地球科学进展 ›› 2022, Vol. 37 ›› Issue (2): 187 -201. doi: 10.11867/j.issn.1001-8166.2021.123

青促会之地球科学领域 上一篇    下一篇

青藏高原持久性有机污染物研究现状与展望
柴磊 1( ), 王小萍 1 , 2 , 3( )   
  1. 1.中国科学院青藏高原研究所环境变化与地表过程重点实验室,北京 100101
    2.中国科学院 青藏高原地球科学卓越创新中心,北京 100101
    3.中国科学院大学,北京 100049
  • 收稿日期:2021-10-11 修回日期:2021-12-29 出版日期:2022-02-10
  • 通讯作者: 王小萍 E-mail:537408689@qq.com;wangxp@itpcas.ac.cn
  • 基金资助:
    第二次青藏高原综合科学考察研究专项“跨境污染物调查与环境安全”(2019QZKK0605);中国科学院A类战略先导科技专项“泛第三极环境变化与绿色丝绸之路建设”子课题“污染物跨境传输过程与环境影响对策”(XDA2004050202)

Current Knowledge and Future Prospects Regarding Persistent Organic Pollutants over the Tibetan Plateau

Lei CHAI 1( ), Xiaoping WANG 1 , 2 , 3( )   

  1. 1.Key Laboratory of Environmental Change and Land Surface Processes,Institute of Tibetan Plateau Research,Chinese Academy of Sciences,Beijing 100101,China
    2.Chinese Academy of Sciences Center for Excellence in Tibetan Plateau Earth Sciences,Beijing 100101,China
    3.University of Chinese Academy of Sciences,Beijing 100049,China
  • Received:2021-10-11 Revised:2021-12-29 Online:2022-02-10 Published:2022-03-08
  • Contact: Xiaoping WANG E-mail:537408689@qq.com;wangxp@itpcas.ac.cn
  • About author:CHAI Lei (1995-), male, Qingyang City, Gansu Province, Ph.D student. Research areas include environmental change of the Tibet Plateau. E-mail: 537408689@qq.com
  • Supported by:
    the Second Tibetan Plateau Scientific Expedition and Research (STEP) Project "Investigation on transboundary pollutants and environmental safety"(2019QZKK0605);Class A Strategic Priority Research Science and Technology Program of the Chinese Academy of Sciences "The Pan-Third Pole Environment Study for a Green Silk Road (Pan-TPE)"sub-project "Transboundary pollutants transport process and environmental impact countermeasures"(XDA2004050202)

自21世纪以来,对地球上最大、最高的高原——青藏高原上持久性有机污染物的含量、传输途径和归宿的了解已逐步深入,回顾了关于青藏高原持久性有机污染物研究的主要成果。高海拔山区的观测技术和多尺度模型是产出这些成果的关键突破口,而第三极持久性有机污染物观测网填补了青藏高原地区持久性有机污染物数据的空白,为系统阐明南亚持久性有机污染物的排放特征,明确印度季风驱动下持久性有机污染物输入青藏高原的过程与范围以及揭示青藏高原高寒生态系统对部分持久性有机污染物的富集程度提供了基础。植被、土壤和冰川是持久性有机污染物的重要汇。由于青藏高原临近国家是持久性有机污染物的排放源地,使得持久性有机污染物可通过远距离大气传输和“冷捕集”作用在青藏高原环境中富集。因此未来需要开展长期监测,准确量化新型污染物对青藏高原生态环境的影响,阐明气候变化和人类活动共同影响下青藏高原环境变化的趋向。最后,考虑到跨境传输是青藏高原持久性有机污染物污染的主要原因,因此还应在持久性有机污染物排放法规方面积极开展全球/区域合作,以减少持久性有机污染物的迁移及其对青藏高原的不利影响。

Entering the 21st century, our understanding of the level, source, transport and fate of Persistent Organic Pollutants (POPs) over the Tibetan Plateau (TP), the largest and highest plateau on Earth, has been greatly enhanced. In this study, we have reviewed all the available literature to comprehensively understand the biogeochemical cycling of POPs over the TP. Based on the breakthrough of observation technology and multi-scale model developed for the TP region, new insights were obtained. The establishment of the atmospheric POPs monitoring network fills the data gap of POPs in the TP, and clarifies the emission characteristics of POPs in South Asia. All these data depict the spatiotemporal variation of POPs over the TP and shed the light on the role of the Indian monsoon on POPs transport. Vegetation, soil and glaciers of the TP act as important sinks for POPs. Use of POPs in surrounding counties, Long-Range Atmospheric Transport (LRAT) and "cold trapping" by the TP can happen following emission-transport-deposition events, and leading to the enrichment of POPs in the TP environment. Due to the intensification of human activities in the surrounding area of the TP and the melting of glaciers and frozen soil caused by global climate change, POPs behavior and distribution on the TP got changed, which should be of great concern. Therefore, long-term and continuous monitoring should be carried out in future to accurately quantify the impact of POPs and some emerging compounds on the ecological environment of the TP; the trend of environmental change over the TP under the joint influence of climate change and human activities should be addressed. Finally, it should be considered that transboundary transport is the main cause of POPs pollution over the TP, and global/regional cooperation should be actively carried out in terms of POPs emission regulations to reduce POPs migration and their adverse impact of POPs pollution over the TP.

