1 |
YAO Tandong, CHEN Fahu, CUI Peng, et al. From Tibetan Plateau to Third Pole and Pan-Third Pole [J].Bulletin of Chinese Academy of Sciences, 2017, 32(9):924-931.
|
|
姚檀栋,陈发虎,崔鹏,等. 从青藏高原到第三极和泛第三极[J].中国科学院院刊,2017,32(9):924-931.
|
2 |
CHEN Deliang, XU Baiqing, YAO Tandong, et al. Assessment of past, present and future environmental changes on the Tibetan Plateau [J].Chinese Science Bulletin ,2015, 60(32): 3 025-3 035. DOI: 10.1360/N972014-01370.
doi: 10.1360/N972014-01370
|
|
陈德亮,徐柏青,姚檀栋,等.青藏高原环境变化科学评估:过去、现在与未来[J].科学通报,2015,60(32):3 025-3 035. DOI: 10.1360/N972014-01370.
doi: 10.1360/N972014-01370
|
3 |
YAO Tandong, PIAO Shilong, SHEN Miaogen, et al. Chained impacts on modern environment of interaction between Westerlies and Indian Monsoon on Tibetan Plateau [J]. Bulletin of Chinese Academy of Sciences,2017,32(9):976-984.
|
|
姚檀栋,朴世龙,沈妙根,等.印度季风与西风相互作用在现代青藏高原产生连锁式环境效应[J].中国科学院院刊,2017,32(9):976-984.
|
4 |
YANG Kun, HUI Wu, QIN Jun, et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review [J]. Global and Planetary Change, 2014, 112:79-91.
|
5 |
TANG Qiuhong, LIU Yubo, ZHANG Chi, et al. Research progress on moisture source change of precipitation over the Tibetan Plateau and its surrounding areas[J].Transactions of Atmospheric Sciences, 2020,43(6) : 1 002-1 009.
|
|
汤秋鸿,刘宇博,张弛,等.青藏高原及其周边地区降水的水汽来源变化研究进展[J].大气科学学报,2020,43(6) : 1 002-1 009.
|
6 |
ZHANG Xueqin,YU Ren,YIN Zhiyong,et al. Spatial andtemporal variation patterns of reference evapotranspirationacross the Qinghai-Tibetan Plateau during 1971-2004[J].Journal of Geophysical Research Atmospheres,2009,114(D15). DOI: 10.1029/2009JD011753.
doi: 10.1029/2009JD011753
|
7 |
WANG Buwei,ZHANG Xueqin. Change and attribution of reference evapotranspiration over the Tibetan Plateau during the period of1971-2014 [J]. Arid Zone Research,2019, 36(2):269-279.
|
|
汪步惟,张雪芹. 1971—2014年青藏高原参考蒸散变化及其归因[J].干旱区研究,2019,36(2):269-279.
|
8 |
YAO Tianci, LU Hongwei, YU Qing, et al. Potential evapotranspiration characteristic and its abrupt change across the Qinghai-Tibetan Plateau and its surrounding areas in the last 50 years[J]. Advances in Earth Science,2020,35(5):534-546.
doi: 10.11867/j.issn. 1001-8166.2020.031
|
|
DOI:10.11867/j.issn.1001-8166.2020.031. [姚天次,卢宏玮,于庆,等.近50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J].地球科学进展,2020,35(5):534-546.DOI:10.11867/j.issn. 1001-8166.2020.031.]
doi: 10.11867/j.issn. 1001-8166.2020.031
|
9 |
YAO Tianci, LU Hongwei, WEI Feng, et al. Evaporation abrupt changes in the Qinghai-Tibet Plateau during the last half-century [J]. Scientific Reports, 2019, 9(1):20181.
|
10 |
WANG Kunxin, ZHANG Yinsheng, MA Ning, et al. Cryosphere evapotranspiration in the Tibetan Plateau: a review[J]. Sciences in Cold and Arid Regions, 2020, 12(6): 355-370.
|
11 |
MIRALLES D G, HOLMES T, DE J, et al. Global land-surface evaporation estimated from satellite-based observations[J]. Hydrology and Earth System Sciences Discussions, 2011, 15(133):453-469.
|
12 |
MARTENS B, MIRALLES D G, LIEVENS H, et al. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture [J]. Geoscientific Model Development, 2017, 10(5). DOI: 10.5194/gmd-10-1903-2017.
