地球科学进展 ›› 2021, Vol. 36 ›› Issue (9): 962 -979. doi: 10.11867/j.issn.1001-8166.2021.081

研究论文 上一篇    下一篇

青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究
兰爱玉 1, 2( ),林战举 1( ),范星文 1, 2,姚苗苗 1, 2   
  1. 1.冻土工程国家重点实验室 中国科学院西北生态环境资源研究院,甘肃 兰州 730000
    2.中国科学院大学,北京 100049
  • 收稿日期:2021-01-25 修回日期:2021-07-10 出版日期:2021-09-10
  • 通讯作者: 林战举 E-mail:lanaiyu@nieer.ac.cn;zhanjulin@lzb.ac.cn
  • 基金资助:
    中国科学院战略性先导科技专项(A类)(XDA19070504);国家自然科学基金面上项目“高海拔多年冻土区局地坡向效应及水热差异定量化研究”(41971089)

Differences of Surface Energy and Shallow Soil Temperature and Humidity at Sunny and Shady Slopes in Permafrost Region Beiluhe Basin Qinghai-Tibet Plateau

Aiyu LAN 1, 2( ),Zhanju LIN 1( ),Xingwen FAN 1, 2,Miaomiao YAO 1, 2   

  1. 1.State Key Laboratory of Frozen Soil Engineering,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China
    2.University of Chinese Academy of Sciences,Beijing 100049,China
  • Received:2021-01-25 Revised:2021-07-10 Online:2021-09-10 Published:2021-10-15
  • Contact: Zhanju LIN E-mail:lanaiyu@nieer.ac.cn;zhanjulin@lzb.ac.cn
  • About author:LAN Aiyu (1995-), Fuan City, Fujian Province, Master student. Research areas include cold region environment and engineering. E-mail: lanaiyu@nieer.ac.cn
  • Supported by:
    the Sub Project of Strategic Leading Science and Technology Project (Class A) of Chinese Academy of Sciences "Three major project decision services"(XDA19070504);The National Natural Science Foundation of China "Quantitative study on local slope aspect effect and water heat difference in high altitude permafrost region"(41971089)

青藏高原海拔高,太阳辐射强,坡向效应显著。其中阴阳坡效应不仅导致多年冻土空间分布格局的差异性,也严重影响了冻土路基工程稳定性。目前虽有大量关于阴阳坡热效应的研究,但定量化和多因素耦合作用的研究,特别是场地内多次重复测量的定量评估研究仍不多见。通过对青藏高原多年冻土区北麓河盆地两个具有相反坡向研究场近4年(2016年9月至2020年5月)近地表温湿度、辐射和风速等野外多重观测资料的分析,研究了高海拔多年冻土区阴阳坡效应对近地表水热及能量平衡的影响。结果表明:在坡向的长期影响下,阴阳坡下垫面性质(辐射、温湿度和土壤质地等)存在较大的差异。其中,阳坡土质相对粗糙,不利于水分的保持,阴坡反之。0.05 m深度阳坡(朝南坡向)的日冻融循环次数明显高于阴坡(朝北坡向)。2016—2019年阳坡和阴坡的日冻融循环总次数分别为368和109次,差异非常明显。阳坡各深度土壤温度均显著大于阴坡,温差约1.4 ℃。浅层地温对地表热量变化的响应速率较快,但随深度的增加阴坡地温的响应速率逐渐滞后于阳坡,且这一现象在融化阶段更为显著。融化阶段,阳坡水分的变化速率较快,随深度的变幅较大,但土壤含水量却明显低于阴坡。地表性质差异如温湿度、反照率和风速等控制着地表能量的交换过程,致使阳坡土壤热通量和短波辐射均大于阴坡。研究对深入理解高海拔、坡地多年冻土区气候—冻土关系及多年冻土模拟边界条件优化具有重要意义。

The Qinghai-Tibet Plateau (QTP) has a high altitude and strong solar radiation so that the resulting slope effect is significant. The slope effect not only leads to the heterogenous spatial distribution of permafrost, but seriously affects the stability of permafrost subgrade as well. Although there are many reports on the thermal effects between shady and sunny slopes, the quantitative, multi-factor coupled effect studies are still rare, especially in quantitative evaluation with multiple repeated measurements on QTP. Based on the analysis of near surface temperature, humidity, radiation and wind speed in the past four years (2016.09-2020.05) at two sloping sites with opposing aspect in the Beiluhe Basin, the influence of