地球科学进展 ›› 2020, Vol. 35 ›› Issue (11): 1127 -1136. doi: 10.11867/j.issn.1001-8166.2020.092

研究论文 上一篇    下一篇

多年冻土区天然气管道压气站失效情境下应对方案研究
李欣泽 1, 2, 3( ),金会军 4( ),吴青柏 1   
  1. 1.中国科学院西北生态环境资源研究院冻土工程国家重点实验室,甘肃 兰州 730000
    2.中国科学院 大学,北京 100049
    3.中石化石油工程设计有限公司,山东 东营 257000
    4.东北林业大学土木 工程学院东北多年冻土区地质环境系统教育部野外科学观测研究站&寒区工程 与科学技术研究院,黑龙江 哈尔滨 150040
  • 收稿日期:2020-09-20 修回日期:2020-10-31 出版日期:2020-11-10
  • 通讯作者: 金会军 E-mail:slecclxz@sina.com;hjjin@lzb.ac.cn
  • 基金资助:
    中石化石油工程技术服务有限公司科研课题“阿拉斯加天然气管道建设关键技术可行性研究”(SG18-50J)

Study on Mitigative Measures in Case of Compressor Station Outage for Gas Pipelines in Permafrost Regions

Xinze Li 1, 2, 3( ),Huijun Jin 4( ),Qingbai Wu 1   

  1. 1.State Key Laboratory of Frozen Soils Engineering,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China
    2.University of Chinese Academy of Sciences,Beijing 100049,China
    3.Sinopec Petroleum Engineering Co. ,Dongying Shandong 257000,China
    4.School of Civil Engineering/Northeast-China Observatory and Research-Station of Permafrost Geo- Environment-Ministry of Education/Institute of Cold-Regions Engineering,Science and Technology,Northeast Forestry University,Haerbin 150040,China
  • Received:2020-09-20 Revised:2020-10-31 Online:2020-11-10 Published:2021-01-25
  • Contact: Huijun Jin E-mail:slecclxz@sina.com;hjjin@lzb.ac.cn
  • About author:Li Xinze (1987-), male, Karamay City, Xinjiang Uygur Autonomous Region, Ph.D student. Research areas include permafrost and cold engineering. E-mail: slecclxz@sina.com
  • Supported by:
    the Applied Science of Sinopec Petroleum Engineering Co. ”Feasibility study on key technologies for Alaska natural gas pipeline construction”(SJ18-50J)

多年冻土区天然气管道管基土冻胀和融沉地质灾害是人们所熟知的威胁管道安全运行的重大风险。受长输管道用管材最低设计金属温度限制,在压气站失效后,气体进行越站输送,由于焦耳—汤姆逊效应,会出现下游管道输气温度低于管材金属最低设计温度的风险。而对于温带地区的管道工程,不会出现类似的技术挑战。以某多年冻土区天然气管道工程为例,从保护多年冻土的角度给出了全线温度分区控制策略及实现途径。采用国际通用水力热力软件SPS对压气站失效后不采取措施和采取诸如提高失效压气站上游压气站出站温度、降低管道输量、额外增设加热站等不同措施下的多种工况进行了定量计算和分析讨论,并初步给出相应的解决方案构想。希望能够补充现有输气工艺理论,为北极和高山多年冻土区天然气管道建设提供新的思路。

For gas pipelines in permafrost regions, it is well-known that the most serious hazards, such as differential thaw settlement and frost heave, affect the engineering foundations and the integrity of pipeline systems. However, in case of a compressor station outage, the chilled gas will bypass the outage station, flow directly to the downstream pipeline and continue the cooling due to the Joule-Thomson cooling effect. The dangerous scenario that the transporting temperature may fall to a level below the minimum design temperature has not been paid adequate attention because this kind of potential challenge has never been encountered for pipelines in temperate regions. Taking one planned gas pipeline project in permafrost regions as an example, temperature controlling strategies and feasible approaches were given on the perspective of protecting permafrost and technical measures, such as using high discharge temperature, forced flow reduction and installing extra gas heater stations, evaluated quantitatively and discussed using international hydraulic software SPS. Finally, the initial framework solutions were proposed in the hope of supplementing existing gas transporting process theory and identifying new approaches for gas pipelines in the northern and upland permafrost regions.

中图分类号: 

