地球科学进展 ›› 2020, Vol. 35 ›› Issue (3): 297 -307. doi: 10.11867/j.issn.1001-8166.2020.027

青藏高原综合科学考察研究 上一篇    下一篇

19822005年青藏高原降水再循环率的模拟研究
张宏文 1, 3( ),续昱 1, 3,高艳红 2( )   
  1. 1.中国科学院西北生态环境资源研究院/中国科学院寒旱区陆面过程与气候变化重点实验室,甘肃 兰州 730000
    2.复旦大学 大气与海洋科学系/大气科学研究院,上海 200438
    3.中国科学院大学,北京 100049
  • 收稿日期:2020-01-03 修回日期:2020-02-26 出版日期:2020-03-10
  • 通讯作者: 高艳红 E-mail:zhanghw@lzb.ac.cn;gaoyh@fudan.edu.cn
  • 基金资助:
    第二次青藏高原综合科学考察研究专题“西风—季风协同作用及其影响”(2019QZKK010314);中国科学院战略性先导科技专项“西风与季风相互作用和水资源变化”(XDA2006010202)

Simulation Study on Precipitation Recycling Ratio in the Tibetan Plateau from 1982 to 2005

Hongwen Zhang 1, 3( ),Yu Xu 1, 3,Yanhong Gao 2( )   

  1. 1.Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Ecology and Environmental Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    2.Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
    3.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2020-01-03 Revised:2020-02-26 Online:2020-03-10 Published:2020-04-10
  • Contact: Yanhong Gao E-mail:zhanghw@lzb.ac.cn;gaoyh@fudan.edu.cn
  • About author:Zhang Hongwen (1990-), male, Harbin City, Heilongjiang Province, Ph.D student. Research areas include numerical simulation of regional climate change. E-mail: zhanghw@lzb.ac.cn
  • Supported by:
    the Second Tibetan Plateau Scientific Expedition and Research Program “Evolution and synergy of the westerly-monsoon”(2019QZKK010314);The Special Fund for Strategic Pilot Technology of Chinese Academy of Sciences “Interaction of westerly and monsoon and its impacts on water resources”(XDA2006010202)

利用通用气候系统模式CCSM4的输出结果驱动区域气候模式WRF3.5版本进行动力降尺度模拟,评估了动力降尺度对青藏高原降水和蒸发的模拟能力,然后结合准熵平衡后向轨迹追踪法(QIBT)研究了CCSM4和WRF模拟的1982—2005年青藏高原降水再循环率的空间分布和季节变化特征,并给出了青藏高原不同土地覆盖类型的降水再循环率。结果表明:相比于驱动数据,动力降尺度模拟能更好地再现青藏高原降水和蒸发的空间分布特征;WRF模拟的青藏高原降水再循环率为32%,表明青藏高原降水主要来源于外部输送水汽的贡献,青藏高原南部流域表现出湿季低、干季高的季节变化特征,而青藏高原北部流域则表现出相反的季节变化特征;相比于驱动数据,WRF能够更精细地呈现青藏高原不同土地覆盖类型的空间分布特征,其中青藏高原草地、灌木和稀疏植被的降水再循环率较高。

A dynamical downscaling approach using a regional climate model WRF (Weather Research and Forecasting Model Vision 3.5) driven by a global climate model CCSM4 (The Community Climate System Model Version 4) was adopted, and the downscaling results for the historical period (1982-2005) were evaluated for annual mean precipitation rate and evaporation rate over the Tibetan Plateau (TP). Furthermore, the spatial distribution and seasonal variation characteristics of Precipitation Recycling Ratio (PRR) simulated by CCSM4 and WRF were analyzed with the QIBT (Quasi-isentropic Back-trajectory method). The results show that the historical spatial distributions of annual mean precipitation rate and evaporation rate over the TP were found to better reproduce in the dynamical downscaling modeling compared to its coarse-resolution forcing. The PRR of the TP is 32% simulated by WRF, with a higher PRR in the wet season and a lower PRR in the dry season for the river basins in the northern TP, but the opposite seasonal variation was found for the river basins in the southern TP. In addition, the different land covers over the TP are more precisely represented in the WRF model, the PRR of grassland, shrubland and sparsely vegetation is higher than that of other land cover types.

