地球科学进展 ›› 2022, Vol. 37 ›› Issue (2): 120 -134. doi: 10.11867/j.issn.1001-8166.2022.009

综述与评述 上一篇    下一篇

大气低分子烷基胺的测量方法及研究进展
杨笑影( ), 曹芳, 章炎麟( )   
  1. 南京信息工程大学大气环境中心,江苏 南京 210044
  • 收稿日期:2021-11-12 修回日期:2021-12-21 出版日期:2022-02-10
  • 通讯作者: 章炎麟 E-mail:yxy1995nuist@126.com;zhangyanlin@nuist.edu.cn
  • 基金资助:
    国家自然科学基金项目“典型区域大气中黑碳的来源、演化及其辐射强迫效应”(42192512);“大气气固两相水溶性有机碳的双碳同位素(14C)

Measurement Methods and Research Progress of Atmospheric Low Molecular Alkyl Amines

Xiaoying YANG( ), Fang CAO, Yanlin ZHANG( )   

  1. Yale-NUIST Center on Atmospheric Environment,Nanjing University of Information Science & Technology,Nanjing 210044,China
  • Received:2021-11-12 Revised:2021-12-21 Online:2022-02-10 Published:2022-03-08
  • Contact: Yanlin ZHANG E-mail:yxy1995nuist@126.com;zhangyanlin@nuist.edu.cn
  • About author:YANG Xiaoying (1995-), female, Nanjing City, Jiangsu Province, Master student. Reaearch areas include atmospheric environment. E-mail: yxy1995nuist@126.com
  • Supported by:
    the National Natural Science Foundation of China "Sources, evolution and radiative forcing effects of atmospheric black carbon in typical regions"(42192512);"Source and formation process of particulate and gas-phase water-soluble organic carbon: insight from dual carbon isotopes(14C)

低分子烷基胺是大气中最常见和含量丰富的胺类,具有高水溶性和强碱性,广泛存在于大气气相和颗粒相中。大气低分子烷基胺的气/粒转化对成核、新粒子生长和二次气溶胶生成贡献显著,并影响颗粒物吸湿性,参与导致灰霾的形成。大气低分子烷基胺的测量方法主要有离子色谱法、气相色谱法、高效液相色谱法、化学电离质谱法和单颗粒气溶胶质谱法,各有优势和不足,在线质谱法的应用还较少。近年来,国内外对大气低分子烷基胺的关注度较高,已有研究对城市、郊区和海洋等不同类型地区的气相和颗粒相低分子烷基胺进行了测量,在大气低分子烷基胺的浓度大小、分子组成、时空分布、来源分析和大气行为方面取得了一定的进展。由于采样和测量方法等条件的限制,研究工作缺乏时间的连续性和不同区域类型的空间覆盖率,仍需更多实测数据的补充。由于对大气低分子烷基胺的来源认识不足和对其大气转化机理认识的局限,来源分析和大气行为方面的工作仍有较大的不足,需要在未来进一步研究。

Low molecular alkyl amines are the most common and abundant amines in the atmosphere, with high water solubility and strong alkalinity, and are widely dispersed in the atmosphere in both the gas-phase and particle-phase. The gas/particle conversion of atmospheric low molecular alkyl amines contributes significantly to particle nucleation, growth of new particles, and the formation of secondary aerosols. It also affects the particle hygroscopicity, thus contributing to haze formations. The techniques to measure atmospheric low molecular alkyl amines are mainly Ion Chromatography (IC), Gas Chromatography (GC), High Performance Liquid Chromatography (HPLC), Chemical Ionization Mass Spectrometry (CIMS), and Single Particle Aerosol Mass Spectrometry (SPAMS). Each measurement method has certain advantages and disadvantages, and limited applications in online mass spectrometry. In recent years, more attention has been paid to atmospheric low molecular alkyl amines. Previous research has measured gas-phase and particle-phase amines in different areas including urban, suburban, and marine. Research has progressed in identifying the concentration, composition, temporal & spatial distribution, source analysis, and atmospheric behaviors of atmospheric low molecular alkyl amines. Research is limited by sampling and measurement methods and our understanding of the mechanisms. We also lack information on time continuity and spatial coverage of different regional types. Improved measurement data is required. Despite our understanding of the sources of atmospheric low molecular alkyl amines and the mechanism of their atmospheric conversion, there remain great deficiencies in source analysis and atmospheric behavior. Further research is needed to address these deficiencies. We aim to introduce the various measurement methods for atmospheric low molecular alkyl amines and evaluate their advantages and disadvantages, the research progress, and existing problems. The atmospheric low molecular alkyl amines in China are discussed based on the aspects of concentration composition, temporal & spatial distribution, source analysis, and atmospheric behaviors. The future research focus on atmospheric low molecular alkyl amines is prospected.