中图分类号: 

图1 改进的XAD被动采样器(据参考文献[ 60 ]修改)
(a) XAD示意图;(b)XAD优点;(c)XAD野外应用采样效率;(d)XAD流体力学模拟
Fig. 1 Improved XAD passive air samplersmodified after reference 60 ])
(a) Schematic diagram of XAD; (b) Advantages of XAD;(c) Sampling efficiency in field application of XAD;(d) Hydrodynamic simulation of XAD
图2 第三极大气POPs被动观测网(TPPAS)示意图
Fig. 2 Third Pole POPs Passive Air SamplingTPPASnetwork
图3 印度季风是POPs输入青藏高原的动力
Fig. 3 Indian monsoon is the driving force of POPs into Tibetan Plateau
图4 南亚POPs跨喜马拉雅传输的通量和影响范围
(a) 青藏高原POPs污染物指纹谱分布与气候模式相对应;(b)南亚POPs跨喜马拉雅传输的通量;(c)南亚POPs跨喜马拉雅传输的影响范围
Fig. 4 Himalaya flux and impact range of POPs in South Asia
(a) The fingerprint distribution of POPs in the TP corresponds to the climate model; (b) Flux of POPs transport across the Himalayasin South Asia; (c) Impact range of POPs transport across Himalayas in South Asia
图5 裸鲤对POPs发生生物放大的机理
(a)基于逸度的裸鲤POPs富集模型;(b)裸鲤脂质校正浓度与营养级的关系;(c)裸鲤食物吸收效率
Fig. 5 Biological amplification mechanismof POPs Gymoncypris
(a) Enrichment model of Gymoncypris POPs based on fugacity; (b) Relationship between corrected concentration of Gymoncypris lipid and trophic; (c) Food absorption efficiency of Gymoncypris
1 BEYER A, MACKAY D, MATTHIES M, et al. Assessing long-range transport potential of persistent organic pollutants[J]. Environmental Science & Technology, 2000, 34(4):699-703.
2 REN Jiao, WANG Xiaoping, GONG Ping, et al. Characterization of Tibetan soil as a source or sink of atmospheric persistent organic pollutants: seasonal shift and impact of global warming[J]. Environmental Science & Technology, 2019, 53(7): 3 589-3 598.
3 MUIR D C, HOWARD P H. Are there other persistent organic pollutants? A challenge for environmental chemists[J]. Environmental Science & Technology, 2006, 40(23):7 157-7 166.
4 NADAL M, MARQU S M, MARI M, et al. Climate change and environmental concentrations of POPs: a review[J]. Environmental Research, 2015, 143:177-185.
5 BONEFELD-JORGENSEN E. The human health effect programme in Greenland, a review[J]. Science of the Total Environment, 2004, 331(1/3):215-231.
6 KELLY B C, IKONOMOU M G, BLAIR J D, et al. Bioaccumulation behaviour of polybrominated diphenyl ethers (PBDEs) in a Canadian Arctic marine food web[J]. Science of the Total Environment, 2008, 401(1/3):60-72.
7 LETCHER R J, BUSTNES J O, DIETZ R, et al. Exposure and effects assessment of persistent organohalogen contaminants in arctic wildlife and fish[J]. Science of the Total Environment, 2010, 408(15):2 995-3 043.
8 WANIA F, DUGANI C B. Assessing the long-range transport potential of polybrominated diphenyl ethers: a comparison of four multimedia models[J]. Environmental Toxicology & Chemistry, 2010, 22(6): 1 252-1 261.
9 LEE R G, COLEMAN P, JONES J L, et al. Emission factors and importance of PCDD/Fs, PCBs, PCNs, PAHs and PM10 from the domestic burning of coal and wood in the UK[J]. Environmental Science & Technology, 2005, 39(6):1 436-1 447.
10 LOHMANN R, NORTHCOTT G L, JONES K C. Assessing the contribution of diffuse domestic burning as a source of PCDD/Fs, PCBs, and PAHs to the UK atmosphere[J]. Environmental Science & Technology, 2000, 34(14):2 892-2 899.
11 LALLAS P L. The Stockholm Convention on persistent organic pollutants[J]. American Journal of International Law, 2001, 95(3):692-708.
12 HUNG H, KATSOYIANNIS A A, BRORSTR M-LUND N E, et al. Temporal trends of Persistent Organic Pollutants (POPs) in arctic air: 20 years of monitoring under the Arctic Monitoring and Assessment Programme (AMAP)[J]. Environmental Pollution, 2016, 217:52-61.
13 RSETH K T, AAS W, BREIVIK K, et al. Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972-2009[J]. Atmospheric Chemistry and Physics, 2012, 12(12):5 447-5 481.
14 WANG Xiaoyan, GONG Ping, WANG Chuanfei, et al. Spatial distribution patterns and human exposure risks of polycyclic aromatic hydrocarbons, organochlorine pesticides and polychlorinated biphenyls in Nepal using tree bark as a passive air sampler[J]. Environmental Research, 2020, 186:109510.