shady-sunny slope effect on near surface water, heat and energy balance were studied in detail. The results show that the underlying surface properties (e.g., radiation, temperature and humidity, soil texture, etc.) on shady and sunny slopes have great differences under the long-term influence of slope aspect. The soil quality on sunny slope is relatively rough, and is not conducive to the maintenance of water, while shady slope is just the opposite. The daily freeze-thaw cycles on sunny slope (south facing slope) at 0.05 m depth were significantly higher than those at shady slope (north facing slope). In 2016 to 2019, the numbers of daily freeze-thaw cycles on sunny and shady slopes were 368 and 109, respectively, and the difference is significant. The soil temperatures at all depth on the sunny slope was significantly higher than those on the shady slope, reaching a temperature difference of about 1.4 ℃. The response of shallow ground temperature to surface heat variation is rapid. However the response rate of shady slope gradually lags behind that of sunny slope with the increase of depth, and this phenomenon is more significant in the warm season. In the thawing stage, the change rate of soil moisture on sunny slope was faster, and the change amplitude was larger with depth, but the soil moisture was significantly lower than that on the shady slope. The differences of surface properties (e.g., surface temperature, humidity, albedo and wind speed) control the exchange process of surface energy, with the result that the soil heat flux and short wave radiation on sunny slope are higher than that on shady slope. This study is of great significance for further understanding the relationship between climate and permafrost in high-altitude, sloping permafrost regions and optimizing the boundary conditions of permafrost simulation.

中图分类号: 

图1 青藏高原北麓河研究区(据参考文献[ 6 ]修改)
Fig. 1 Study area of the Beiluhe River on the Qinghai-Tibetan Plateau modified after reference 6 ])
图2 北麓河阴坡和阳坡监测场地
(a) 阳坡场地俯视图;(b) 阴坡场地俯视图
Fig. 2 Monitoring sites for shady and sunny slopes of the Beiluhe Basin
(a) Top view of sunny slope site; (b) Top view of shady slope site
图3 北麓河阴阳坡土壤质地
(a) 阳坡土壤剖面;(b)阴坡土壤剖面
Fig. 3 Soil texture of shady and sunny slopes of the Beiluhe Basin
(a) Soil profile of sunny slope; (b) Soil profile of shady slope
图4 北麓河阴阳坡月平均气温及风速
Fig. 4 Monthly mean air temperature and wind speed on shady and sunny slopes of the Beiluhe Basin
图5 北麓河阴阳坡0.05 m深度土壤温度状况
Fig. 5 Soil temperature at 0.05 m depth on shady and sunny slopes of the Beiluhe Basin
图6 北麓河阴坡和阳坡各深度日平均地温动态变化特征
Fig. 6 Dynamic variation characteristics of daily mean ground temperature at different depths on shady and sunny slopes of the Beiluhe Basin
表1 北麓河阴坡和阳坡近地表各年温度变化特征
Table 1 Annual variation characteristics of surface temperature on shady and sunny slopes of the Beiluhe Basin
图7 北麓河阴阳坡各层土壤含水量变化曲线