中图分类号: 

表1 大气低分子烷基胺测量方法总结
Table 1 Summary of measurement methods for atmospheric low molecular alkyl amines
表2 不同地区气相胺浓度汇总
Table 2 Concentrations of gas-phase amines in different regions
地区 样品信息 气相胺浓度/pptv 参考文献
C1 C2 C3 C4 C5 C6
亚洲 南京(工业区,2012年8~9月,夏,HR-ToF-CIMS) <18.9 <29.9 <9.3 - - - 26
上海(城市,2015年7~8月,夏,HR-ToF-CIMS) 15.7 40.0 1.1 15.4 3.4 3.5 27
南岭(森林背景站,2016年10月,秋,GC-MS) 56.1 45.5(DMA) - 9.2(DEA) - - 25
南岭(森林背景站,2017年5~6月,夏,GC-MS) 51.9 111.3(DMA) - 24.1(DEA) - -
Zonguldak(土耳其沿海城市,2006—2007年,冬, GC-MS,单位:ng/m3 2.8

3.4(DMA)

2.2(EA)

2.9(PA)

2.9(DEA)

3.0(BA)

- - 37
Zonguldak(土耳其沿海城市,2006—2007年,夏, GC-MS,单位:ng/m3 1.8

1.8(DMA)

1.7(EA)

1.8(PA)

1.6(DEA)

1.9(BA)

- -
欧洲 Hyytiälä(芬兰北方森林,2015年,春至冬,MARGA-MS) <8.8

<4.1(DMA)

<8.2(EA)

<6.1(TMA) - - - 34
Hyytiälä(芬兰北方森林,2011年5~10月,夏至秋, LC-MS) - <157.0 <102.0 <15.5 - - 49
Hyytiälä(芬兰北方森林,2011年5~8月,夏,LC-MS) - 39.1 10.2

2.7(BA)

8.1(DEA)

- 1.6(TEA) 43
Helsinki(芬兰城市背景站,2011年5~8月,夏,LC-MS) - 23.6 8.4

0.3(BA)

0.3(DEA)

