地球科学进展 ›› 2021, Vol. 36 ›› Issue (8): 797 -809. doi: 10.11867/j.issn.1001-8166.2021.084

青藏高原复杂地表蒸散发及其对水塔效应影响 上一篇    下一篇

基于 CAS-ESM2的青藏高原蒸散发的模拟与预估
田凤云 1, 2( ),吴成来 1( ),张贺 1,林朝晖 1, 2   
  1. 1.中国科学院大气物理研究所 国际气候与环境科学中心,北京 100029
    2.中国科学院大学,北京 100049
  • 收稿日期:2021-05-07 修回日期:2021-07-26 出版日期:2021-08-10
  • 通讯作者: 吴成来 E-mail:tianfengyun@mail.iap.ac.cn;wuchenglai@mail.iap.ac.cn;wuchenglai@ mail.iap.ac.cn
  • 基金资助:
    国家重点研发计划项目“高分辨率全球陆面过程模式研发与应用”(2017YFA0604304);国家自然科学基金面上项目“青藏高原雪上吸收性气溶胶沉降对地表能量和水分循环影响的模拟研究”(41975119)

Simulation and Projection of Evapotranspiration over the Tibetan Plateau Based on CAS-ESM2

Fengyun TIAN 1, 2( ),Chenglai WU 1( ),He ZHANG 1,Zhaohui LIN 1, 2   

  1. 1.International Center for Climate and Environment Sciences,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China
    2.University of Chinese Academy of Sciences,Beijing 100049,China
  • Received:2021-05-07 Revised:2021-07-26 Online:2021-08-10 Published:2021-09-22
  • Contact: Chenglai WU E-mail:tianfengyun@mail.iap.ac.cn;wuchenglai@mail.iap.ac.cn;wuchenglai@ mail.iap.ac.cn
  • About author:TIAN Fengyun (1996-), female, Jinan City, Shandong Province, Ph.D student. Research areas include terrestrial water cycle and land surface model. E-mail: tianfengyun@mail.iap.ac.cn
  • Supported by:
    the National Key Research and Development Program of China "Development of global high resolution land surface model and its applications"(2017YFA0604304);The National Natural Science Foundation of China "Simulation of the effect of absorptive aerosol deposition on snow to land surface energy and water cycle over the Tibetan Plateau"(41975119)

利用GLEAM V3.3a实际蒸散发资料,评估了中国科学院地球系统模式(CAS-ESM2)对青藏高原蒸散发的模拟性能,并给出了模式对未来气候变化情景下高原蒸散发变化的预估。结果表明:CAS-ESM2可以较好地模拟出青藏高原蒸散发的空间分布与季节循环特征,以及1981—2014年蒸散发的增加趋势,但趋势的幅值相对观测偏弱。未来预估试验结果显示,4种不同未来共享社会经济路径(SSPs)情景下青藏高原蒸散发均普遍增加,其中SSP585情景下的增加最为显著,且喜马拉雅山脉地区蒸散发的增加量值最大。相较于1995—2014年历史时期,年均蒸散发在2041—2060年增加46.3~65.8 mm,增幅为13.4%~19.0%;2081—2100年,年均蒸散发增加75.7~151.1 mm,增幅为21.7%~43.6%。影响蒸散发未来变化的因素具有区域性差异,高原中部和南部受气温变化影响更大,而柴达木盆地、羌塘高原中部受降水变化影响更大。

The performance of Earth System Model Version 2 of the Chinese Academy of Sciences (CAS-ESM2) in simulating the evapotranspiration over the Tibetan Plateau was evaluated using the GLEAM dataset, i.e., Global Land Surface Evaporation: the Amsterdam Methodology Version 3.3a. Then, the projected future changes of evapotranspiration and relevant meteorological variables over the Tibetan Plateau using CAS-ESM2 were also been presented. The results show that CAS-ESM2 can reasonably reproduce the observed geographical distribution and seasonal cycle of evapotranspiration over the Tibetan Plateau. CAS-ESM2 can also reproduce the increasing trend of evapotranspiration during 1981-2014 over the plateau, but with relatively weaker magnitudes. Based on the CAS-ESM2 projection results under four different Shared Socioeconomic Pathways (SSP) scenarios,

中图分类号: 

