地球科学进展 ›› 2022, Vol. 37 ›› Issue (1): 87 -98. doi: 10.11867/j.issn.1001-8166.2021.122

“青促会成立10周年之地球科学领域”专刊 上一篇    下一篇

水体稳定同位素在青藏高原大气环流研究中的应用
杨晓新( )   
  1. 中国科学院青藏高原研究所 青藏高原地球系统与资源环境全国重点实验室,北京 100101
  • 收稿日期:2021-09-30 修回日期:2021-12-03 出版日期:2022-01-10
  • 基金资助:
    国家自然科学基金面上项目“通过降水和冰芯稳定同位素揭示ENSO对‘第三极’南北部水汽来源的影响”(41571074);第二次青藏高原综合科学考察研究(2019QZKK0208)

Water Stable Isotopes and Their Applications to the Study of Atmospheric Circulations on the Tibetan Plateau

Xiaoxin YANG( )   

  1. State Key Laboratory of Tibetan Plateau Earth System,Resources and Environment (TPESRE),Institute of Tibetan Plateau Research,Chinese Academy of Sciences,Beijing 100101,China
  • Received:2021-09-30 Revised:2021-12-03 Online:2022-01-10 Published:2022-01-29
  • About author:YANG Xiaoxin (1981-), female, Yuanyang City, Henan Province, Professor. Research areas include variations of water stable isotopes and their indications of atmospheric circulations. E-mail: xxy@itpcas.ac.cn
  • Supported by:
    the National Natural Science Foundation of China "Study of ENSO influences on moisture supplies to the northern and southern Third Pole from stable isotopes in precipitation and ice cores"(41571074);The Second Tibetan Plateau Scientific Expedition and Research Program (STEP)(2019QZKK0208)

水体稳定同位素作为贯穿水循环的介质,是研究大气环流过程和传输路径的有效手段。介绍了水体稳定同位素技术在青藏高原大气环流研究中的应用,聚焦典型站点降水、河水和冰芯等水体稳定同位素的季节和空间变化特征,揭示了大气环流对地表水稳定同位素高程效应的显著影响,以及大气降水对地表水的主导;引入降水稳定同位素标准判断亚洲夏季风爆发时间;通过冰芯稳定同位素揭示了厄尔尼诺—南方涛动对整个青藏高原水循环的影响及其响应机制的区域差异。在未来的研究中,将加强跟地球系统模型的结合,关注水体稳定同位素在不同时间尺度的控制因子、突变过程以及激发机制,进而量化古气候替代指标中的稳定同位素变化、从较长的时间尺度上重建影响青藏高原的水汽来源的演变历史。同时关注过量氘等具有水汽来源诊断能力的参数,研究其与大尺度环流参数的相关性,从海表温度、蒸发等陆—气相互作用分析并将高原环流过程与全球环流过程紧密结合综合分析。

Water stable isotopes (δ) are inherent in the water cycle, changing during water phase changes, and hence widely used to study moisture trajectory and water cycle. Their application to the study of atmospheric circulations over the Tibetan Plateau (TP) has led to a comprehensive understanding in the past decades. This review focuses on field sampling across the extensive TP, and summarizes the spatial and temporal variation patterns in water stable isotopes in precipitation, surface water and ice cores. Complex circulation patterns are found to affect the altitude effect in water stable isotopes, so that monsoon yields a smaller altitudinal lapse rate than westerly, which in extreme cases can result in increasing isotopic composition with increasing altitudes; though the precipitation isotopes have a prevailing dominance over surface water isotopic features. The sensitive response of precipitation stable isotopes to convection is also applied to the judgement of monsoon onset based on abrupt, continuous and significant decrease in δ. Accordingly, the submonsoon system is found to onset earlier over the Bay of Bengal than the South China Sea and varies diversely under global warming. A long-term perspective into atmospheric circulation over the Tibetan Plateau from ice core δ reveals significant impacts of El Nin?o-Southern Oscillation (ENSO) on the TP, with a dampening effect on the temperature significance of ice core isotopes in the southern TP under the monsoon dominance, while a lagged correlation between ENSO and ice core isotopes in the northwestern TP; all pointing to possible teleconnections between TP climates and sea surface temperature. In future studies, the Earth system models will be relied upon to help reveal physical mechanisms behind complex water stable isotope variations, and comprehend unique isotope variation patterns under extreme climates. Based on modern precipitation δ variation features and abrupt changes and triggering mechanisms, variation history of moisture sources is to be reconstructed from paleoproxies. Besides, isotopic parameters including deuterium excesses have high meteorological synoptic capacity, and would be applied to the analysis of changes in sea surface temperature or evaporation, and hence to facilitate the understanding of sea-air interactions, and the interactions of circulation patterns and water cycles on the Tibetan Plateau with global climate changes.