中图分类号: 

图1 青藏高原地形的空间分布
(a),(b)分别代表CCSM和WRF中青藏高原地形的空间分布;1~9分别代表塔里木河流域、祁连山区、柴达木盆地、羌塘高原、长江流域、黄河流域、湄公河流域、怒江流域和雅鲁藏布江流域
Fig.1 The topography over the Tibetan Plateau (TP)
(a), (b) show the topography for CCSM and WRF over the TP, respectively; 1~9 stands for the Tarim River Basin, Qilian Mountain, Qaidam Basin, Chang Tang Plateau, Yangtze River, Yellow River, Mekong River, Salween River, and Brahmaputra River, respectively
图2 19822005年青藏高原年平均降水率和蒸发率的空间分布
(a)和(d)分别代表GLDAS数据中的年平均降水率和蒸发率; (b)和(e)分别代表CCSM模拟的年平均降水率和蒸发率; (c)和(f)分别代表WRF模拟的年平均降水率和蒸发率
Fig.2 Distributions of annual mean precipitation rate and evaporation rate over the TP from 1982 to 2005
(a), (d) show annual mean precipitation rate and evaporation rate in GLDAS; (b), (e) show annual mean precipitation rate and evaporation rate in CCSM; (c), (f) show annual mean precipitation rate and evaporation rate in WRF
表1 GLDAS, CCSMWRF数据中 19822005年青藏高原年平均降水率和蒸发率的统计量
Table 1 The statistics of annual mean precipitation rate and evaporation rate averaged over the TP for GLDAS, CCSM and WRF from 1982 to 2005
图3 19822005年青藏高原降水再循环率的空间分布
(a)和(b)分别代表CCSM和WRF的模拟结果
Fig.3 Spatial distribution of annual mean precipitation recycling ratio over the TP from 1982 to 2005
(a), (b) show CCSM and WRF simulations respectively
图4 19822005年青藏高原不同流域降水再循环率的季节变化
(a)塔里木河流域,(b)祁连山区,(c)柴达木盆地,(d)羌塘高原,(e)长江流域,(f)黄河流域,(g)湄公河流域,(h)怒江流域,(i)雅鲁藏布江流域
Fig.4 Seasonal change of precipitation recycling ratio in different river basins over the TP from 1982 to 2005
(a) Tarim River Basin,(b) Qilian Mountain,(c) Qaidam Basin,(d) Chang Tang Plateau,(e) Yangtze River,(f) Yellow River,(g) Mekong River,(h) Salween River,(i) Brahmaputra River
图5 19822005年青藏高原不同流域蒸发和降水的季节变化
(a)塔里木河流域,(b)祁连山区,(c)柴达木盆地,(d)羌塘高原,(e)长江流域,(f)黄河流域,(g)湄公河流域,(h)怒江流域,(i)雅鲁藏布江流域
Fig.5 Seasonal change of annual mean evaporation and precipitation in different river basins over the TP from 1982 to 2005
(a)Tarim River Basin,(b)Qilian Mountain,(c)Qaidam Basin,(d)Chang Tang Plateau,(e)Yangtze River,(f)Yellow River,(g)Mekong River,(h)Salween River,(i)Brahmaputra Rivery
图 6 19802005年青藏高原及周边地区垂直积分的水汽通量空间分布
(a)、(b)和(c)分别代表ERA-Interim、CCSM和WRF的模拟结果
Fig.6 Spatial distribution of the climatology for the vertically integrated water vapor flux over the TP and its surroundings from 1980 to 2005
(a), (b), (c) show the ERA-Interim, CCSM and WRF simulations respectively
图7 土地覆盖类型的空间分布
(a)和(b)分别代表CCSM和WRF所采用的土地覆盖类型数据
Fig.7 Distribution of land cover types over the TP
(a), (b) show the land cover types for CCSM and WRF simulations respectively
图8 CCSMWRF模拟的19822005年青藏高原不同土地覆盖类型的降水再循环率
Fig.8 Precipitation recycling ratio of different land cover types over the TP for the CCSMWRF from 1982 to 2005
1 Zhang Renhe, Su Fengge, Jiang Zhihong, et al. An overview of projected climate and environmental changes across the Tibetan Plateau in the 21st century[J]. Chinese Science Bulletin, 2015, 60(32): 3 036-3 047.
张人禾, 苏凤阁, 江志红, 等. 青藏高原21世纪气候和环境变化预估研究进展[J]. 科学通报, 2015, 60(32): 3 036-3 047.