Fig. 7 Variation curve of soil water content unfrozen water in different layers on shady and sunny slopes of the Beiluhe Basin
图8 北麓河阴坡和阳坡暖季土壤含水量对比分析
Fig. 8 Comparative analysis of soil moisture content between shady and sunny slopes in warm season of the Beiluhe Basin
图9 北麓河阴阳坡辐射四分量动态变化特征
Fig. 9 Dynamic characteristics of four component radiation on shady and sunny slopes of the Beiluhe Basin
表2 20162020年北麓河阴阳坡月平均及年平均辐射量 ( W/m 2)
Table 2 Monthly and annual average radiation on shady and sunny slopes of the Beiluhe Basin from 2016 to 2020
表3 20162019年北麓河阴阳坡年平均辐射量 ( W/m 2)
Table 3 Annual average radiation of shady and sunny slopes of the Beiluhe Basin from 2016 to 2019
图10 北麓河阴阳坡0.12.5 m深度9个监测点4年日平均地温箱式分布图
Fig. 10 Box type distribution map of daily mean ground temperature at nine monitoring points at the depth of 0.1 and 2.5 m on shady and sunny slopes in four years of the Beiluhe Basin
图11 北麓河阴阳坡地面长波辐射与地表温度(0.1 m深度)的关系
Fig. 11 Relationship between surface long wave radiation and surface temperature 0.1 m depth on shady and sunny slopes of the Beiluhe Basin
图12 北麓河阴阳坡土壤热通量变化
Fig. 12 Variation of soil heat flux on shady and sunny slopes of the Beiluhe Basin
图13 北麓河冷暖季阴坡和阳坡土壤热通量日变化
(a) 冷季;(b) 暖季
Fig. 13 Diurnal variation of soil heat flux on shady and sunny slopes in cold and warm seasons of the Beiluhe Basin
(a) Cold season; (b) Warm season
1 HUANG Fangfang, MA Weiqiang, LI Maoshan, et al. Analysis on responses of land surface temperature on the northern Tibetan Plateau to climate change [J]. Plateau Meteorology, 2016, 35(1): 55-63.
黄芳芳, 马伟强, 李茂善, 等. 藏北高原地表温度对气候变化响应的初步分析[J]. 高原气象, 2016, 35(1): 55-63.
2 ZHOU Youwu, GUO Dongxin, QIU Guoqing, et al. Geocryology in China [M]. Beijing: Science Press, 2000.
周幼吾, 郭东信, 邱国庆, 等. 中国冻土[M]. 北京: 科技出版社, 2000.
3 CHANG Xiaoli, JIN Huijun, WANG Yongping, et al. Influences of vegetation on permafrost: a review[J]. Acta Ecologica Sinica, 2012, 32(24): 7 981-7 990.
常晓丽, 金会军, 王永平, 等. 植被对多年冻土的影响研究进展[J]. 生态学报, 2012, 32(24): 7 981-7 990.
4 HE Ruixia, JIN Huijun, Lanzhi Lü, et al. Recent changes of permafrost and cold regions environments in the northern part of northeastern China [J]. Journal of Glaciology and Geocryology, 2009, 31(3): 525-531.
何瑞霞, 金会军, 吕兰芝, 等. 东北北部冻土退化与寒区生态环境变化[J]. 冰川冻土, 2009, 31(3): 525-531.
5 XU Xiaoming, WU Qingbai, ZHANG Zhongqiong. Responses of active layer thickness on the Qinghai-Tibet Plateau to climate change [J]. Journal of Glaciology and Geocryology, 2017, 39(1): 1-8.
徐晓明, 吴青柏, 张中琼. 青藏高原多年冻土活动层厚度对气候变化的响应[J]. 冰川冻土, 2017, 39(1): 1-8.
6 LIN Zhanju, GAO Zeyong, NIU Fujun, et al. High spatial density ground thermal measurements in a warming permafrost region, Beiluhe Basin, Qinghai-Tibet Plateau[J]. Geomorphology, 2019, 340: 1-14.
7 ZHOU Youwu, GUO Dongxin. Principal characteristics of permafrost in China[J]. Journal of Glaciology and Geocryology, 1982, 4(1): 1-19, 95-96.
周幼吾, 郭东信. 我国多年冻土的主要特征[J]. 冰川冻土, 1982, 4(1): 1-19, 95-96.