中图分类号: 

1 YE Duzheng. Seasonal variations in Tibetan Plateau's influences on atmospheric circulation[J]. Acta Meteorologica Sinica, 1952 (): 35-49.
叶笃正. 西藏高原对于大气环流影响的季节变化[J]. 气象学报, 1952(): 35-49.
2 YE Duzheng, GAO Youxi. Qinghai-Xizang Plateau meteorology[M]. Beijing: Science Press, 1979.
叶笃正,高由禧. 青藏高原气象学[M].北京: 科学出版社, 1979.
3 BENN D I, OWEN L A. The role of the Indian summer monsoon and the mid-latitude westerlies in Himalayan glaciation: review and speculative discussion[J]. Journal of the Geological Society, 1998, 155(2): 353-363.
4 LIU X, GUO Q, GUO Z, et al. Where were the monsoon regions and arid zones in Asia prior to the Tibetan Plateau uplift? [J]. National Science Review, 2015, 2(4): 403-416.
5 YE D. Some characteristics of the summer circulation over the Qinghai-Xizang (Tibet) Plateau and its neighborhood[J]. Bulletin American Meteorological Society, 1981, 62(1): 6.
6 CHEN Deliang, XU Baiqing, YAO Tandong, et al. Assessment of past, present and future environmental changes on the Tibetan Plateau[J]. Chinese Science Bulletin, 2015, 60 (32): 3 025-3 035.
陈德亮, 徐柏青, 姚檀栋, 等. 青藏高原环境变化科学评估:过去、现在与未来[J]. 科学通报, 2015, 60(32): 3 025-3 035.
7 LI Q Q, ZHAO M C, YANG S, et al. A zonally-oriented teleconnection pattern induced by heating of the Western Tibetan Plateau in boreal summer[J]. Climate Dynamics, 2021, 57(9/10): 2 823-2 842.
8 HUANG Ronghui. The thermal effect of the Qinghai-Xizang Plateau on formation and maintenance of the mean monsoon circulation over South Asia in summer[J]. Journal of Tropical Meteorology, 1985, 1(1): 1-8.
黄荣辉. 夏季青藏高原对于南亚平均季风环流形成与维持的热力作用[J]. 热带气象学报, 1985, 1(1): 1-8.
9 YASUNARI T. Low-frequency interactions between the summer monsoon and the northern-hemisphere westerlies[J]. Journal of the Meteorological Society of Japan, 1986, 64(5): 693-708.
10 ZHANG Renhe, ZHOU Shunwu. The air temperature change over the Tibetan Plateau during1979-2002 and its possible linkage with ozone depletion[J]. Acta Meteorologica Sinica, 2008, 66 (6): 916-925.
张人禾,周顺武. 青藏高原气温变化趋势与同纬度带其他地区的差异以及臭氧的可能作用[J]. 气象学报, 2008, 66(6): 916-925.
11 LI Y, SU F, CHEN D, et al. Atmospheric water transport to the endorheic Tibetan Plateau and its effect on the hydrological status in the region[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(23): 12 864-12 881.
12 LI P X, ZHOU T J, CHEN X L. Water vapor transport for spring persistent rains over southeastern China based on five reanalysis datasets[J]. Climate Dynamics, 2018, 51(11/12): 4 243-4 257.
13 MA Y, ZHANG Y, YANG D, et al. Precipitation bias variability versus various gauges under different climatic conditions over the Third Pole Environment (TPE) region[J]. International Journal of Climatology, 2015, 35(7): 1 201-1 211.
14 ZHAO Y, ZHOU T J. Asian water tower evinced in total column water vapor: a comparison among multiple satellite and reanalysis data sets[J]. Climate Dynamics, 2020, 54(1/2): 231-245.
15 GALEWSKY J, STEEN-LARSEN H C, FIELD R D, et al. Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle[J]. Reviews of Geophysics, 2016, 54(4): 809-865.
16 AGGARWAL P K, ROMATSCHKE U, ARAGUAS-ARAGUAS L, et al. Proportions of convective and stratiform precipitation revealed in water isotope ratios[J]. Nature Geoscience, 2016, 9(8): 624-629.
17 CAI Z Y, TIAN L D. Atmospheric controls on seasonal and interannual variations in the precipitation isotope in the East Asian Monsoon Region[J]. Journal of Climate, 2016, 29(4): 1 339-1 352.