图 1 GLEAMCAS-ESM2模拟的青藏高原19812014年平均的年[(a)和(b)]、季节[(c~j)]蒸散发量
Fig. 1 Spatial distribution of annual and seasonal mean evapotranspiration mm from GLEAM [(a), (c~f)] and CAS-ESM2 simulation [(b), (g~j)] over the Tibetan Plateau during 1981-2014
图 2 CN05.1CAS-ESM2模拟的青藏高原19812014年平均降水强度、地表气温的空间分布
(a)和(c) 分别为CN05.1观测降水和地表气温;(b)和(d) 分别为CAS-ESM2模拟降水和地表气温
Fig. 2 Spatial distribution of annual mean precipitation rate and surface air temperature over the Tibetan Plateau from CN05.1 and CAS-ESM2 during 1981-2014
(a) Precipitation (c) surface air temperature are from CN05.1;(b) Precipitation (d) surface air temperature are from CAS-ESM2
图 3 青藏高原全域(a)及其西部(b)、东部(c)区域平均蒸散发的季节循环
红色实线为GLEAM资料结果,蓝色虚线为CAS-ESM2模拟结果
Fig. 3 Seasonal cycle of evapotranspiration averaged over the a whole, (b western and c eastern Tibetan Plateau
Red solid line is for GLEAM, and blue dashed line for CAS-ESM2 simulation
图 4 青藏高原19812014年各个季节区域平均蒸散发的长期变化
(a)~(d) 为青藏高原全域; (e)~(h) 为高原西部; (i)~(l) 为高原东部;图中虚线代表线性趋势; G为GLEAM拟合结果, C为CAS-ESM2模拟的拟合结果
Fig. 4 Long-term trend of regional-averaged seasonal evapotranspiration during 1981-2014 over the Tibetan Plateau
(a)~(d) The whole Tibetan Plateau; (e)~(h) Western Tibetan Plateau; (i)~(l) Eastern Tibetan Plateau. The linear regression line are shown in dashed, with regression equation G for GLEAM results, and C for CAS-ESM2 results
图5 不同SSP情景下20152100年青藏高原年蒸散发的未来变化
(a)~(c)为区域平均年蒸散发与模式历史时期平均值(1995—2014年)的距平时间序列,已进行5年滑动平均;(d)~(g) 为2015—2100年蒸散发变化趋势的空间分布;打点区域代表通过95%的显著性检验
Fig. 5 Future change of annual evapotranspiration during 2015-2100 over the Tibetan Plateau under different SSP scenarios
(a)~(c) is temporal variation of projected changes in regional-averaged annual evapotranspiration relative to the historical period (1995-2014), with 5-year running mean applied to the time series; (d)~(g) Distribution of evapotranspiration trend during 2015-2100, and dotted area denotes the changes that passed 95% significance test
图 6 不同SSP情景下青藏高原近景未来(20412060年)相比历史时期(19952014年)蒸散发及各气象要素的变化
Fig. 6 Spatial distribution of changes in evapotranspiration and meteorological elements in the near-future 2041-2060 compared to historical period 1995-2014 over the Tibetan Plateau under different SSP scenarios
图 7 不同SSP情景下青藏高原远景未来(20812100年)相比历史时期(19952014年)蒸散发及各气象要素的变化
Fig. 7 Spatial distribution of changes in evapotranspiration and meteorological elements in the far-future 2081-2100 compared to historical period 1995-2014 over the Tibetan Plateau under different SSP scenarios
表 1 未来青藏高原全域、东部和西部区域平均的蒸散发、降水和气温变化
Table 1 Regional mean changes of evapotranspirationprecipitationand temperature under different SSP scenarios over the wholeeastern and western Tibetan Plateau
表2 不同情景下蒸散发与降水、气温变化百分比的空间相关系数表
Table 2 Spatial correlation between percentage change of evapotranspiration and precipitation temperature
图 8 不同SSP情景下青藏高原20152100年去趋势后的蒸散发量与各气象要素的时间相关系数空间分布
(a)~(d) 为蒸散发与降水的相关系数分布;(e)~(h) 为蒸散发与气温的相关系数分布;(i)~(l) 为蒸散发与10 m风速的相关系数分布,打点区域代表通过95%的显著性检验
Fig. 8 Spatial distribution of time correlation coefficients between detrended evapotranspiration and meteorological elements during 2015-2100 over the Tibetan Plateau under different SSP scenarios
(a)~(d) is temporal correlation coefficients between evapotranspiration and precipitation; (e)~(h) is temporal correlation coefficients between evapotranspiration and temperature; (i)~(l) is temporal correlation coefficients between evapotranspiration and 10 meter wind speed, and dotted area denotes the correlation coefficients that passed 95% significance test