8 WANG Qingfeng, JIN Huijun, ZHANG Tingjun, et al. Active layer seasonal freeze-thaw processes and influencing factors in the alpine permafrost regions in the upper reaches of the Heihe River in Qilian Mountains[J]. Chinese Science Bulletin, 2016, 61(24): 2 742-2 756.
王庆锋, 金会军, 张廷军, 等. 祁连山区黑河上游高山多年冻土区活动层季节冻融过程及其影响因素[J]. 科学通报, 2016, 61(24): 2 742-2 756.
9 LUO Jing, LIN Zhanjun, YIN Guoan, et al. The ground thermal regime and permafrost warming at tow upland, sloping, and undisturbed sites, Kunlun Mountain, Qinghai-Tibet Plateau[J]. Cold Regions Science and Technology, 2019, 167. DOI: 10.1016/j.coldregions.2019.102862.
doi: 10.1016/j.coldregions.2019.102862    
10 QIAO Yongping, ZHAO Lin, PANG Qiangqiang, et al. Characteristics of permafrost in Gerze County on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2015, 37(6): 1 453-1 460.
乔永平, 赵林, 庞强强, 等. 青藏高原改则地区多年冻土特征[J]. 冰川冻土, 2015, 37(6): 1 453-1 460.
11 SHENG Yu, MA Wei, WEN Zhi, et al. Analysis of difference in thermal state between south faced slope land and north faced slope of railway embankment in permafrost region [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3 197-3 201.
盛煜, 马巍, 温智, 等. 多年冻土区铁路路基阴阳坡面热状况差异分析[J]. 岩石力学与工程学报, 2005, 24(17): 3 197-3 201.
12 WU Q B, LIU Y Z, HU Z Y. The thermal effect differential solar exposure on embankments along the Qinghai-Tibet Railway[J]. Cold Regions Science and Technology, 2011, 66(1): 30-38.
13 HU Da, YU Wenbing, YI Xin, et al. Boundary temperature features of the embankment in Qumar River region along the Qinghai-Tibet transportation engineering corridor [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 38(5): 1 332-1 339.
胡达, 喻文兵, 易鑫, 等. 青藏工程走廊楚玛尔河高平原地区路基边界温度特征[J]. 冰川冻土, 2016, 38(5): 1 332-1 339.
14 SUN Liping, DONG Xianfu, ZHOU Yong, et al. The effect of embankment slope orientation along the Qinghai-Tibet routes and related radiation mechanism[J]. Journal of Glaciology and Geocryology, 2008, 30(4): 610-616.
孙立平, 董献付, 周勇, 等. 青藏线冻土区“阴阳坡”问题及其辐射机制[J]. 冰川冻土, 2018, 30(4): 610-616.
15 CHOU Yaling, SHENG Yu, LI Yuwen, et al. Sunny-shady slope effect on the thermal and deformation stability of the highway embankment in warm permafrost regions[J]. Cold Regions Science and Technology, 2010, 63:78-86.
16 ZHANG Mingyi, PEI Wansheng, LI Shuangyang, et al. Experimental and numerical analyses of the thermal-mechanical stability of an embankment with shady and sunny slopes in permafrost regions[J]. Applied Thermal Engineering, 2017, 127: 1 478-1 487.
17 ZHANG Yinsheng, MA Yingzhao, ZHANG Yanlin, et al. Hillslope patterns in thaw-freeze cycle and hydrothermal regimes on Tibetan Plateau[J]. Chinese Science Bulletin, 2015, 60(7): 664-673.
张寅生, 马颖钊, 张艳林, 等. 青藏高原坡面尺度冻融循环与水热条件空间分布[J]. 科学通报, 2015, 60(7): 664-673.