doi: 10.5194/gmd-10-1903-2017
|
13 |
YANG Xiuqin, YONG Bin, REN Liliang, et al. Multi-scale validation of GLEAM evapotranspiration products over China via ChinaFLUX ET measurements [J]. International Journal of Remote Sensing, 2017, 38(20):5 688-5 709.
|
14 |
WEN Xin, ZHOU Ji, LIU Shaomin, et al. Spatio-temporal characteristics of surface evapotranspiration in source region of rivers in Southwest China based on multi-source products [J]. Water Resources Protection, 2021,37(3):32-42.
|
|
温馨,周纪,刘绍民,等.基于多源产品的西南河流源区地表蒸散发时空特征[J].水资源保护, 2021,37(3):32-42.
|
15 |
LU Han, YE Linyuan, LUO Peng, et al. Spatio-temporal characteristics of water cycle change in the Yangtze River Basin based on remote sensing and reanalysis evapotranspiration data[J]. China Rural Water and Hydropower, 2020, 457(11):48-55, 67.
|
|
鲁汉,叶林媛,罗鹏,等.基于遥感和再分析蒸散发数据的长江流域水循环变化时空特征研究[J]. 中国农村水利水电,2020, 457(11):48-55, 67.
|
16 |
ZHOU Tianjun, ZHANG Wenxia, CHEN Xiaolong, et al. The near-term, mid-term and long-term projections of temperature and precipitation changes over the Tibetan Plateau and the sources of uncertainties [J].Journal of the Meteorological Sciences,2020,40(5) : 697-710.
|
|
周天军,张文霞,陈晓龙,等.青藏高原气温和降水近期、中期与长期变化的预估及其不确定性来源[J].气象科学,2020,40(5) : 697-710.
|
17 |
WU Fangying, YOU Qinglong, XIE Wenxin, et al. Temperature change on the Tibetan Plateau under the global warming of 1.5 ℃ and 2 ℃[J]. Climate Change Research, 2019, 15 (2): 130-139.
|
|
吴芳营,游庆龙,谢文欣,等. 全球变暖1.5 ℃和2 ℃阈值时青藏高原气温的变化特征[J].气候变化研究进展,2019,15 (2): 130-139.
|
18 |
FAN Keke, ZHANG Qiang, SUN Peng, et.al. Variation, causes and future estimation of surface soil moisture on the Tibetan Plateau [J]. The Geographical Journal,2019, 74(3):520-533.
|
|
范科科,张强,孙鹏, 等.青藏高原地表土壤水变化、影响因子及未来预估[J]. 地理学报,2019, 74(3):520-533.
|
19 |
JIANG Dabang, HU Dan, TIAN Zhiping, et al. Differences between CMIP6 and CMIP5 models in simulating climate over China and the East Asian Monsoon[J]. Advances in Atmospheric Sciences, 2020,37(10):1 102-1 118.
|
20 |
ZHANG He, ZHANG Minghua, JIN Jiangbo, et al. Description and climate simulation performance of CAS-ESM version2 [J]. Journal of Advances in Modeling Earth Systems,2020, 12(12). DOI:10.1029/2020MS002210.
doi: 10.1029/2020MS002210
|
21 |
ZENG Qingcun, ZHOU Guangqing, PU Yifen, et al. Research on the earth system dynamic model and some related numerical simulations [J]. Chinese Journal of Atmospheric Sciences, 2008, 32 (4):653-690.
|
|
曾庆存,周广庆,浦一芬, 等.地球系统动力学模式及模拟研究[J].大气科学,2008,32(4):653-690.
|
22 |
ZENG Qingcun, LIN Zhaohui. Advances in Earth system dynamics modeling and simulation[J].Advances in Earth Science, 2010,25(1):1-6.
|
|
曾庆存,林朝晖.地球系统动力学模式和模拟研究的进展[J].地球科学进展,2010,25(1):1-6.
|
23 |
LIU Hailong, LIN Pengfei, YU Yongqiang, et al. The baseline evaluation of LASG/IAP Climate System Ocean Model (LICOM) version 2 [J]. Journal of Meteorological Research, 2012, 26(3):318-329.
|
24 |
DONG Xiao, JIN Jiangbo, LIU Hailong, et al. CAS-ESM2.0 Model Datasets for CMIP6 Ocean Model Intercomparison Project Phase 1 (OMIP1) [J]. Advances in Atmospheric Sciences, 2020, 38: 307-316.