1 YAO Tandong, CHEN Fahu, CUI Peng, et al. From Tibetan Plateau to Third Pole and Pan-Third Pole [J].Bulletin of Chinese Academy of Sciences, 2017, 32(9):924-931.
姚檀栋,陈发虎,崔鹏,等. 从青藏高原到第三极和泛第三极[J].中国科学院院刊,2017,32(9):924-931.
2 CHEN Deliang, XU Baiqing, YAO Tandong, et al. Assessment of past, present and future environmental changes on the Tibetan Plateau [J].Chinese Science Bulletin ,2015, 60(32): 3 025-3 035. DOI: 10.1360/N972014-01370.
doi: 10.1360/N972014-01370    
陈德亮,徐柏青,姚檀栋,等.青藏高原环境变化科学评估:过去、现在与未来[J].科学通报,2015,60(32):3 025-3 035. DOI: 10.1360/N972014-01370.
doi: 10.1360/N972014-01370    
3 YAO Tandong, PIAO Shilong, SHEN Miaogen, et al. Chained impacts on modern environment of interaction between Westerlies and Indian Monsoon on Tibetan Plateau [J]. Bulletin of Chinese Academy of Sciences,2017,32(9):976-984.
姚檀栋,朴世龙,沈妙根,等.印度季风与西风相互作用在现代青藏高原产生连锁式环境效应[J].中国科学院院刊,2017,32(9):976-984.
4 YANG Kun, HUI Wu, QIN Jun, et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review [J]. Global and Planetary Change, 2014, 112:79-91.
5 TANG Qiuhong, LIU Yubo, ZHANG Chi, et al. Research progress on moisture source change of precipitation over the Tibetan Plateau and its surrounding areas[J].Transactions of Atmospheric Sciences, 2020,43(6) : 1 002-1 009.
汤秋鸿,刘宇博,张弛,等.青藏高原及其周边地区降水的水汽来源变化研究进展[J].大气科学学报,2020,43(6) : 1 002-1 009.
6 ZHANG Xueqin,YU Ren,YIN Zhiyong,et al. Spatial andtemporal variation patterns of reference evapotranspirationacross the Qinghai-Tibetan Plateau during 1971-2004[J].Journal of Geophysical Research Atmospheres,2009,114(D15). DOI: 10.1029/2009JD011753.
doi: 10.1029/2009JD011753    
7 WANG Buwei,ZHANG Xueqin. Change and attribution of reference evapotranspiration over the Tibetan Plateau during the period of1971-2014 [J]. Arid Zone Research,2019, 36(2):269-279.
汪步惟,张雪芹. 1971—2014年青藏高原参考蒸散变化及其归因[J].干旱区研究,2019,36(2):269-279.
8 YAO Tianci, LU Hongwei, YU Qing, et al. Potential evapotranspiration characteristic and its abrupt change across the Qinghai-Tibetan Plateau and its surrounding areas in the last 50 years[J]. Advances in Earth Science,2020,35(5):534-546.
doi: 10.11867/j.issn. 1001-8166.2020.031    
DOI:10.11867/j.issn.1001-8166.2020.031. [姚天次,卢宏玮,于庆,等.近50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J].地球科学进展,2020,35(5):534-546.DOI:10.11867/j.issn. 1001-8166.2020.031.]
doi: 10.11867/j.issn. 1001-8166.2020.031    
9 YAO Tianci, LU Hongwei, WEI Feng, et al. Evaporation abrupt changes in the Qinghai-Tibet Plateau during the last half-century [J]. Scientific Reports, 2019, 9(1):20181.
10 WANG Kunxin, ZHANG Yinsheng, MA Ning, et al. Cryosphere evapotranspiration in the Tibetan Plateau: a review[J]. Sciences in Cold and Arid Regions, 2020, 12(6): 355-370.
11 MIRALLES D G, HOLMES T, DE J, et al. Global land-surface evaporation estimated from satellite-based observations[J]. Hydrology and Earth System Sciences Discussions, 2011, 15(133):453-469.
12 MARTENS B, MIRALLES D G, LIEVENS H, et al. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture [J]. Geoscientific Model Development, 2017, 10(5). DOI: 10.5194/gmd-10-1903-2017.
doi: 10.5194/gmd-10-1903-2017    
13 YANG Xiuqin, YONG Bin, REN Liliang, et al. Multi-scale validation of GLEAM evapotranspiration products over China via ChinaFLUX ET measurements [J]. International Journal of Remote Sensing, 2017, 38(20):5 688-5 709.