2 Huang Jianping, Chen Wen, Wen Zhiping, et al. Review of Chinese atmospheric science research over the past 70 years: Climate and climate change[J]. Science in China(Series D), 2019, 49(10): 1 607-1 640.
黄建平, 陈文, 温之平,等. 新中国成立70年以来的中国大气科学研究: 气候与气候变化篇[J]. 中国科学:D辑, 2019, 49(10): 1 607-1 640.
3 Immerzeel W W, Van Beek L P H, Bierkens M F P. Climate change will affect the Asian water towers[J]. Science, 2010, 328(5 984): 1 382-1 385.
4 Gao Y, Li X, Leung L R, et al. Aridity changes in the Tibetan Plateau in a warming climate[J]. Environmental Research Letters, 2015, 10: 034013.
5 Chen Deliang, Xu Baiqing, Yao Tandong, et al. Assessment of past, present and future environmental changes on the Tibetan Plateau[J]. Chinese Science Bulletin, 2015, 60(32): 3 025-3 035.
陈德亮, 徐柏青, 姚檀栋, 等. 青藏高原环境变化科学评估: 过去、现在与未来[J]. 科学通报, 2015, 60(32): 3 025-3 035.
6 Fu Xiang, Xu Xiangde, Kang Hongwen. Research on precipitation recycling during meiyu season over middle-lower reaches of Changjiang River in 1998[J]. Meteorological Science and Technology, 2006, 34(4): 394-399.
付翔,徐祥德, 康红文. 长江中下游1998年夏季梅雨期降水再循环研究[J]. 气象科技, 2006, 34(4): 394-399.
7 Kang Hongwen, Gu Xiangqian, Fu Xiang, et al. Precipitation recycling over the northern China[J]. Quarterly Journal of Applied Meteorology, 2005, 16(2): 139-147.
康红文, 谷湘潜, 付翔, 等. 我国北方地区降水再循环率的初步评估[J]. 应用气象学报, 2005, 16(2): 139-147.
8 Gao Yanhong, Cheng Guodong. Several points on mass and entergy interaction between land surface and atmosphere in the Heihe River Basin[J]. Advances in Earth Science, 2008, 23(7):123-128.
高艳红, 程国栋. 黑河流域陆地—大气相互作用研究的几点思考[J]. 地球科学进展, 2008, 23(7):123-128.
9 Su Tao, Lu Zhenyu, Zhou Jie, et al. Spatial distribution and seasonal variation characteristics of global atmospheric moisture recycling[J]. Acta Physica Sinica, 2014, 63(9): 457-466.
苏涛, 卢震宇, 周杰, 等. 全球水汽再循环率的空间分布及其季节变化特征[J]. 物理学报, 2014, 63(9): 457-466.
10 Zhang Xueqin, Peng Lili, Lin Zhaohui. Progress on the projections of future climate change with various emission scenarios[J]. Advances in Earth Science, 2009, 23(2): 174-185.
张雪芹, 彭莉莉, 林朝晖.未来不同排放情景下气候变化预估研究进展[J]. 地球科学进展, 2009, 23(2): 174-185.
11 Wang Xiaoxin, Jiang Dabang, Lang Xianmei. Temperature and precipitation changes over China under a 1.5 ℃ global warming scenario based on CMIP5 models[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(5): 1 158-1 170.
王晓欣, 姜大膀, 郎咸梅. CMIP5多模式预估的1.5 ℃升温背景下中国气温和降水变化[J]. 大气科学, 2019, 43(5): 1 158-1 170.
12 Gao Y, Xiao L, Chen D, et al. Comparison between past and future extreme precipitations simulated by global and regional climate models over the Tibetan Plateau[J]. International Journal of Climatology, 2017, 38: 1 285-1 297.
13 Jiang D, Tian Z, Lang X. Reliability of climate models for China through the IPCC third to fifth assessment reports[J]. International Journal of Climatology, 2016, 36(3): 1 114-1 133.
14 Hu Qin, Jiang Dabang, Fan Guangzhou. Evaluation of CMIP5 models over the Qinghai-Tibetan Plateau[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(5): 924-938.