18 TAI Bowen, LIU Jiankun, CHANG Dan. Experimental and numerical investigation on the sunny-shady slopes effect of three cooling embankments along an expressway in warm permafrost region, China[J]. Engineering Geology, 2020, 269. DOI: 10.1016/j.enggeo.2020.105545.
doi: 10.1016/j.enggeo.2020.105545    
19 LUO Xiaoxiao, YU Qihao, MA Qinguo, et al. Study on the heat and deformation characteristics of an expressway embankment with shady and sunny slopes in warm and ice-rich permafrost regions[J]. Transportation Geotechnics, 2020, 24. DOI: 10.1016/j.trgeo.2020.100390.
doi: 10.1016/j.trgeo.2020.100390    
20 LIN Zhanjun, NIU Fujun, GE Jianjun, et al. Variation characteristics of the thawing lake in permafrost regions of the Tibetan Plateau and their influence on the thermal state of permafrost [J]. Journal of Glaciology and Geocryology, 2010, 32(2): 341-350.
林战举, 牛富俊, 葛建军, 等. 青藏铁路北麓河地区典型热融湖变化特征及其对冻土水热状况的影响[J]. 冰川冻土, 2010, 32(2): 341-350.
21 JIANG Guanli, WU Qingbai, ZHANG Zhongqiong. Study on the differences of thermal-moisture dynamics in the active layer of permafrost in different alpine ecosystems on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2018, 40(1): 7-17.
蒋观利, 吴青柏, 张中琼. 青藏高原不同高寒生态系统类型下多年冻土活动层水热过程差异研究[J]. 冰川冻土, 2018, 40(1): 7-17.
22 LIN Zhanju, GAO Zeyong, FAN Xingwen, et al. Factors controlling near surface ground-ice characteristics in a region of warm permafrost, Beiluhe Basin, Qinghai-Tibet Plateau[J]. Geoderma, 2020, 376. DOI: 10.1016/j.geoderma.2020.114540.
doi: 10.1016/j.geoderma.2020.114540    
23 LUO Jing, NIU Fujun, LIN Zhanju, et al. Permafrost features around a representative thermokarst lake in Beiluhe on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2012, 34(5): 1 110-1 117.
罗京, 牛富俊, 林战举, 等. 青藏高原北麓河地区典型热融湖塘周边多年冻土的特征研究[J]. 冰川冻土, 2012, 34(5): 1 110-1 117.
24 YANG Meixue, YAO Tandong, HIROSE Nozomu, et al. Diurnal freeze-thaw cycles of surface soils on the Qinghai-Tibet Plateau[J]. Chinese Science Bulletin, 2006, 51(16): 1 974-1 976.
杨梅学, 姚檀栋, HIROSE Nozomu, 等. 青藏高原表层土壤的日冻融循环[J]. 科学通报, 2006, 51(16): 1 974-1 976.
25 LI Ren, ZHAO Lin, DING Yongjian, et al. Temporal and spatial variations of the active layer along the Qinghai-Tibet Highway in a permafrost region [J]. Chinese Science Bulletin, 2012, 57(35): 4 609-4 616.
26 ROMANOVSKY V E, OSTERKAMP T E. Thawing of active layer on the coastal of the Alaskan Arctic[J]. Permafrost and Periglacial Processes, 1997, 8: 1-22.
27 CHANG Juan, WANG Genxu, GAO Yongheng, et al. Impacts of snow cover change on soil water-heat processes of swamp and meadow in permafrost region, Qinghai-Tibetan Plateau[J]. Acta Ecologica Sinica, 2012, 32(23): 7 289-7 301.
常娟, 王根绪, 高永恒, 等. 青藏高原多年冻土区积雪对沼泽、草甸浅层土壤水热过程的影响[J]. 生态学报, 2012, 32(23): 7 289-7 301.
28 LIU Guangsheng, WANG Genxu, HU Hongchang, et al. Influence of vegetation coverage on water and heat processes of the active layer in permafrost regions of the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2009, 31(1): 89-95.
刘光生, 王根绪, 胡宏昌, 等. 青藏高原多年冻土区植被盖度变化对活动层水热过程的影响[J]. 冰川冻土, 2009, 31(1): 89-95.