14 WEN Xin, ZHOU Ji, LIU Shaomin, et al. Spatio-temporal characteristics of surface evapotranspiration in source region of rivers in Southwest China based on multi-source products [J]. Water Resources Protection, 2021,37(3):32-42.
温馨,周纪,刘绍民,等.基于多源产品的西南河流源区地表蒸散发时空特征[J].水资源保护, 2021,37(3):32-42.
15 LU Han, YE Linyuan, LUO Peng, et al. Spatio-temporal characteristics of water cycle change in the Yangtze River Basin based on remote sensing and reanalysis evapotranspiration data[J]. China Rural Water and Hydropower, 2020, 457(11):48-55, 67.
鲁汉,叶林媛,罗鹏,等.基于遥感和再分析蒸散发数据的长江流域水循环变化时空特征研究[J]. 中国农村水利水电,2020, 457(11):48-55, 67.
16 ZHOU Tianjun, ZHANG Wenxia, CHEN Xiaolong, et al. The near-term, mid-term and long-term projections of temperature and precipitation changes over the Tibetan Plateau and the sources of uncertainties [J].Journal of the Meteorological Sciences,2020,40(5) : 697-710.
周天军,张文霞,陈晓龙,等.青藏高原气温和降水近期、中期与长期变化的预估及其不确定性来源[J].气象科学,2020,40(5) : 697-710.
17 WU Fangying, YOU Qinglong, XIE Wenxin, et al. Temperature change on the Tibetan Plateau under the global warming of 1.5 ℃ and 2 ℃[J]. Climate Change Research, 2019, 15 (2): 130-139.
吴芳营,游庆龙,谢文欣,等. 全球变暖1.5 ℃和2 ℃阈值时青藏高原气温的变化特征[J].气候变化研究进展,2019,15 (2): 130-139.
18 FAN Keke, ZHANG Qiang, SUN Peng, et.al. Variation, causes and future estimation of surface soil moisture on the Tibetan Plateau [J]. The Geographical Journal,2019, 74(3):520-533.
范科科,张强,孙鹏, 等.青藏高原地表土壤水变化、影响因子及未来预估[J]. 地理学报,2019, 74(3):520-533.
19 JIANG Dabang, HU Dan, TIAN Zhiping, et al. Differences between CMIP6 and CMIP5 models in simulating climate over China and the East Asian Monsoon[J]. Advances in Atmospheric Sciences, 2020,37(10):1 102-1 118.
20 ZHANG He, ZHANG Minghua, JIN Jiangbo, et al. Description and climate simulation performance of CAS-ESM version2 [J]. Journal of Advances in Modeling Earth Systems,2020, 12(12). DOI:10.1029/2020MS002210.
doi: 10.1029/2020MS002210    
21 ZENG Qingcun, ZHOU Guangqing, PU Yifen, et al. Research on the earth system dynamic model and some related numerical simulations [J]. Chinese Journal of Atmospheric Sciences, 2008, 32 (4):653-690.
曾庆存,周广庆,浦一芬, 等.地球系统动力学模式及模拟研究[J].大气科学,2008,32(4):653-690.
22 ZENG Qingcun, LIN Zhaohui. Advances in Earth system dynamics modeling and simulation[J].Advances in Earth Science, 2010,25(1):1-6.
曾庆存,林朝晖.地球系统动力学模式和模拟研究的进展[J].地球科学进展,2010,25(1):1-6.
23 LIU Hailong, LIN Pengfei, YU Yongqiang, et al. The baseline evaluation of LASG/IAP Climate System Ocean Model (LICOM) version 2 [J]. Journal of Meteorological Research, 2012, 26(3):318-329.
24 DONG Xiao, JIN Jiangbo, LIU Hailong, et al. CAS-ESM2.0 Model Datasets for CMIP6 Ocean Model Intercomparison Project Phase 1 (OMIP1) [J]. Advances in Atmospheric Sciences, 2020, 38: 307-316.
25 DAI Yongjiu, ZENG Xuebin, DICKINSON R E, et al. The Common Land Model (CLM)[J]. Bulletin of the American Meteorological Society, 2003, 84(8): 1 013-1 023.
26 O'NRILL B C, TEBALDI C, VUUREN D P VAN, et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6 [J].Geoscientific Model Development, 2016, 9(9): 3 461-3 482.
27 MIRALLES D G, VAN D, GASH J H, et al. El Ni?o-La Ni?a cycle and recent trends in continental evaporation [J]. Nature Climate Change, 2014, 4(2):1-4.
28 MARTENS B, JEU R D, VERHOEST N, et al. Towards estimating land evaporation at field scales using GLEAM [J]. Remote Sensing, 2018, 10(11):1720.