胡芩, 姜大膀, 范广洲. CMIP5全球气候模式对青藏高原地区气候模拟能力评估[J]. 大气科学, 2014, 38(5): 924-938.
15 Xu Zhongfeng, Han Ying, Yang Zongliang. Dynamical downscaling of regional climate: A review of methods and limitations[J]. Science in China(Series D), 2019, 49(3): 487-498.
徐忠峰, 韩瑛, 杨宗良. 区域气候动力降尺度方法研究综述[J]. 中国科学: D辑, 2019, 49(3): 487-498.
16 Li Donghuan, Zou Liwei, Zhou Tianjun. Changes of extreme indices over China in response to 1.5 ℃ global warming projected by a regional climate model[J]. Advances in Earth Science, 2017, 32(4): 446-457.
李东欢, 邹立维, 周天军. 全球1.5 ℃温升背景下中国极端事件变化的区域模式预估[J]. 地球科学进展, 2017, 32(4): 446-457.
17 Gao Xuejie, Shi Ying, Giorgi F. A high resolution simulation of climate change over China[J]. Science in China (Series D), 2010, 40(7): 911-922.
高学杰, 石英, Giorgi F. 中国区域气候变化的一个高分辨率数值模拟[J]. 中国科学:D辑, 2010, 40(7): 911-922.
18 Gao Y, Xu J, Chen D. Evaluation of WRF mesoscale climate simulations over the Tibetan Plateau during 1979-2011[J]. Journal of Climate, 2015, 28(7): 2 823-2 841.
19 Zhang H, Gao Y, Xu J, et al. Decomposition of future moisture flux changes over the Tibetan Plateau Projected by Global and Regional Climate Models[J]. Journal of Climate, 2019, 32(20): 7 037-7 053.
20 Yi Lan, Tao Shiyan. Construction and analysis of a precipitation recycling model[J]. Advances in Water Science, 1997, 8(3): 205-211.
伊兰, 陶诗言. 一个降水再循环模型的建立及分析[J]. 水科学进展, 1997, 8(3): 205-211.
21 Wei J, Dirmeyer P A, Bosilovich M G. Water vapor sources for Yangtze River Valley rainfall: Climatology, variability, and implications for rainfall forecasting[J]. Journal of Geophysical Research, 2012, 117: 1-11.
22 Guo Y, Wang C. Trends in precipitation recycling over the Qinghai-Xizang Plateau in last decades[J]. Journal of Hydrology, 2014, 517: 826-835.
23 Curio J, Maussion F, Scherer D. A 12-year high-resolution climatology of atmospheric water transport over the Tibetan Plateau[J]. Earth System Dynamics, 2015, 6(1): 109-124.
24 Zhang C, Tang Q, Chen D. Recent changes in the moisture source of precipitation over the Tibetan Plateau[J]. Journal of Climate, 2017, 30(5): 1 807-1 819.
25 Wang Ning. Study on the Atmospheric Moisture Cycling over Continental China[D]. Changsha: National University of Defense Technology, 2018.
王宁. 中国大陆地区大气水循环的研究[D]. 长沙: 国防科技大学, 2018.
26 Collins W D, Rasch P J, Boville B A, et al. Description of the NCAR Community Atmosphere Model (CAM 3.0) (NCAR Technical Note NCAR/TN-464+STR, 226) [M]. Boulder, CO: National Center for Atmospheric Research, 2004.
27 Grell G, Dévényi D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques[J]. Geophysical Research Letters, 2002, 29(14): 10-13.
28 Hong S Y, Noh Y, Dudhia J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Monthly Weather Review, 2006, 134: 2 318-2 341.