15 ALSHEMMARI H, AL-SHAREEDAH A E, RAJAGOPALAN S, et al. Pesticides driven pollution in Kuwait: the first evidence of environmental exposure to pesticides in soils and human health risk assessment[J]. Chemosphere, 2021, 273:129688.
16 JONES K C. Persistent Organic Pollutants (POPs) and related chemicals in the global environment: some personal reflections[J]. Environmental Science & Technology, 2021. DOI:10.1021/acs.est.0c08093 .
17 GOUIN T, MACKAY D, JONES K C, et al. Evidence for the "grasshopper" effect and fractionation during long-range atmospheric transport of organic contaminants[J]. Environmental Pollution, 2004, 128(1/2):139-148.
18 MU Jiping. Study progress of Persistent Organic Pollutants(POPs)[J]. Environmental Science & Technology, 2006, 29():140-143.
穆季平. 持久性有机污染物(POPs)研究进展[J]. 环境科学与技术, 2006, 29():140-143.
19 GRIMALT J O, DROOGE B L VAN, RIBES A, et al. Persistent organochlorine compounds in soils and sediments of European high altitude mountain lakes[J]. Chemosphere, 2004, 54(10):1 549-1 561.
20 MOECKEL C, NIZZETTO L, GUARDO A D, et al. Persistent organic pollutants in boreal and montane soil profiles: distribution, evidence of processes and implications for global cycling[J]. Environmental Science & Technology, 2008, 42(22):8 374-8 380.
21 TREMOLADA P, VILLA S, BAZZARIN P, et al. POPs in mountain soils from the Alps and Andes: suggestions for a 'precipitation effect' on altitudinal gradients[J]. Water, Air, and Soil Pollution, 2008, 188(1):93-109.
22 ARELLANO L, FERN NDEZ P, TATOSOVA J, et al. Long-range transported atmospheric pollutants in snowpacks accumulated at different altitudes in the Tatra Mountains (Slovakia)[J]. Environmental Science & Technology, 2011, 45(21): 9 268-9 275.
23 BOGDAL C, NIKOLIC D, LÜTHI M P, et al. Release of legacy pollutants from melting glaciers: model evidence and conceptual understanding[J]. Environmental Science & Technology, 2010, 44(11):4 063-4 069.
24 DEMERS M J, KELLY E N, BLAIS J M, et al. Organochlorine compounds in trout from lakes over a 1 600 meter elevation gradient in the Canadian Rocky Mountains[J]. Environmental Science & Technology, 2007, 41(8):2 723-2 729.
25 CARRERA G, FERN NDEZ P, GRIMALT J O, et al. Atmospheric deposition of organochlorine compounds to remote high mountain lakes of Europe[J]. Environmental Science & Technology, 2002, 36(12):2 581-2 588.
26 SCHUSTER J K, GIOIA R, MOECKEL C, et al. Has the burden and distribution of PCBs and PBDEs changed in European background soils between 1998 and 2008? Implications for sources and processes[J]. Environmental Science & Technology, 2011, 45(17):7 291-7 297.
27 WANG Xiaoping, GONG Ping, WANG Chuanfei, et al. A review of current knowledge and future prospects regarding persistent organic pollutants over the Tibetan Plateau[J]. Science of the Total Environment, 2016, 573:139-154.
28 HUNG H, KALLENBORN R, BREIVIK K, et al. Atmospheric monitoring of organic pollutants in the Arctic under the Arctic Monitoring and Assessment Programme (AMAP): 1993-2006[J]. Science of the Total Environment, 2010, 408(15): 2 854-2 873.
29 TAO Lin, KANNAN K, KAJIWARA N, et al. Perfluorooctanesulfonate and related fluorochemicals in albatrosses, elephant seals, penguins, and polar skuas from the Southern Ocean[J]. Environmental Science & Technology, 2006, 40(24): 7 642-7 648.
30 TRUMBLE S J, ROBINSON E M, NOREN S R, et al. Assessment of legacy and emerging persistent organic pollutants in Weddell seal tissue (Leptonychotes weddellii) near McMurdo Sound, Antarctica[J]. Science of the Total Environment, 2012, 439:275-283.
31 WANG Xiaoping, WANG Chuanfei, ZHU Tingting, et al. Persistent organic pollutants in the polar regions and the Tibetan Plateau: a review of current knowledge and future prospects[J]. Environmental Pollution, 2019, 248:191-208.
32 LAIRD B D, GONCHAROV A B, CHAN H M. Body burden of metals and persistent organic pollutants among Inuit in the Canadian Arctic[J]. Environment International, 2013, 59:33-40.
33 DONALDSON S, OOSTDAM J VAN, TIKHONOV C, et al. Environmental contaminants and human health in the Canadian Arctic[J]. Science of the Total Environment, 2010, 408(22): 5 165-5 234.
34 HANSEN K, CHRISTENSEN J, BRANDT J, et al. Modelling atmospheric transport of persistent organic pollutants in the Northern Hemisphere with a 3-D dynamical model: DEHM-POP[J]. Atmospheric Chemistry and Physics Discussions, 2004, 4(2):1 339-1 370.
35 GABRIELSEN G W. The arctic paradox[J]. Nature, 2005, 436(7 048):177-178.
36 CZUB G, WANIA F, MCLACHLAN M S. Combining long-range transport and bioaccumulation considerations to identify potential arctic contaminants[J]. Environmental Science & Technology, 2008, 42(10):3 704-3 709.