29 MIRALLES D G, TEULING A J, HEERWAARDEN C, et al. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation[J]. Nature Geoscience, 2014, 7(5):345-349.
30 GUILLOD B P, ORLOWSKY B, MIRALLES D G, et al. Reconciling spatial and temporal soil moisture effects on afternoon rainfall[J]. Nature Communications, 2015, 6:6443.
31 KAUWE M D, KALA J, LIN Y S, et al. A test of an optimal stomatal conductance scheme within the CABLE land surface model [J]. Geoscientific Model Development, 2015, 8(2):431-452.
32 REICHLE R H, DRAPER C S, LIU Q, et al. Assessment of MERRA-2 land surface hydrology estimates [J]. Journal of Climate, 2016, 30(8):2 937-2 960.
33 WU Jia, GAO Xuejie. A gridded daily observation dataset over China region and comparison with the other datasets[J]. Chinese Journal of Geophysics, 2013,56(4):1 102-1 111. DOI:10.6038/cjg20130406.
doi: 10.6038/cjg20130406    
吴佳,高学杰.一套格点化的中国区域逐日观测资料及与其它资料的对比[J].地球物理学报,2013,56(4):1 102-1 111. DOI:10.6038/cjg20130406.
doi: 10.6038/cjg20130406    
34 JIA Kun, RUAN Yunfeng, YANG Yanzhao, et al. Assessing the performance of CMIP5 Global Climate Models for simulating future precipitation change in the Tibetan Plateau[J]. Water,2019,11(9):1 771. DOI: 10.3390/w11091771.
doi: 10.3390/w11091771    
35 HU Yiyang, XU Ying, LI Jinjian, et al. Evaluation on the performance of CMIP6 global climate models with different horizontal resolution in simulating the precipitation over China[J/OL]. Advances in Climate Change. [2021-08-14]..
URL    
胡一阳,徐影,李金建,等.CMIP6不同分辨率全球气候模式对中国降水模拟能力评估[J/OL].气候变化研究进展. [2021-08-14]..
URL    
36 ZHU Yuyao, YANG Saini. Evaluation of CMIP6 for historical temperature and precipitation over the Tibetan Plateau and its comparison with CMIP5[J]. Advances in Climate Change Research, 2020: 239-251. DOI: 10.1016/j.accre.2020.08.001.
doi: 10.1016/j.accre.2020.08.001    
37 LIN Changgui, CHEN Deliang, YANG Kun, et al. Impact of model resolution on simulating the water vapor transport through the central Himalayas: implication for models' wet bias over the Tibetan Plateau[J]. Climate Dynamics, 2018, 51(9) : 3 195-3 207.
38 YANG Xiaoyu, LIN Zhaohui, WANG Yuxi, et al. Simulation and projection of snow water equivalent over the Eurasian continent by CMIP5 coupled models [J]. Climatic and Environmental Research, 2017,22 (3): 253-270.
doi: 10.3878/j.issn.1006-9589.2016.16104    
DOI:10.3878/j.issn.1006-9585.2016.16104.[杨笑宇, 林朝晖, 王雨曦, 等. CMIP5 耦合模式对欧亚大陆冬季雪水当量的模拟及预估 [J]. 气候与环境研究,2017, 22 (3): 253-270. DOI: 10.3878/j.issn.1006-9589.2016.16104.]
doi: 10.3878/j.issn.1006-9589.2016.16104    
[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[3] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[4] 王俏懿,马耀明,王宾宾,左洪超. 喜马拉雅南北坡地区地表能量通量及蒸散发量对比分析[J]. 地球科学进展, 2021, 36(8): 810-825.
[5] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[6] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[7] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[8] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[9] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[10] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
[11] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[12] 苗毅, 刘海猛, 宋金平, 戴特奇. 青藏高原交通设施建设及影响评价研究进展[J]. 地球科学进展, 2020, 35(3): 308-318.
[13] 李修仓,姜彤,吴萍. 水分再循环计算模型的研究进展及其展望[J]. 地球科学进展, 2020, 35(10): 1029-1040.
[14] 牛富俊, 王玮, 林战举, 罗京. 青藏高原多年冻土区热喀斯特湖环境及水文学效应研究[J]. 地球科学进展, 2018, 33(4): 335-342.
[15] 黄平, 周士杰. 全球变暖下热带降水变化研究回顾与挑战 *[J]. 地球科学进展, 2018, 33(11): 1181-1192.
阅读次数
全文


摘要