18 WANG D, TIAN L, CAI Z, et al. Indian monsoon precipitation isotopes linked with high level cloud cover at local and regional scales[J]. Earth and Planetary Science Letters, 2020, 529: 115837.
19 BOWEN R. Isotope in the Earth sciences[M]. London and New York: Elsevier Science Publishers, 1988.
20 DANSGAARD W, JOHNSEN S J, CLAUSEN H B, et al. Stable isotope glaciology[M]. Copenhagen: Reitzels Forlag C.A., Biango Lunos Bogtrykkeri A/S, 1973.
21 KENDALL C, CALDWELL E A. Fundamentals of isotope geochemistry. in isotope tracers[M]// Kendall C, McDonnell J J. Catchment hydrology. Amsterdam: Elsevier Science B.V., 1988: 51-86.
22 DANSGAARD W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4): 436-468.
23 WELKER J M. Isotopic (delta O-18) characteristics of weekly precipitation collected across the USA: an initial analysis with application to water source studies[J]. Hydrological Processes, 2000, 14(8): 1 449-1 464.
24 STERN L A, Blisniuk P M. Stable isotope composition of precipitation across the southern Patagonian Andes[J]. Journal of Geophysical Research:Atmospheres, 2002, 107(D23). DOI:10.1029/2002JD002509.
25 LONGINELLI A, SELMO E. Isotopic composition of precipitation in Italy: a first overall map[J]. Journal of Hydrology, 2003, 270(1/2): 75-88.
26 ZHAO H, XU B, LI Z, et al. Abundant climatic information in water stable isotope record from a maritime glacier on southeastern Tibetan Plateau[J]. Climate Dynamics, 2016, 48(3/4): 1 161-1 171.
27 CIAIS P, JOUZEL J. Deuterium and oxygen 18 in precipitation: isotopic model, including mixed cloud processes[J]. Journal of Geophysical Research:Atmospheres, 1994, 99: 16 793-16 803.
28 STEWART M K. Stable isotope fractionation due to evaporation and isotopic exchange of falling waterdrops: applications to atmospheric processes and evaporation of lakes[J]. Journal of Geophysical Research (1896-1977), 1975, 80(9): 1 133-1 146.
29 WORDEN J, NOONE D, BOWMAN K, et al. Importance of rain evaporation and continental convection in the tropical water cycle[J]. Nature, 2007, 445: 528-532.
30 YAO T, MASSON-DELMOTTE V, GAO J, et al. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: observations and simulations[J]. Reviews of Geophysics, 2013, 51. DOI: 8755-1209/13/10.1002/rog.20023.
31 YAO T, THOMPSON L, YANG W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2: 663-667.
32 YANG X, YAO T. Seasonality of moisture supplies to precipitation over the Third Pole: a stable water isotopic perspective[J]. Scientific Reports, 2020, 10(1). DOI: 10.1038/s41598-020-71949-0.
[1] 王劲松, 姚玉璧, 王莺, 王素萍, 刘晓云, 周悦, 杜昊霖, 张宇, 任余龙. 青藏高原地区气象干旱研究进展与展望[J]. 地球科学进展, 2022, 37(5): 441-461.
[2] 柴磊, 王小萍. 青藏高原持久性有机污染物研究现状与展望[J]. 地球科学进展, 2022, 37(2): 187-201.
[3] 昝金波, 宁文晓, 杨胜利, 方小敏, 康健, 罗元龙. 表土磁学特征揭示的青藏高原及其周边地区的气候边界[J]. 地球科学进展, 2022, 37(1): 14-25.
[4] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[5] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[6] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[7] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[8] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[9] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[10] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[11] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[12] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[13] 黄婉彬,鄢春华,张晓楠,邱国玉. 城市化对地下水水量、水质与水热变化的影响及其对策分析[J]. 地球科学进展, 2020, 35(5): 497-512.
[14] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
[15] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
阅读次数
全文


摘要