- 0.1(TEA)
Vielbrunn(德国农业区,NPF,CIMS) <5.0 <5.0 <5.0 <5.0 - <5.0 58
北美 Egbert(加拿大农业区,2010年10~11月,冬,AIM-IC) - 6.5(DMA) - - - - 33
Alabama(美国森林,2013年6~7月,夏,CIMS) <1.2 <4.8 1.0~10.0 <23.1 <17.3 <13.0 52
Kent(美国郊区,2013月8~9月,夏,CIMS) 1.0~4.0 <4.4 5.0~10.0 10.0~50.0 10.0~100.0 <13.1
Kent(美国郊区,2011年11月,冬,CIMS) <18.0 8.0 16.0 <41.0 - <8.0 45
Atlanta(美国城市,2009年7~8月,夏,AmPMS) <0.2 0.5~2.0 4.0~15.0 约5.0 4.0~5.0 3.0~25.0 44
Lewes(美国沿海,2012年7~8月,夏,AmPMS) 5.0 28.0 6.0 3.0 1.0 2.0 51
Lamont(美国内陆,2013年4~5月,春,AmPMS) 4.0 14.0 35.0 150.0 98.0 20.0
海洋 热带大西洋(2011年11月和2013年11月,IC,0.01 mol/L草酸酸化滤膜采集,单位:ng/m3 0.8 4.5(DMA) - - - - 59
图1 不同地区颗粒相胺浓度汇总
括号内为样品信息,包括代表类型、颗粒物粒径、采样时间、测量方法和参考文献
Fig. 1 Concentrations of particle-phase amines in different regions
The parentheses contain sampling information including representative type, particle size, sampling time, measurement method and the reference
图2 低分子烷基胺的大气行为
Fig. 2 Atmospheric behaviors of low molecular alkyl amines
1 GE X, WEXLER A, CLEGG S. Atmospheric amines-part I: a review[J]. Atmospheric Environment,2011,45:524-546.
2 GE X, WEXLER A, CLEGG S. Atmospheric amines-part II: thermodynamic properties and gas/particle partitioning[J]. Atmospheric Environment,2011,45:561-577.
3 LEE D, WEXLER A. Atmospheric amines-part III: photochemistry and toxicity[J]. Atmospheric Environment,2013,71:95-103.
4 ATKINSON R. Atmospheric chemistry of VOCs and NO x [J]. Atmospheric Environment,2013,34:2 063-2 101.
5 GREIM H D, BURY D, KLIMISCH H,et al. Toxicity of aliphatic amines: structure-activity relationship[J]. Chemosphere,1998,36:271-295.
6 BUNKAN A, HETZLER J, MIKOVINY T,et al. The reactions of N-methylformamide and N,N-dimethylformamide with OH and their photo-oxidation under atmospheric conditions: experimental and theoretical studies[J]. Physical Chemistry Chemical Physics,2015,17(10):7 046-7 059.
7 WELLER C, HERRMANN H. Kinetics of nitrosamine and amine reactions with NO3 radical and ozone related to aqueous particle and cloud droplet chemistry[J]. Atmospheric Research,2014,151:64-71.
8 TAO Y, YE X, JIANG S,et al. Effects of amines on particle growth observed in new particle formation events[J]. Journal of Geophysical Research: Atmospheres,2016,121(1):324-335.
9 LENG C B, KISH J, ROBERTS J,et al. Temperature dependent Henry's law constants of atmospheric amines[J]. The Journal of Physical Chemistry A,2015,119:8 884-8 891.
10 QIU C, ZHANG R. Multiphase chemistry of atmospheric amines[J]. Physical Chemistry Chemical Physics,2013,15:5 738-5 752.
11 ATKINSON R, PERRY R, PITTS J R. Rate constants for the reaction of the OH radical with CH3SH and CH3NH2 over the temperature range 299-426 °K[J]. Chemical Physics,1977,66(4):1 578-1 581.
12 ATKINSON R, PERRY R, PITTS Jr J R. Rate constants for the reactions of the OH radical with (CH32NH, (CH33N, and C2H5NH2 over the temperature range 298-426 °K[J]. Chemical Physics,1978,68(4):1 850-1 853.
13 WANG L,LAL V, KHALIZOV A,et al. Heterogeneous chemistry of Alkylamines with sulfuric acid: implications for atmospheric formation of Alkylaminium Sulfates[J]. Environmental Science & Technology,2010,44:2 461-2 465.
14 SELLEGRI K, UMANN B, HANKE M,et al. Deployment of a ground-based CIMS apparatus for the detection of organic gases in the boreal forest during the QUEST campaign[J]. Atmospheric Chemistry and Physics,2005,5:357-372.
15 BARSANTI K, PANKOW J. Thermodynamics of the formation of atmospheric organic particulate matter by accretion reactions—part 3: carboxylic and dicarboxylic acids[J]. Atmospheric Environment,2006,40:6 676-6 686.
16 MURPHY S, SOROOSHIAN A, KROLL J,et al. Secondary aerosol formation from atmospheric reactions of aliphatic amines[J]. Atmospheric Chemistry and Physics Discussions,2007,7:289-349.