37 CHOI S D, BAEK S Y, CHANG Y S, et al. Passive air sampling of polychlorinated biphenyls and organochlorine pesticides at the Korean Arctic and Antarctic research stations: implications for long-range transport and local pollution[J]. Environmental Science & Technology, 2008, 42(19):7 125-7 131.
38 DALY G L, LEI Y D, TEIXEIRA C, et al. Pesticides in western Canadian mountain air and soil[J]. Environmental Science & Technology, 2007, 41(17):6 020-6 025.
39 WÖHRNSCHIMMEL H, MACLEOD M, HUNGERBUHLER K. Emissions, fate and transport of persistent organic pollutants to the Arctic in a changing global climate[J]. Environmental Science & Technology, 2013, 47(5):2 323-2 330.
40 FRIEDMAN C L, ZHANG Yanxu, SELIN N E. Climate change and emissions impacts on atmospheric PAH transport to the Arctic[J]. Environmental Science & Technology, 2014, 48(1):429-437.
41 BRAUNE B M, LETCHER R J. Perfluorinated sulfonate and carboxylate compounds in eggs of seabirds breeding in the Canadian Arctic: temporal trends (1975-2011) and interspecies comparison[J]. Environmental Science & Technology, 2013, 47(1):616-624.
42 CINCINELLI A, MARTELLINI T, POZO K, et al. Trematomus bernacchii as an indicator of POP temporal trend in the Antarctic seawaters[J]. Environmental Pollution, 2016, 217:19-25.
43 FELLIN P, DOUGHERTY D, BARRIE L A, et al. Air monitoring in the Arctic: results for selected persistent organic pollutants for 1992[J]. Environmental Toxicology and Chemistry: An International Journal, 1996, 15(3):253-261.
44 FRIEDMAN C L, SELIN N E. PCBs in the Arctic atmosphere: determining important driving forces using a global atmospheric transport model[J]. Atmospheric Chemistry and Physics, 2016, 16(5):3 433-3 448.
45 MA Jianmin, HUNG H, TIAN Chongguo, et al. Revolatilization of persistent organic pollutants in the Arctic induced by climate change[J]. Nature Climate Change, 2011, 1(5):255-260.
46 YAO Tandong, THOMPSON L G, MOSBRUGGER V, et al. Third Pole Environment (TPE)[J]. Environmental Development, 2012, 3:52-64.
47 BLAIS J M, SCHINDLER D W, MUIR D C, et al. Melting glaciers: a major source of persistent organochlorines to subalpine Bow Lake in Banff National Park, Canada[J]. Ambio, 2001,30(7):410-415.
48 SCHMID P, BOGDAL C, BLTHGEN N, et al. The missing piece: sediment records in remote mountain lakes confirm glaciers being secondary sources of persistent organic pollutants[J]. Environmental Science & Technology, 2011, 45(1):203-208.
49 LOEWEN M D, SHARMA S, TOMY G, et al. Persistent organic pollutants and mercury in the Himalaya[J]. Aquatic Ecosystem Health & Management, 2005, 8(3):223-233.
50 WANG Xiaoping, SUN Dianchao, YAO Tandong. Climate change and global cycling of persistent organic pollutants[J]. Science China: Earth Sciences, 2016, 46(10):1 301-1 316.
王小萍, 孙殿超, 姚檀栋. 气候变化与持久性有机污染物全球循环[J]. 中国科学:地球科学, 2016, 46(10): 1 301-1 316.
51 LI Meng. At the seventh Central Committee Symposium on Work in Tibet, Xi stressed the need to fully implement the party's governance strategy for Tibet in the new era and build a united, prosperous, advancedculturally, harmonious, and beautiful modern socialist new Tibet [EB/OL]. Beijing: Xinhua Press, 2020.[2020-08-29]. .
李萌. 习近平在中央第七次西藏工作座谈会上强调:全面贯彻新时代党的治藏方略 建设团结富裕文明和谐美丽的社会主义现代化新西藏[EB/OL]. 北京:新华社, 2020. [2020-08-29]. .
52 NIE Chenjing, LIU Xiaopeng. Xi congratulates the launch of the second comprehensive scientific expedition to the Tibet Plateau [EB/OL]. Xinhua Press, 2017.[2017-08-19]. .
聂晨静, 刘晓朋. 习近平致信祝贺第二次青藏高原综合科学考察研究启动[EB/OL]. 新华社, 2017. [2017-08-19]. .
53 WANG Xiaoping, GONG Ping, YAO Tandong. Progress about the research of atmospheric persistent organic pollutants in remote areas[J]. Environmental Sciences, 2008, 29(2): 273-282.
王小萍, 龚平, 姚檀栋. 偏远地区大气中持久性有机污染物研究进展[J].环境科学, 2008, 29(2):273-282.
54 ZHANG Jingxing, BU Duo, WANG Pu, et al. Progress on the passive air sampling techniques and occurrence of persistent organic pollutants in remote areas[J]. Scientia Sinica Chimica, 2018, 48(10): 1 171-1 184.