29 ZHAO Lin, CHENG Guodong, LI Shuxun, et al. Process of freezing and thawing of permafrost active layers near Wudaoliang on Tibetan Plateau [J]. Chinese Science Bulletin, 2020, 45(11): 1 205-1 211.
赵林, 程国栋, 李述训, 等. 青藏高原五道梁附近多年冻土活动层冻结和融化过程[J]. 科学通报, 2020, 45(11): 1 205-1 211.
30 JIAO Yongliang, LI Ren, ZHAO Lin, et al. Processes of soil thawing-freezing and features of soil moisture migration in the permafrost active laye[J]. Journal of Glaciology and Geocryology, 2014, 36(2): 237-247.
焦永亮, 李韧, 赵林, 等. 多年冻土区活动层冻融状况及土壤水分运移特征[J]. 冰川冻土, 2014, 36(2): 237-247.
31 YOU Quangang, XUE Xian, PENG Fei, et al. Surface water and heat exchange comparison between alpine meadow and bare land in a permafrost region of the Tibetan Plateau[J]. Agricultural and Forest Meteorology, 2017, 232: 48-65.
32 WANG Keli, GHENG Guodong, JIANG Hao, et al. Thermodynamic model of the ground surface and embankment surface along the Qinghai-Tibet Railway (II): results in the cloud-free condition[J]. Journal of Glaciology and Geocryology, 2004, 26(2): 171-176.
王可丽, 程国栋, 江灏, 等. 青藏铁路沿线地表和路基表面热力学模式(II): 无云大气条件下模拟试验结果分析[J]. 冰川冻土, 2004, 26(2): 171-176.
33 SUN Baoyang, LI Zhanbin, XIAO Junbo, et al. Research progress on the effect of freeze-thaw on soil physical and chemical properties and wind and water erosion[J]. Chinese Journal of Applied Ecology, 2019, 30(1): 337-347.
孙宝洋, 李占斌, 肖俊波, 等. 冻融作用理化性质及风水蚀影响研究进展[J]. 应用生态学报, 2019, 30(1): 337-347.
34 LI Wangping, ZHAO Lin, WU Xiaodong, et al. Soil distribution modeling using inductive learning in the eastern part of permafrost regions in Qinghai-Xizang (Tibetan) Plateau[J]. Catena, 2015, 126: 98-104.
35 ZHOU Zhiwei, MA Wei, ZHANG Shujuan, et al. Effect of freeze-thaw cycles in mechanical behaviors of frozen loess[J]. Cold Regions Science and Technology, 2018, 146: 9-18.
36 WANG Shaoying, ZHANG Yu, Shihua Lü, et al. Seasonal variation characteristics of radiation and energy budgets in alpine meadow ecosystem in Maqu grassland [J]. Plateau Meteorology, 2012, 31(3): 605-614.
王少影, 张宇, 吕世华, 等. 玛曲高寒草甸地表辐射与能量收集的季节变化[J]. 高原气候, 2012, 31(3): 605-614.
37 WANG Yinjun. Contrast the simulation result of WRF model to bounder layer observation at southeast Tibetan Plateau[D]. Nanjing: Nanjing University of Information Science & Technology, 2011.
王寅钧. 青藏高原东南部WRF边界层模拟与观测对比探讨研究[D]. 南京: 南京信息工程大学, 2011.
38 SHANG Lunyu, Shihua Lü, LI Suosuo, et al. Effect of soil freezing and thawing on the surface radiation over Qinghai-Tibet Plateau[J]. Acta Energiae Solaris Sinica, 2010, 31(1): 12-16.
尚伦宇, 吕世华, 李锁锁, 等. 青藏高原土壤冻融对地表辐射特征的影响分析[J]. 太阳能学报, 2010, 31(1): 12-16.
39 XIAO Dengpan, TAO Fulu, MOIWO Juana P. Research progress on surface albedo under global change[J]. Advances in Earth Science, 2011, 26(11): 1 217-1 224.