17 TANG X, PRICE D, PRASKE E,et al. NO3 radical, OH radical and O3-initiated secondary aerosol formation from aliphatic amines[J]. Atmospheric Environment,2013,72:105-112.
18 LEE S, GORDON H, YU H,et al. New particle formation in the atmosphere: from molecular clusters to global climate[J]. Journal of Geophysical Research: Atmospheres,2019. DOI:10.1029/2018JD029356 .
19 YAO L, GARMASH O, BIANCHI F,et al. Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity[J]. Science,2018,361:278-281.
20 DUNNE E, GORDON H, KÜRTEN A,et al. Global atmospheric particle formation from CERN CLOUD measurements[J]. Science,2016. DOI:10.1126/science.aaf2649 .
21 BERGMAN T, LAAKSONEN A, KORHONEN H,et al. Geographical and diurnal features of amine-enhanced boundary layer nucleation[J]. Journal of Geophysical Research: Atmospheres,2015, 120(8):9 606-9 624.
22 ALMEIDA J, SCHOBESBERGER S, KüRTEN A,et al. Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere[J]. Nature,2013,502:359-363.
23 QIU C, WANG L,LAL V,et al. Heterogeneous reactions of alkylamines with ammonium sulfate and ammonium bisulfate[J]. Environmental Science & Technology,2011,45:4 748-4 755.
24 BZDEK B, RIDGE D, JOHNSTON M. Amine exchange into ammonium bisulfate and ammonium nitrate nuclei[J]. Atmospheric Chemistry and Physics Discussions,2010,10:45-68.
25 LIU F, BI X, ZHANG G,et al. Gas-to-particle partitioning of atmospheric amines observed at a mountain site in southern China[J]. Atmospheric Environment,2018,195:1-11.
26 ZHENG J, MA Y, CHEN M,et al. Measurement of atmospheric amines and ammonia using the high resolution time-of-flight chemical ionization mass spectrometry[J]. Atmospheric Environment,2015,102:249-259.
27 YAO L, WANG M Y, WANG X K,et al. Detection of atmospheric gaseous amines and amides by a high resolution time-of-flight chemical ionization mass spectrometer with protonated ethanol reagent ions[J]. Atmospheric Chemistry and Physics Discussions,2016,16:14 527-14 543.
28 BERNDT T, SIPILÄ M, STRATMANN F,et al. Enhancement of atmospheric H2SO4/H2O nucleation: organic oxidation products versus amines[J]. Atmospheric Chemistry and Physics,2014,14:751-764.
29 YU H, MCGRAW R, LEE S H. Effects of amines on formation of sub-3 nm particles and their subsequent growth[J]. Geophysical Research Letters,2012,39:L02807.
30 PLACE B, QUILTY A, LORENZO R,et al. Quantitation of 11 alkyl amines in atmospheric samples: separating structural isomers by ion chromatography[J]. Atmospheric Measurement Techniques,2017,10:1 061-1 078.
31 ZHOU S, LIN J, QIN X,et al. Determination of atmospheric alkylamines by ion chromatography using 18-crown-6 as mobile phase additive[J]. Journal of Chromatography A,2018,1 563:154-161.
32 FENG H, YE X, LIU Y,et al. Simultaneous determination of nine atmospheric amines and six inorganic ions by non-suppressed ion chromatography using acetonitrile and 18-crown-6 as eluent additive[J]. Journal of Chromatography A,2020,1 624: 461234.
33 VANDENBOER T, MARKOVIC M, PETROFF A,et al. Ion chromatographic separation and quantitation of alkyl methylamines and ethylamines in atmospheric gas and particulate matter using preconcentration and suppressed conductivity detection[J]. Journal of Chromatography A,2012,1 252:74-83.
34 HEMMILÄ M, HELLÉN H, VIRKKULA A,et al. Amines in boreal forest air at SMEAR II station in Finland[J]. Atmospheric Chemistry and Physics,2018,18:6 367-6 380.
35 HUANG R J, LI W B, WANG Y R,et al. Determination of alkylamines in atmospheric aerosol particles: a comparison of gas chromatography-mass spectrometry and ion chromatography approaches[J]. Atmospheric Measurement Techniques,2014,7:2 027-2 035.
36 XU Guoliang, XU Hui. Determine volatile organic amine in air by gas chromatography[J]. Chemical Production and Technology,2011,18(4):53-54.