张静星, 布多, 王璞, 等. 大气中持久性有机污染物被动采样技术及其在偏远区域的应用研究进展[J].中国科学:化学, 2018, 48(10): 1 171-1 184.
55 WANG Chuanfei, WANG Xiaoping, GONG Ping, et al. Residues, spatial distribution and risk assessment of DDTs and HCHs in agricultural soil and crops from the Tibetan Plateau[J]. Chemosphere, 2016, 149:358-365.
56 HARNER T, BARTKOW M, HOLOUBEK I, et al. Passive air sampling for persistent organic pollutants: introductory remarks to the special issue[J]. Environmental Pollution, 2006, 144(2):361-364.
57 KLNOV J, HARNER T. The challenge of producing reliable results under highly variable conditions and the role of passive air samplers in the Global Monitoring Plan[J]. TrAC Trends in Analytical Chemistry, 2013, 46:139-149.
58 TUDURI L, MILLET M, BRIAND O, et al. Passive air sampling of semi-volatile organic compounds[J]. TrAC Trends in Analytical Chemistry, 2012, 31:38-49.
59 ZHANG Gan, LIU Xiang. Passive atmospheric sampling of Persistent Organic Pollutants(POPs)[J]. Progress in Chemisity, 2009, 21(2):297-306.
张干, 刘向. 大气持久性有机污染物(POPs)被动采样[J]. 化学进展, 2009, 21(2):297-306.
60 GONG Ping, WANG Xiaoping, LIU Xiande, et al. Field calibration of XAD-based passive air sampler on the Tibetan Plateau: wind influence and configuration improvement[J]. Environmental Science & Technology, 2017, 51(10):5 642-5 649.
61 WANG Xiaoping, GONG Ping, YAO Tandong, et al. Passive air sampling of organochlorine pesticides, polychlorinated biphenyls, and polybrominated diphenyl ethers across the Tibetan Plateau[J]. Environmental Science & Technology, 2010, 44(8):2 988-2 993.
62 WANG Xiaoping, YAO Tandong, WANG Pengling. The recent deposition of persistent organic pollutants and mercury to the Dasuopu glacier, Mt. Xixiabangma, central Himalayas[J]. Science of the Total Environment, 2008, 394(1):134-143.
63 WANG Xiaoping, SHENG Jiujiang, GONG Ping, et al. Persistent organic pollutants in the Tibetan surface soil: spatial distribution, air-soil exchange and implications for global cycling[J]. Environmental Pollution, 2012, 170:145-151.
64 LOHMANN R, BOOIJ K, SMEDES F, et al. Use of passive sampling devices for monitoring and compliance checking of POP concentrations in water[J]. Environmental Science and Pollution Research, 2012, 19(6):1 885-1 895.
65 SHENG Jiujiang, WANG Xiaoping, GONG Ping, et al. Monsoon-driven transport of organochlorine pesticides and polychlorinated biphenyls to the Tibetan Plateau: three year atmospheric monitoring study[J]. Environmental Science & Technology, 2013, 47(7):3 199-3 208.
66 REN Jiao, WANG Xiaoping, XUE Yonggang, et al. Persistent organic pollutants in mountain air of the southeastern Tibetan Plateau: seasonal variations and implications for regional cycling[J]. Environmental Pollution, 2014, 194:210-216.
67 XIAO Hang, KANG Shichang, ZHANG Qianggong, et al. Transport of semivolatile organic compounds to the Tibetan Plateau: monthly resolved air concentrations at Nam Co[J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D16):D16310. DOI: 10.1029/2010JD013972 .
68 WU Jing, GAO Wei, LIANG Yong, et al. Spatiotemporal distribution and alpine behavior of short chain chlorinated paraffins in air at Shergyla Mountain and Lhasa on the Tibetan Plateau of China[J]. Environmental Science & Technology, 2017, 51(19):11 136-11 144.
69 WANG Xiaoping, REN Jiao, GONG Ping, et al. Spatial distribution of the persistent organic pollutants across the Tibetan Plateau and its linkage with the climate systems: a 5-year air monitoring study[J]. Atmospheric Chemistry and Physics, 2016, 16(11):6 901-6 911.
70 GONG Ping, WANG Xiaoping, SHENG Jiujiang, et al. Variations of organochlorine pesticides and polychlorinated biphenyls in atmosphere of the Tibetan Plateau: role of the monsoon system[J]. Atmospheric Environment, 2010, 44(21/22):2 518-2 523.
71 LI J, ZHU T, WANG F, et al. Observation of organochlorine pesticides in the air of the Mt. Everest region[J]. Ecotoxicology and Environmental Safety, 2006, 63(1):33-41.
72 REN Jiao, WANG Xiaoping, WANG Chuanfei, et al. Biomagnification of persistent organic pollutants along a high-altitude aquatic food chain in the Tibetan Plateau: processes and mechanisms[J]. Environmental Pollution, 2017, 220:636-643.
73 GONG Ping, WANG Xiaoping, SHENG Jiujiang, et al. Seasonal variations and sources of atmospheric polycyclic aromatic hydrocarbons and organochlorine compounds in a high-altitude city: evidence from four-year observations[J]. Environmental Pollution, 2018, 233:1 188-1 197.