|
25 |
DAI Yongjiu, ZENG Xuebin, DICKINSON R E, et al. The Common Land Model (CLM)[J]. Bulletin of the American Meteorological Society, 2003, 84(8): 1 013-1 023.
|
26 |
O'NRILL B C, TEBALDI C, VUUREN D P VAN, et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6 [J].Geoscientific Model Development, 2016, 9(9): 3 461-3 482.
|
27 |
MIRALLES D G, VAN D, GASH J H, et al. El Ni?o-La Ni?a cycle and recent trends in continental evaporation [J]. Nature Climate Change, 2014, 4(2):1-4.
|
28 |
MARTENS B, JEU R D, VERHOEST N, et al. Towards estimating land evaporation at field scales using GLEAM [J]. Remote Sensing, 2018, 10(11):1720.
|
29 |
MIRALLES D G, TEULING A J, HEERWAARDEN C, et al. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation[J]. Nature Geoscience, 2014, 7(5):345-349.
|
30 |
GUILLOD B P, ORLOWSKY B, MIRALLES D G, et al. Reconciling spatial and temporal soil moisture effects on afternoon rainfall[J]. Nature Communications, 2015, 6:6443.
|
31 |
KAUWE M D, KALA J, LIN Y S, et al. A test of an optimal stomatal conductance scheme within the CABLE land surface model [J]. Geoscientific Model Development, 2015, 8(2):431-452.
|
32 |
REICHLE R H, DRAPER C S, LIU Q, et al. Assessment of MERRA-2 land surface hydrology estimates [J]. Journal of Climate, 2016, 30(8):2 937-2 960.
|
33 |
WU Jia, GAO Xuejie. A gridded daily observation dataset over China region and comparison with the other datasets[J]. Chinese Journal of Geophysics, 2013,56(4):1 102-1 111. DOI:10.6038/cjg20130406.
doi: 10.6038/cjg20130406
|
|
吴佳,高学杰.一套格点化的中国区域逐日观测资料及与其它资料的对比[J].地球物理学报,2013,56(4):1 102-1 111. DOI:10.6038/cjg20130406.
doi: 10.6038/cjg20130406
|
34 |
JIA Kun, RUAN Yunfeng, YANG Yanzhao, et al. Assessing the performance of CMIP5 Global Climate Models for simulating future precipitation change in the Tibetan Plateau[J]. Water,2019,11(9):1 771. DOI: 10.3390/w11091771.
doi: 10.3390/w11091771
|
35 |
HU Yiyang, XU Ying, LI Jinjian, et al. Evaluation on the performance of CMIP6 global climate models with different horizontal resolution in simulating the precipitation over China[J/OL]. Advances in Climate Change. [2021-08-14]..
URL
|
|
胡一阳,徐影,李金建,等.CMIP6不同分辨率全球气候模式对中国降水模拟能力评估[J/OL].气候变化研究进展. [2021-08-14]..
URL
|
36 |
ZHU Yuyao, YANG Saini. Evaluation of CMIP6 for historical temperature and precipitation over the Tibetan Plateau and its comparison with CMIP5[J]. Advances in Climate Change Research, 2020: 239-251. DOI: 10.1016/j.accre.2020.08.001.
doi: 10.1016/j.accre.2020.08.001
|
37 |
LIN Changgui, CHEN Deliang, YANG Kun, et al. Impact of model resolution on simulating the water vapor transport through the central Himalayas: implication for models' wet bias over the Tibetan Plateau[J]. Climate Dynamics, 2018, 51(9) : 3 195-3 207.
|
38 |
YANG Xiaoyu, LIN Zhaohui, WANG Yuxi, et al. Simulation and projection of snow water equivalent over the Eurasian continent by CMIP5 coupled models [J]. Climatic and Environmental Research, 2017,22 (3): 253-270.
doi: 10.3878/j.issn.1006-9589.2016.16104
|
|
DOI:10.3878/j.issn.1006-9585.2016.16104.[杨笑宇, 林朝晖, 王雨曦, 等. CMIP5 耦合模式对欧亚大陆冬季雪水当量的模拟及预估 [J]. 气候与环境研究,2017, 22 (3): 253-270. DOI: 10.3878/j.issn.1006-9589.2016.16104.]
doi: 10.3878/j.issn.1006-9589.2016.16104
|