徐国良,徐辉. 气相色谱法测定环境空气中的挥发性有机胺[J]. 化工生产与技术,2011,18(4):53-54.
37 AKYÜZ M. Simultaneous determination of aliphatic and aromatic amines in ambient air and airborne particulate matters by gas chromatography-mass spectrometry[J]. Atmospheric Environment,2008,42:3 809-3 819.
38 LIU F, BI X, REN Z,et al. Determination of amines associated with particles by gas chromatography-mass spectrometry[J]. Chinese Journal of Analytical Chemistry,2017,45(4):477-482.
39 IQBAL M, SZULEJKO J, KIM K H. Determination of methylamine, dimethylamine, and trimethylamine in air by high-performance liquid chromatography with derivatization using 9-fluorenylmethylchloroformate[J]. Analytical Methods,2014,6: 5 697-5 707.
40 HUANG X, DENG C, ZHUANG G,et al. Quantitative analysis of aliphatic amines in urban aerosols based on online derivatization and high performance liquid chromatography[J]. Environmental Science: Processes & Impacts,2016,18(7):796-801.
41 SHEN W, REN L, ZHAO Y,et al. C1-C2 alkyl aminiums in urban aerosols: insights from ambient and fuel combustion emission measurements in the Yangtze River Delta region of China[J]. Environmental Pollution,2017, 230:12-21.
42 MÜLLER C, IINUMA Y, KARSTENSEN J,et al. Seasonal variation of aliphatic amines in marine sub-micrometer particles at the Cape Verde Islands[J]. Atmospheric Chemistry and Physics,2009,9:9 587-9 597.
43 HELLÉN H, KIELOAHO A J, HAKOLA H. Gas-phase alkyl amines in urban air; comparison with a boreal forest site and importance for local atmospheric chemistry[J]. Atmospheric Environment,2014,94:192-197.
44 HANSON D, MCMURRY P, JIANG J,et al. Ambient pressure proton transfer mass spectrometry: detection of amines and ammonia[J]. Environmental Science & Technology,2011,45: 8 881-8 888.
45 YU H, LEE S. Chemical ionisation mass spectrometry for the measurement of atmospheric amines[J]. Environmental Chemistry,2012,9(3):190-201.
46 CHEN Y, TIAN M, SHI G,et al. Characterization of urban amine-containing particles in southwestern China: seasonal variation, source, and processing[J]. Atmospheric Chemistry and Physics,2019,19:3 245-3 255.
47 LIU F, BI X, ZHANG G,et al. Concentration, size distribution and dry deposition of amines in atmospheric particles of urban Guangzhou, China[J]. Atmospheric Environment,2017,171:279-288.
48 HO K F, HO S S H, HUANG R J,et al. Characteristics of water-soluble organic nitrogen in fine particulate matter in the continental area of China[J]. Atmospheric Environment,2015,106:252-261.
49 A-J KIELOAHO, HELLéN H, HAKOLA H,et al. Gas-phase alkylamines in a boreal scots pine forest air[J]. Atmospheric Environment,2013,80:369-377.
50 RAMPFL M, MAIR S, MAYER F,et al. Determination of primary, secondary, and tertiary amines in air by direct or diffusion sampling followed by determination with liquid chromatography and tandem mass spectrometry[J]. Environmental Science & Technology,2008,42:5 217-5 222.
51 FRESHOUR N, CARLSON K, MELKA Y,et al. Amine permeation sources characterized with acid neutralization and sensitivities of an amine mass spectrometer[J]. Atmospheric Measurement Techniques,2014,7:3 611-3 621.
52 YOU Y, KANAWADE V, DE GOUW J,et al. Atmospheric amines and ammonia measured with a Chemical Ionization Mass Spectrometer (CIMS)[J]. Atmospheric Chemistry and Physics,2014,14:12 181-12 194.
53 LIN Q, ZHANG G, LONG P,et al. In situ chemical composition measurement of individual cloud residue particles at a mountain site, southern China[J]. Atmospheric Chemistry and Physics,2017,17:8 473-8 488.
54 PRATT K, HATCH L, PRATHER K. Seasonal volatility dependence of ambient particle phase amines[J]. Environmental Science & Technology,2009,43:5 276-5 281.