74 ZHANG Jingyi, WANG Xiaoping, GONG Ping, et al. Seasonal variation and source analysis of persistent organic pollutants in the atmosphere over the western Tibetan Plateau[J]. Environmental Science and Pollution Research, 2018, 25(24):24 052-24 063.
75 POKHREL B, GONG Ping, WANG Xiaoping, et al. Atmospheric organochlorine pesticides and polychlorinated biphenyls in urban areas of Nepal: spatial variation, sources, temporal trends, and long-range transport potential[J]. Atmospheric Chemistry and Physics, 2018, 18(2):1 325-1 336.
76 NASIR J, WANG Xiaoping, XU Baiqing, et al. Selected organochlorine pesticides and polychlorinated biphenyls in urban atmosphere of Pakistan: concentration, spatial variation and sources[J]. Environmental Science & Technology, 2014, 48(5):2 610-2 618.
77 POKHREL B, GONG Ping, WANG Xiaoping, et al. Distribution, sources, and air-soil exchange of OCPs, PCBs and PAHs in urban soils of Nepal[J]. Chemosphere, 2018, 200:532-541.
78 YUAN Guoli, SUN Yong, LI Jun, et al. Polychlorinated biphenyls in surface soils of the Central Tibetan Plateau: altitudinal and chiral signatures[J]. Environmental Pollution, 2015, 196:134-140.
79 YUAN Guoli, WU Lijuan, SUN Yong, et al. Polycyclic aromatic hydrocarbons in soils of the central Tibetan Plateau, China: distribution, sources, transport and contribution in global cycling[J]. Environmental Pollution, 2015, 203:137-144.
80 CASAL P, ZHANG Yifeng, MARTIN J W, et al. Role of snow deposition of perfluoroalkylated substances at Coastal Livingston Island (Maritime Antarctica)[J]. Environmental Science & Technology, 2017, 51(15):8 460-8 470.
81 TANIYASU S, YAMASHITA N, MOON H B, et al. Does wet precipitation represent local and regional atmospheric transportation by perfluorinated alkyl substances?[J]. Environment International, 2013, 55:25-32.
82 CHEN Mengke, WANG Chuanfei, GAO Ke, et al. Perfluoroalkyl substances in precipitation from the Tibetan Plateau during monsoon season: concentrations, source regions and mass fluxes[J]. Chemosphere, 2021:131105. DOI:10.1016/j.chemosphere.2021.131105 .
83 KANG J H, CHOI S D, PARK H, et al. Atmospheric deposition of persistent organic pollutants to the East Rongbuk Glacier in the Himalayas[J]. Science of the Total Environment, 2009, 408(1):57-63.
84 ZHOU Jian, ZHAO Guoqing, LI Min, et al. Three-dimensional spatial distribution of legacy and novel poly/perfluoroalkyl substances in the Tibetan Plateau soil: implications for transport and sources[J]. Environment International, 2022, 158:107007.
85 WANG Xiaoping, XU Baiqing, KANG Shichang, et al. The historical residue trends of DDT, hexachlorocyclohexanes and polycyclic aromatic hydrocarbons in an ice core from Mt. Everest, central Himalayas, China[J]. Atmospheric Environment, 2008, 42(27):6 699-6 709.
86 WANG Xiaoping, HALSALL C, CODLING G, et al. Accumulation of perfluoroalkyl compounds in Tibetan mountain snow: temporal patterns from 1980 to 2010[J]. Environmental Science &Ttechnology, 2014, 48(1):173-181.
87 WANG Xiaoping, YANG Handong, GONG Ping, et al. One century sedimentary records of polycyclic aromatic hydrocarbons, mercury and trace elements in the Qinghai Lake, Tibetan Plateau[J]. Environmental Pollution, 2010, 158(10):3 065-3 070.
88 GONG Ping, WANG Xiaoping, POKHREL B, et al. Trans-Himalayan transport of organochlorine compounds: three-year observations and model-based flux estimation[J]. Environmental Science & Technology, 2019, 53(12):6 773-6 783.
89 WANG Xiaoping, CHEN Mengke, GONG Ping, et al. Perfluorinated alkyl substances in snow as an atmospheric tracer for tracking the interactions between westerly winds and the Indian Monsoon over western China[J]. Environment International, 2019, 124:294-301.
90 YUAN Guoli, HAN Peng, XIE Wei, et al. Altitudinal distribution of Polybrominated Diphenyl Ethers (PBDEs) in the soil along Central Tibetan Plateau, China[J]. Science of the Total Environment, 2012, 433:44-49.
91 YUAN GuoLi, XIE Wei, CHE Xiaochao, et al. The fractional patterns of polybrominated diphenyl ethers in the soil of the central Tibetan Plateau, China: the influence of soil components[J]. Environmental Pollution, 2012, 170:183-189.
92 YUAN Guoli, QIN Jianxun, LI Jun, et al. Persistent organic pollutants in soil near the Changwengluozha glacier of the central Tibetan Plateau, China: their sorption to clays and implication[J]. Science of the Total Environment, 2014, 472:309-315.
93 YUAN Guoli, QIN Jianxun, LANG Xinxin, et al. Factors influencing the accumulation of organochlorine pesticides in the surface soil across the central Tibetan Plateau, China[J]. Environmental Science: Processes & Impacts, 2014, 16(5):1 022-1 028.