29 Niu G, Yang Z, Mitchell K E, et al. The community Noah land surface model with multiparameterization options (Noah‐MP): 1. Model description and evaluation with local‐scale measurements[J]. Journal of Geophysical Research, 2011, 116: D12109. DOI:10.1029/2010JD015139.
doi: 10.1029/2010JD015139    
30 Rodell M, Houser P R, Jambor U, et al. The global land data assimilation system[J]. Bulletin of the American Meteorological Society, 2004, 85: 381-394.
31 Wang A, Zeng X. Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau[J]. Journal of Geophysical Research, 2012, 117: 1-12.
32 Dee D P, Uppala S M, Simmons A J, et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(656): 553-597.
33 Bao X, Zhang F. Evaluation of NCEP-CFSR, NCEP-NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau[J]. Journal of Climate, 2013, 26: 206-214.
34 Dirmeyer P A, Brubaker K L. Characterization of the global hydrologic cycle from a back-trajectory analysis of atmospheric water vapor[J]. Journal of Hydrometeorology, 2007, 8(1): 20-37.
35 Xu Y, Gao Y. Quantification of evaporative sources of precipitation and its changes in the southeastern Tibetan Plateau and middle Yangtze River Basin[J]. Atmosphere, 2019, 10: 428.
36 Zhou C, Zhao P, Chen J, et al. The interdecadal change of summer water vapor over the Tibetan Plateau and associated mechanisms[J]. Journal of Climate, 2019, 32: 4 103-4 119.
37 Lin C, Chen D, Yang K. Impact of model resolution on simulating the water vapor transport through the central Himalayas: Implication for models’ wet bias over the Tibetan Plateau[J]. Climate Dynamic, 2018, 51: 3 195-3 207.
38 Ding Yongjian, Zhang Shiqiang. Study on water internal recycle process and mechanism in typical mountain areas of inland basins, northwest China: Progress and challenge[J]. Advances in Earth Science, 2018, 33(7): 719-727.
丁永建, 张世强. 西北内陆河山区流域内循环过程与机理研究:现状与挑战[J]. 地球科学进展, 2018, 33(7): 719-727.
39 Yang Xianyu. A Study on the Typical Plateau Lake-Atmospheric Interaction and Its Impact on the Local Precipitation[D]. Beijing: University of Chinese Academy of Sciences, 2016.
杨显玉. 典型高原湖泊—大气相互作用及其对局地降水的影响研究[D]. 北京: 中国科学院大学, 2016.
[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[3] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[4] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[5] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[6] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[7] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[8] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[9] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[10] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
[11] 苗毅, 刘海猛, 宋金平, 戴特奇. 青藏高原交通设施建设及影响评价研究进展[J]. 地球科学进展, 2020, 35(3): 308-318.
[12] 王冰笛, 李清泉, 沈新勇, 董李丽, 汪方, 王涛, 梁信忠. 区域气候模式 CWRF对东亚冬季风气候特征的模拟[J]. 地球科学进展, 2020, 35(3): 319-330.
[13] 易雪, 李得勤, 赵春雨, 沈历都, 敖雪, 刘鸣彦. 分析Nudging对辽宁地区降尺度的影响[J]. 地球科学进展, 2018, 33(5): 517-531.
[14] 牛富俊, 王玮, 林战举, 罗京. 青藏高原多年冻土区热喀斯特湖环境及水文学效应研究[J]. 地球科学进展, 2018, 33(4): 335-342.
[15] 刘冠州, 梁信忠. 新一代区域气候模式(CWRF)国内应用进展[J]. 地球科学进展, 2017, 32(7): 781-787.
阅读次数
全文


摘要