虎, 潘小多. 青藏高原水汽输送过程及水汽源地研究方法综述[J]. 地球科学进展, 2022, 37(10): 1025-1036.
[4] 昝金波, 宁文晓, 杨胜利, 方小敏, 康健, 罗元龙. 表土磁学特征揭示的青藏高原及其周边地区的气候边界[J]. 地球科学进展, 2022, 37(1): 14-25.
[5] 杨晓新. 水体稳定同位素在青藏高原大气环流研究中的应用[J]. 地球科学进展, 2022, 37(1): 87-98.
[6] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[7] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[8] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[9] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[10] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[11] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[12] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[13] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[14] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[15] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
阅读次数
全文


摘要