94 SUN Yong, YUAN Guoli, LI Jun, et al. Polybrominated diphenyl ethers in surface soils near the Changwengluozha Glacier of central Tibetan Plateau, China[J]. Science of the Total Environment, 2015, 511:399-406.
95 YUAN Guoli, WU Mingzhe, SUN Yong, et al. Concentration and chiral signature of chlordane in soils and sediments of the central Tibetan Plateau, China: transformation in the surficial process[J]. Environmental Pollution, 2015, 206:282-288.
96 LIU Wenjie, CHEN Dazhou, LIU Xiande, et al. Transport of semivolatile organic compounds to the Tibetan Plateau: spatial and temporal variation in air concentrations in mountainous western Sichuan, China[J]. Environmental Science & Technology, 2010, 44(5):1 559-1 565.
97 REN Jiao, WANG Xiaoping, WANG Chuanfei, et al. Atmospheric processes of persistent organic pollutants over a remote lake of the central Tibetan Plateau: implications for regional cycling[J]. Atmospheric Chemistry and Physics, 2016,17(2):1-33.
98 GONG Ping, XU Hong, WANG Chuanfei, et al. Persistent organic pollutant cycling in forests[J]. Nature Reviews Earth & Environment, 2021, 2(3):182-197.
99 MCLACHLAN M S, HORSTMANN M. Forests as filters of airborne organic pollutants: a model[J]. Environmental Science & Technology, 1998, 32(3):413-420.
100 TERZAGHI E, WILD E, ZACCHELLO G, et al. Forest filter effect: role of leaves in capturing/releasing air particulate matter and its associated PAHs[J]. Atmospheric Environment, 2013, 74:378-384.
101 SU Yushan, WANIA F. Does the forest filter effect prevent semivolatile organic compounds from reaching the Arctic?[J]. Environmental Science & Technology, 2005, 39(18):7 185-7 193.
102 WANG Xiaoping, XUE Yonggang, GONG Ping, et al. Organochlorine pesticides and polychlorinated biphenyls in Tibetan forest soil: profile distribution and processes[J]. Environmental Science and Pollution Research, 2014, 21(3):1 897-1 904.
103 MOECKEL C, NIZZETTO L, STRANDBERG B, et al. Air-Boreal forest transfer and processing of polychlorinated biphenyls[J]. Environmental Science & Technology, 2009, 43(14):5 282-5 289.
104 LUO Yadan, YANG Ruiqiang, LI Yingming, et al. Accumulation and fate processes of Organochlorine Pesticides (OCPs) in soil profiles in Mt. Shergyla, Tibetan Plateau: a comparison on different forest types[J]. Chemosphere, 2019, 231:571-578.
105 LUO Yadan, SUN Junya, WANG Pu, et al. Age dependence accumulation of organochlorine pesticides and PAHs in needles with different forest types, southeast Tibetan Plateau[J]. Science of the Total Environment, 2020, 716:137176.
106 WANG Xiaoyan, WANG Chuanfei, GONG Ping, et al. Century-long record of polycyclic aromatic hydrocarbons from tree rings in the southeastern Tibetan Plateau[J]. Journal of Hazardous Materials, 2021, 412:125152.
107 WU Jing, GAO Wei, LIANG Yong, et al. Short-and medium-chain chlorinated paraffins in multi-environmental matrices in the Tibetan Plateau environment of China: a regional scale study[J]. Environment International, 2020, 140:105767.
108 JIN Rong, BU Duo, LIU Guorui, et al. New classes of organic pollutants in the remote continental environment-Chlorinated and brominated polycyclic aromatic hydrocarbons on the Tibetan Plateau[J]. Environment International, 2020, 137:105574.
109 JIN Rong, FU Jianjie, ZHENG Minghui, et al. Polychlorinated Naphthalene Congener Profiles in common vegetation on the Tibetan Plateau as biomonitors of their sources and transportation[J]. Environmental Science & Technology, 2020, 54(4): 2 314-2 322.
110 ZHU Nali, SCHRAMM K W, WANG T, et al. Lichen, moss and soil in resolving the occurrence of semi-volatile organic compounds on the southeastern Tibetan Plateau, China[J]. Science of the Total Environment, 2015, 518:328-336.
111 GONG Ping, WANG Xiaoping. Forest Fires Enhance the Emission and transport of persistent organic pollutants and polycyclic aromatic hydrocarbons from the Central Himalaya to the Tibetan Plateau[J]. Environmental Science & Technology Letters, 2021. DOI:10.1016/j.scitotenv.2021.152453 .
112 GULER G, CAKMAK Y, DAGLI Z, et al. Organochlorine pesticide residues in wheat from Konya region, Turkey[J]. Food and Chemical Toxicology, 2010, 48(5):1 218-1 221.
113 MAHMOOD A, MALIK R N, LI Jun, et al. Human health risk assessment and dietary intake of organochlorine pesticides through air, soil and food crops (wheat and rice) along two tributaries of river Chenab, Pakistan[J]. Food and Chemical Toxicology, 2014, 71:17-25.
114 MEKONEN S, LACHAT C, AMBELU A, et al. Risk of DDT residue in maize consumed by infants as complementary diet in southwest Ethiopia[J]. Science of the Total Environment, 2015, 511:454-460.