图1 管道运行温度控制线
Fig.1 Pipeline operating tempetature control line
表1 空冷器不同冷却温度对应压缩机和空冷器功率
Table 1 Power of compressor and cooler under different cooling temperatures of cooler
图2 带冷却功能单机组压气站工艺流程图
Fig.2 Process flow diagram of single-unit compressor station with coolers
图3 带冷却功能压气站HYSYS建模(冬季工况)
Fig.3 Compressor station with coolers modeling using HYSYS (winter scenario)
图4 带冷却功能压气站HYSYS建模(夏季工况)
Fig.4 Compressor station with coolers modeling using HYSYS (summer scenario)
图5 某多年冻土区天然气管道沿线压力和温度曲线图(冬季工况)
Fig.5 Pressure and tempetature graph of one arctic gas pipeline (winter scenario)
表2 各压气站失效对管道输量和输气温度降低影响分析表
Table 2 Influence of each compressor station outage on pipeline throughput and transporting temperature drop
图6 1#压气站失效后全线压力和温度曲线图
Fig.6 Pressure and tempetature graph of compressor station outage
表3 失效压气站上游首个压气站所需提供的最低出站温度计算表
Table 3 The required minimum station outlet temperature of first compressor station upstream failure compressor station
表4 各压气站失效对管道输量影响分析表
Table 4 Influence of each compressor station outage on pipeline throughput
表5 技术方案对比
Table 5 Comparison table of technical proposal
1 Brewer M C, Jin Huijun,Hu Wanzhi, et al. The changes of design of the Alyeska pipeline and construction modes in permafrost areas, and their reasons and the philosophy behind it[J]. Journal of Glaciology and Geocryology, 2006, 28(6): 809-817.
2 Nixon J F, Burgess M. Norman wells pipeline settlement and uplift movements[J]. Canadian Geotechnical Journal, 1999, 36(1): 119-135.
3 Jin Huijun, Brewer M C. Experiences and lessons learned in the engineering design and construction in the Alaska Arctic[J]. Journal of Glaciology and Geocryology, 2005, 27(1): 140-146.
金会军, Brewer M C. 阿拉斯加北极地区的工程设计和施工经验及教训[J]. 冰川冻土,2005, 27(1): 140-146.
4 Jin Huijun,Yu Wenbing,Cheng Youchang, et al. (Differential) frost heave and thaw settlement in the engineering design and construction of oil pipeline in permafrost regions: A review[J]. Journal of Glaciology and Geocryology, 2005, 27(3):455-464.
金会军, 喻文兵, 陈友昌, 等.多年冻土区输油管道工程中的(差异性) 融沉和冻胀问题[J ].冰川冻土,2005, 27(3):455-464.
5 He Ruixia,Jin Huijun,Lanzhi Lü,et al. Permafrost and environment problems along the Golmud-Lhasa oil product pipeline and their mitigation[J]. Journal of Glaciology and Geocryology,2010,32(1):18-27.
何瑞霞,金会军,吕兰芝,等. 格尔木—拉萨成品油管道沿线冻土工程和环境问题及其防治对策[J]. 冰川冻土,2010,32(1):18-27.
6 He Ruixia, Jin Huijun. Permafrost and cold-region environmental problems of the oil product pipeline from Golmud to Lhasa on the Qinghai-Tibet Plateau and their mitigation[J].Cold Regions Science and Technology,2010,64(3): 279-288.
7 Zhao Li, Jiang Huayi, Deng Ling. Natural gas pipeline special design and construction in permafrost[J]. Inner Mongolia Petrochemical Industry, 2008(20): 18-21.
赵莉,蒋华义,邓灵. 阿拉斯加地区天然气管线的特殊设计和建设[J]. 内蒙古石油化工, 2008(20): 18-21.
8 Wang Fei, Li Guoyu, Ma Wei, et al. Permafrost thawing along the China-Russia Crude Oil Pipeline and countermeasures: A case study in Jiagedaqi, Northeast China[J]. Cold Regions Science and Technology,2018, 155: 308-313.
9 Wang Yongping, Jin Huijun, Li Guoyu. Investigation of the freeze-thaw states of foundation soils in permafrost areas along the China-Russia Crude Oil Pipeline (CRCOP) route using the ground penetrating radar[J]. Cold Regions Science and Technology, 2016, 126: 10-21.
10 Li Guoyu,Ma Wei,Wang Xueli,et al. Frost hazards and mitigative measures following operation of Mohe-Daqing line of China-Russia cude oil pipeline[J]. Rock and Soil Mechanics,2015,36(10):2 964-2 972.
李国玉,马巍,王学力,等. 中俄原油管道漠大线运营后面临一些冻害问题及防治措施建议[J]. 岩土力学,2015,36(10):2 964-2 972.
11 Oswell J M.Pipelines in permafrost: Geotechnical issues and lessons[J]. Canadian Geotechnical Journal,2011,48(9): 1 412-1 431.
12 Li Junfeng, Hongqing Lü,Li Zhuxin. Experience and revelation learned from foreign pipeline construction projects in permafrost regions[J]. Petroleum Engineering Construction,2006,6(6):1-4.
李均峰,吕宏庆,李著信. 国外多年冻土区管道建设的经验与启示[J].石油工程建设, 2006,6(6):1-4.