55 SODEMAN D, TONER S, PRATHER K. Determination of single particle mass spectral signatures from light-duty vehicle emissions[J]. Environmental Science & Technology,2005,39: 4 569-4 580.
56 ZHANG Junke, LUO Bin, ZHANG Wei,et al. Single-particle characterization of amine-containing particles during summer and winter in Chengdu[J]. China Environmental Science,2019,39(8):3 152-3 160.
张军科,罗彬,张巍. 成都市夏冬季大气胺颗粒物的单颗粒质谱研究[J]. 中国环境科学,2019,39(8):3 152-3 160.
57 ANGELINO S, SUESS D, PRATHER K. Formation of aerosol particles from reactions of secondary and tertiary alkylamines: characterization by aerosol time-of-flight mass spectrometry[J]. Environmental Science & Technology,2001,35: 3 130-3 138.
58 KÜRTEN A, BERGEN A, HEINRITZI M,et al. Observation of new particle formation and measurement of sulfuric acid, ammonia, amines and highly oxidized organic molecules at a rural site in central Germany[J]. Atmospheric Chemistry and Physics,2016,16:12 793-12 813.
59 PINXTEREN M VAN, FOMBA K, PINXTEREN D,et al. Aliphatic amines at the cape verde atmospheric observatory: abundance, origins and sea-air fluxes[J]. Atmospheric Environment,2019,203:183-195.
60 HO K F, HO S S H, HUANG R J,et al. Chemical composition and bioreactivity of PM2.5 during 2013 haze events in China[J]. Atmospheric Environment,2015,126:162-170.
61 CHENG G, HU Y, SUN M,et al. Characteristics and potential source areas of aliphatic amines in PM2.5 in Yangzhou, China[J]. Atmospheric Pollution Research,2020,11(2):296-302.
62 ZHOU S, LI H, YANG T,et al. Characteristics and sources of aerosol aminiums over the eastern coast of China: insights from the integrated observations in a coastal city, adjacent island and surrounding marginal seas[J]. Atmospheric Chemistry and Physics,2019,19:10 447-10 467.
63 LI Xujie, SHI Xiaowen, MA Yan,et al. Characterization, seasonal variation, and source apportionments of particulate amines (PM2.5) in the northern suburb of Nanjing[J]. Environmental Science,2020,41(2): 537-553.
李栩婕,施晓雯,马嫣,等. 南京北郊四季PM2.5中有机胺的污染特征及来源解析[J]. 环境科学,2020,41(2):537-553.
64 XIE H, FENG L, HU Q,et al. Concentration and size distribution of water-extracted dimethylaminium and trimethylaminium in atmospheric particles during nine campaigns—implications for sources, phase states and formation pathways[J]. The Science of the Total Environment,2018,631/632:130-141.
65 PERRONE M, ZHOU J, MALANDRINO M,et al. PM chemical composition and oxidative potential of the soluble fraction of particles at two sites in the urban area of Milan, Northern Italy[J]. Atmospheric Environment,2016,128:104-113.
66 YOUN J, CROSBIE E, MAUDLIN L,et al. Dimethylamine as a major alkyl amine species in particles and cloud water: observations in semi-arid and coastal regions[J]. Atmospheric Environment,2015,122:250-258.
67 CALDERóN S, POOR N, CAMPBELL S. Estimation of the particle and gas scavenging contributions to wet deposition of organic nitrogen[J]. Atmospheric Environment,2007,41:4 281-4 290.
68 SOROOSHIAN A, PADRO L, Nenes A,et al. On the link between ocean biota emissions, aerosol, and maritime clouds: airborne, ground, and satellite measurements off the coast of California [J]. Global Biogeochem Cycles,2009,23:GB4007.
69 YANG H, XU J, WU W,et al. Chemical characterization of water-soluble organic aerosols at Jeju Island collected during ACE-Asia[J]. Environmental Chemistry,2004,1:13-17.
70 YU P, HU Q, LI K,et al. Characteristics of dimethylaminium and trimethylaminium in atmospheric particles ranging from supermicron to nanometer sizes over eutrophic marginal seas of China and oligotrophic open oceans[J]. Science of the Total Environment,2016,572:813-824.
71 VIOLAKI K, MIHALOPOULOS N. Water-Soluble Organic Nitrogen (WSON) in size-segregated atmospheric particles over the Eastern Mediterranean[J]. Atmospheric Environment,2010,44(35):4 339-4 345.