115 TAO S, XU F L, WANG X J, et al. Organochlorine pesticides in agricultural soil and vegetables from Tianjin, China[J]. Environmental Science & Technology, 2005, 39(8):2 494-2 499.
116 WANG Chuanfei, WANG Xiaoping, YUAN Xiaohua, et al. Organochlorine pesticides and polychlorinated biphenyls in air, grass and yak butter from Namco in the central Tibetan Plateau[J]. Environmental Pollution, 2015, 201:50-57.
117 PAN Jing, GAI Nan, TANG Hua, et al. Organochlorine pesticides and polychlorinated biphenyls in grass, yak muscle, liver, and milk in Ruoergai high altitude prairie, the eastern edge of Qinghai-Tibet Plateau[J]. Science of the Total Environment, 2014, 491:131-137.
118 LI Huijuan, BU Duo, FU Jianjie, et al. Trophic dilution of short-chain chlorinated paraffins in a plant-plateau pika-eagle food chain from the Tibetan plateau[J]. Environmental Science & Technology, 2019, 53(16):9 472-9 480.
119 YANG Ruiqiang, WANG Yawei, LI An, et al. Organochlorine pesticides and PCBs in fish from lakes of the Tibetan Plateau and the implications[J]. Environmental Pollution, 2010, 158(6):2 310-2 316.
120 SHI Yali, PAN Yuanyuan, YANG Ruiqiang, et al. Occurrence of perfluorinated compounds in fish from Qinghai-Tibetan Plateau[J]. Environment International, 2010, 36(1):46-50.
121 CHEN Mengke, WANG Chuanfei, WANG Xiaoping, et al. Release of perfluoroalkyl substances from melting glacier of the Tibetan Plateau: insights into the impact of global warming on the cycling of emerging pollutants[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(13):7 442-7 456.
122 YANG Ruiqiang, XIE Ting, WANG Pu, et al. Historical trends of PCBs and PBDEs as reconstructed in a lake sediment from southern Tibetan Plateau[J]. Journal of Environmental Sciences, 2020, 98:31-38.
123 YANG Ruiqiang, XIE Ting, YANG Handong, et al. Historical trends of Organochlorine Pesticides (OCPs) recorded in sediments across the Tibetan Plateau[J]. Environmental Geochemistry and Health, 2018, 40(1):303-312.
124 YANG Ruiqiang, ZHOU Ruichen, XIE Ting, et al. Historical record of anthropogenic polycyclic aromatic hydrocarbons in a lake sediment from the southern Tibetan Plateau[J]. Environmental Geochemistry and Health, 2018, 40(5):1 899-1 906.
125 YANG Ruiqiang, XIE Ting, LI An, et al. Sedimentary records of Polycyclic Aromatic Hydrocarbons (PAHs) in remote lakes across the Tibetan Plateau[J]. Environmental Pollution, 2016, 214:1-7.
126 LI Jun, YUAN Guoli, DUAN Xuchuan, et al. Organochlorine pesticides in the sedimentary core of the southern Tibetan Plateau: the missing pieces induced by lateral remobilization[J]. Environmental Pollution, 2018, 233:340-347.
127 SUN Yong, YUAN Guoli, LI Jun, et al. High-resolution sedimentary records of some organochlorine pesticides in Yamzho Yumco Lake of the Tibetan Plateau: concentration and composition[J]. Science of the Total Environment, 2018, 615:469-475.
128 ZHU Tingting, WANG Xiaoping, LIN Hai, et al. Accumulation of pollutants in Proglacial Lake sediments: impacts of glacial meltwater and anthropogenic activities[J]. Environmental Science & Technology, 2020, 54(13):7 901-7 910.
[1] 陈亚宁, 李玉朋, 李稚, 刘永昌, 黄文静, 刘西刚, 冯梅青. 全球气候变化对干旱区影响分析[J]. 地球科学进展, 2022, 37(2): 111-119.
[2] 杨笑影, 曹芳, 章炎麟. 大气低分子烷基胺的测量方法及研究进展[J]. 地球科学进展, 2022, 37(2): 120-134.
[3] 李稚, 李玉朋, 李鸿威, 刘永昌, 王川. 中亚地区干旱变化及其影响分析[J]. 地球科学进展, 2022, 37(1): 37-50.
[4] 杨晓新. 水体稳定同位素在青藏高原大气环流研究中的应用[J]. 地球科学进展, 2022, 37(1): 87-98.
[5] 昝金波, 宁文晓, 杨胜利, 方小敏, 康健, 罗元龙. 表土磁学特征揭示的青藏高原及其周边地区的气候边界[J]. 地球科学进展, 2022, 37(1): 14-25.
[6] 原世伟, 李新, 杜二虎. 多主体建模在水资源管理中的应用:进展与展望[J]. 地球科学进展, 2021, 36(9): 899-910.
[7] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[8] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[9] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[10] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[11] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[12] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[13] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[14] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[15] 王奕佳,刘焱序,宋爽,傅伯杰. 水—粮食—能源—生态系统关联研究进展[J]. 地球科学进展, 2021, 36(7): 684-693.
阅读次数
全文


摘要