肖登攀, 陶福禄, MOIWO Juana P. 全球变化下地表反照率研究进展[J]. 地球科学进展, 2011, 26(11): 1 217-1 224.
40 LIU H Z, WANG B M, FU C B. Relationships between surface albedo, soil thermal parameters and soil moisture in the semi-arid area of Tongyu, Northeastern China[J]. Advances in Atmospheric Sciences, 2008, 25(5): 757-764.
41 ROXY M S, SUMITHRANAND V B, RENUKA G. Variability of soil moisture and its relationship with surface albedo and thermal diffusivity at astronomical observatory, Thiruvananthapuram, South Kerala[J]. Journal Earth System Science, 2010, 119(4): 507-513.
42 ZHAO Xingbing, LI Yueqing. Seasonal characteristics of turbulent flux and meteorology elements in the atmosphere surface layer over the alpine meadow[J]. Advances in Earth Science, 2011, 31(2): 12-17.
赵兴炳, 李跃清. 青藏高原东坡高原草甸近地层气象要素与能量输送季节变化分析[J]. 高原山地气象研究, 2011, 31(2): 12-17.
43 XIE Jin, YU Ye, LIU Chuan, et al. Characteristics of surface sensible heat flux over the Qinghai-Tibetan Plateau and its response to climate change[J]. Plateau Meteorology, 2018, 37(1): 28-42.
解晋, 余晔, 刘川, 等. 青藏高原地表感热通量变化特征及其对气候变化的响应[J]. 高原气象, 2018, 37(1): 28-42.
44 SU Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes[J]. Hydrology and Earth Sciences, 2000, 6(1): 85-99.
45 GE Jun, YU Ye, LI Zhenchao, et al. Impacts of freeze/thaw processes on land surface fluxes in the permafrost region of Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2016, 35(3): 608-620.
葛骏, 余晔, 李振朝, 等. 青藏高原多年冻土区土壤冻融过程对地表能量通量的影响研究[J]. 高原气象, 2016, 35(3): 608-620.
46 PANG Qiangqiang, ZHAO Lin, LI Shuxun. Influences of local factors on ground temperatures in permafrost regions along the Qinghai-Tibet highway[J]. Journal of Glaciology and Geocryology, 2011, 32(2): 349-356.
庞强强, 赵林, 李述训. 局地因素对青藏公路沿线多年冻土区的地温影响分析[J]. 冰川冻土, 2011, 33(2): 349-356.
47 JAMES P F, CRISTIAN Estop-Aragonés, AARON Thierry, et al. The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest[J]. Global Change Biology, 2016, 22(9): 3 127-3 140.
48 LI Yi, SHAO Ming'an, WANG Wenyan, et al. Influence of soil textures on the thermal properties[J]. Transactions of the CSAE, 2003, 19(4): 62-65.
李毅, 邵明安, 王文焰, 等. 质地对土壤热性质的影响研究[J]. 农业工程学报, 2003, 19(4): 62-65.
[1] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[2] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[3] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[4] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[5] 贾诗超,张廷军,范成彦,刘琳,邵婉婉. InSAR技术多年冻土研究进展[J]. 地球科学进展, 2021, 36(7): 694-711.
[6] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[7] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[8] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[9] 李欣泽, 金会军, 吴青柏, 魏彦京, 温智. 北极多年冻土区埋地输气管道周边温度场数值分析[J]. 地球科学进展, 2021, 36(1): 69-82.
[10] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[11] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
[12] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[13] 苗毅, 刘海猛, 宋金平, 戴特奇. 青藏高原交通设施建设及影响评价研究进展[J]. 地球科学进展, 2020, 35(3): 308-318.
[14] 李欣泽,金会军,吴青柏. 多年冻土区天然气管道压气站失效情境下应对方案研究[J]. 地球科学进展, 2020, 35(11): 1127-1136.
[15] 李欣泽,金会军. 多年冻土区天然气管道工程:技术挑战和应对方案[J]. 地球科学进展, 2019, 34(11): 1131-1140.
阅读次数
全文


摘要