72 FACCHINI M, DECESARI S, RINALDI M,et al. Important source of marine secondary organic aerosol from biogenic amines[J]. Environmental Science & Technology,2009,42: 9 116-9 121.
73 GIBB S, MANTOURA R, LISS P. Ocean-atmosphere exchange and atmospheric speciation of ammonia and methylamines in the region of the NW Arabian Sea[J]. Global Biogeochemical Cycles,1999,13:161-178.
74 KALLINGER G, NIESSNER R. Laboratory investigation of annular denuders as sampling system for the determination of aliphatic primary and secondary amines in stack gas[J]. Mikrochimica Acta,1999,130:309-316.
75 FUJII T, KITAI T. Determination of trace levels of trimethylamine in air by gas chromatography/surface ionization organic mass spectrometry[J]. Analytical Chemistry,1987,59:379-382.
76 KUWATA K, AKIYAMA E, YAMAZAKI Y,et al. Trace determination of low molecular weight aliphatic amines in air by gas chromatography[J]. Analytical Chemistry,1983,55: 2 199-2 201.
77 HUTCHINSON G, MOSIER A, ANDRE C. Ammonia and amine emissions from a large cattle feedlot1[J]. Journal of Environmental Quality,1982,11:288-292.
78 TSAI C J, CHEN M L, YE A D,et al. The relationship of odor concentration and the critical components emitted from food waste composting plants[J]. Atmospheric Environment,2008,42:8 246-8 251.
79 MAO J, YU F, ZHANG Y,et al. High-resolution modeling of gaseous methylamines over a polluted region in China: source-dependent emissions and implications of spatial variations[J]. Atmospheric Chemistry and Physics,2018,18:7 933-7 950.
80 REHBEIN P, JEONG C H, MCGUIRE M,et al. Cloud and fog processing enhanced gas-to-particle partitioning of trimethylamine[J]. Environmental Science & Technology,2011,45: 4 346-4 352.
81 YIN S, GE M F, WANG W,et al. Uptake of gas-phase alkylamines by sulfuric acid[J]. Chinese Science Bulletin,2011,56:1 241-1 245.
82 LLOYD J, HEATON K, JOHNSTON M. Reactive uptake of trimethylamine into ammonium nitrate particles[J]. The Journal of Physical Chemistry A,2009,113:4 840-4 843.
83 LOUKONEN V, KURTÉN T, ORTEGA I,et al. Enhancing effect of dimethylamine in sulfuric acid nucleation in the presence of water—a computational study[J]. Atmospheric Chemistry and Physics,2010,10:4 961-4 974.
84 SHEN J, XIE H B,ELM J,et al. Methanesulfonic acid-driven new particle formation enhanced by monoethanolamine: a computational study[J]. Environmental Science & Technology,2019. DOI:10.1021/acs.est.9b05306 .
85 CHEN H, FINLAYSON-PITTS B. New particle formation from methanesulfonic acid and amines/ammonia as a function of temperature[J]. Environmental Science & Technology,2016. DOI:10.1021/acs.est.6b04173 .
86 WANG L, KHALIZOV A, ZHENG J,et al. Atmospheric nanoparticles formed from heterogeneous reactions of organics[J]. Nature Geoscience, 2010, 3: 238-242.
87 PRICE D, KACARAB M, COCKER D,et al. Effects of temperature on the formation of secondary organic aerosol from amine precursors[J]. Aerosol Science and Technology,2016,50(11):1 216-1 226.
88 PRICE D, CLARK C, TANG X,et al. Proposed chemical mechanisms leading to secondary organic aerosol in the reactions of aliphatic amines with hydroxyl and nitrate radicals[J]. Atmospheric Environment,2014,96:135-144.
[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[3] 张翔, 陈能成, 胡楚丽, 彭小婷. 1983—2015年我国农业区域三类骤旱时空分布特征分析[J]. 地球科学进展, 2018, 33(10): 1048-1057.
[4] 马其琦, 柯长青. 江苏近海有色可溶有机物时空分布特征[J]. 地球科学进展, 2017, 32(5): 524-534.
[5] 张朝林, 宋长青. “中国地区整层大气甲烷柱总量及其垂直分布特征研究”研究成果介绍[J]. 地球科学进展, 2013, 28(11): 1285-1286.
[6] 宫响,史洁,高会旺. 海洋次表层叶绿素最大值的特征因子及其影响因素[J]. 地球科学进展, 2012, 27(5): 539-548.
[7] 张佩芳,许建初. 云南境内澜沧江流域土地利用时空变化特征及动因分析[J]. 地球科学进展, 2003, 18(6): 947-953.
阅读次数
全文


摘要