13 Wang Yongping,Jin Huijun,Li Guoyu,et al. Secondary geohazards alone the operating Mohe-Jagdaqi section of China-Russia crude oil pipeline in permafrost regions: A case study on a seasonal frost mound at the site MDX364[J]. Journal of Glaciology and Geocryology, 2015,37(3):731-739.
王永平,金会军,李国玉,等. 漠河—加格达奇段多年冻土区中俄原油管道运营以来的次生地质灾害研究——以MDX364处的季节性冻胀丘为例[J]. 冰川冻土,2015,37(3):731-739.
14 Li Guoyu,Ma wei,Zhou Zhiwei,et al. The limit state of pipeline based on stain design on cold regions [J]. Journal of Glaciology and Geocryology,2016,38(4):1 099-1 105.
李国玉,马巍,周志伟,等. 寒区输油管道基于应变设计的极限状态研究[J]. 冰川冻土,2016,38(4):1 099-1 105.
15 Brewer M C, Jin Huijun, Hu Wanzhi, et al. The change of design of the Alyeska Pipeline and construction modes in permafrost areas, and their reasons and the philosophy behind it[J]. Journal of Glaciology and Geocryology, 2006, 28(6): 809-817.
Brewer M C,金会军,胡万志,等. 阿拉斯加输油管的设计和施工方式方案变更过程及其背后的原因和哲学思想[J]. 冰川冻土, 2006, 28(6): 809-817.
16 Jurca T, Coutts R J, Nixon J F, et al. Thermal-hydraulics modeling for buried gas pipeline strain-based design[C]//The 27th International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers, 2017.
17 Yu Wenbing, Han Fenglei, Liu Weibo, et al. Geohazards and thermal regime analysis of oil pipeline along the Qinghai-Tibet Plateau Engineering Corridor[J]. Natural Hazards, 2016, 83(1): 193-209.
18 Dong Peng,Zheng Dahai,Huang Jianzhong, et al. Monitoring on the temperature field around buried pipeline of Mohe-Daqing crude oil pipeline in the permafrost region[J]. Oil & Gas Storage and Transportation,2018,37(5):533-540.
董鹏,郑大海,黄建忠,等. 漠大多年冻土区埋地输油管道周围温度场监测[J].油气储运,2018,37(5):533-540.
19 Koui Kim,Wei Zhou,Huang S L.Frost heave predictions of buried chilled gas pipelines with the effect of permafrost[J]. Cold Regions Science and Technology,2008,53(1):382-396.
20 Fu Yuanhui,Ma Guiyang,Du Mingjun,et al. Research on freeze-thaw hazards and protective measures of buried hot oil pipeline in permafrost regions[J]. Contemporary Chemical Industry, 2017, 46(3): 493-495.
富元晖,马贵阳,杜明俊,等. 冻土区埋地热油管道冻融危害及防护措施研究[J]. 当代化工, 2017, 46(3): 493-495.
21 Lu Jianguo,Zhang Mingyi,Zhang Xiyin,et al.Review of the coupled hydro-thermo-mechanical interaion of frozen soil[J]. Journal of Glaciology and Geocryology,2017,39(1):102-111.
路建国,张明义,张熙胤,等. 冻土水热力耦合研究现状及进展[J].冰川冻土,2017, 39(1):102-111.
22 Zhou Zhiwei, Ma Wei, Zhang Shujuan.Effect of freeze-thaw cycles in mechanical behaviors of frozen loess[J]. Cold Regions Science and Technology, 2018, 146: 9-18.
23 Huang Long,Sheng Yu,Hu Xiaoying,et al.Intercations between the pipeline and soils in permafrost:A review[J]. Journal of Glaciology and Geocryology,2017,39(1):112-122.
黄龙,盛煜,胡晓莹,等. 冻土区管土相互作用研究综述[J]. 冰川冻土,2017,39(1):112-122.
24 Liu Yali,Wang Junfeng,Wu Qingbai. The linear engineering impact on the eco-environment in permafrost regions: Research status and prospect[J]. Journal of Glaciology and Geocryology, 2018, 40(4): 728-737.
刘亚丽,王俊峰,吴青柏. 多年冻土区线性工程的生态环境影响研究现状与展望[J]. 冰川冻土, 2018, 40(4): 728-737.
25 Konuk I. Arctic pipeline design challenges and current practices: Ice scour[C]//Proceedings of the ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. Volume3: Pipeline and Riser Technology. Honolulu, Hawaii, USA, 2009.
26 Hongqing Lü,Pu Xiaobo,Xue Hongjiang. Study on engineering technology for pipelines in permafrost[J]. Journal of Logistical Engineering University,2010,26(2):25-28.
吕宏庆,蒲小波,薛洪江. 多年冻土区管道的设计技术研究[J]. 后勤工程学院学报,2010,26(2):25-28.
27 Liu Bing, Liu Xuejie, Zhang Hong. Strain-based design criteria of pipelines[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(6): 884-888.
28 Seligman B J. Reliability of large-diameter gaspipelines in northern Russia[J]. Petroleum Economist, 2019, 66: 26-29.
29 Seligman B J. Reliability of gas pipelines innorthern Russia[J]. Petroleum Economist, 2019, 66: 80-82.
30 Li Xinze,Jin Huijun.Technical challenges and engineering solutions for gas pipelines in permafrost regions:A review[J]. Advances in Earth Science,2019, 34(11): 1 131-1 140.
李欣泽,金会军. 多年冻土区天然气管道工程:技术挑战和应对方案[J]. 地球科学进展,2019, 34(11): 1 131-1 140.
[1] 徐学祖,程国栋,俞祁浩. 青藏高原多年冻土区天然气水合物的研究前景和建议[J]. 地球科学进展, 1999, 14(2): 201-204.
阅读次数
全文


摘要