1 |
Zhang Renhe, Su Fengge, Jiang Zhihong, et al. An overview of projected climate and environmental changes across the Tibetan Plateau in the 21st century[J]. Chinese Science Bulletin, 2015, 60(32): 3 036-3 047.
|
|
张人禾, 苏凤阁, 江志红, 等. 青藏高原21世纪气候和环境变化预估研究进展[J]. 科学通报, 2015, 60(32): 3 036-3 047.
|
2 |
Huang Jianping, Chen Wen, Wen Zhiping, et al. Review of Chinese atmospheric science research over the past 70 years: Climate and climate change[J]. Science in China(Series D), 2019, 49(10): 1 607-1 640.
|
|
黄建平, 陈文, 温之平,等. 新中国成立70年以来的中国大气科学研究: 气候与气候变化篇[J]. 中国科学:D辑, 2019, 49(10): 1 607-1 640.
|
3 |
Immerzeel W W, Van Beek L P H, Bierkens M F P. Climate change will affect the Asian water towers[J]. Science, 2010, 328(5 984): 1 382-1 385.
|
4 |
Gao Y, Li X, Leung L R, et al. Aridity changes in the Tibetan Plateau in a warming climate[J]. Environmental Research Letters, 2015, 10: 034013.
|
5 |
Chen Deliang, Xu Baiqing, Yao Tandong, et al. Assessment of past, present and future environmental changes on the Tibetan Plateau[J]. Chinese Science Bulletin, 2015, 60(32): 3 025-3 035.
|
|
陈德亮, 徐柏青, 姚檀栋, 等. 青藏高原环境变化科学评估: 过去、现在与未来[J]. 科学通报, 2015, 60(32): 3 025-3 035.
|
6 |
Fu Xiang, Xu Xiangde, Kang Hongwen. Research on precipitation recycling during meiyu season over middle-lower reaches of Changjiang River in 1998[J]. Meteorological Science and Technology, 2006, 34(4): 394-399.
|
|
付翔,徐祥德, 康红文. 长江中下游1998年夏季梅雨期降水再循环研究[J]. 气象科技, 2006, 34(4): 394-399.
|
7 |
Kang Hongwen, Gu Xiangqian, Fu Xiang, et al. Precipitation recycling over the northern China[J]. Quarterly Journal of Applied Meteorology, 2005, 16(2): 139-147.
|
|
康红文, 谷湘潜, 付翔, 等. 我国北方地区降水再循环率的初步评估[J]. 应用气象学报, 2005, 16(2): 139-147.
|
8 |
Gao Yanhong, Cheng Guodong. Several points on mass and entergy interaction between land surface and atmosphere in the Heihe River Basin[J]. Advances in Earth Science, 2008, 23(7):123-128.
|
|
高艳红, 程国栋. 黑河流域陆地—大气相互作用研究的几点思考[J]. 地球科学进展, 2008, 23(7):123-128.
|
9 |
Su Tao, Lu Zhenyu, Zhou Jie, et al. Spatial distribution and seasonal variation characteristics of global atmospheric moisture recycling[J]. Acta Physica Sinica, 2014, 63(9): 457-466.
|
|
苏涛, 卢震宇, 周杰, 等. 全球水汽再循环率的空间分布及其季节变化特征[J]. 物理学报, 2014, 63(9): 457-466.
|
10 |
Zhang Xueqin, Peng Lili, Lin Zhaohui. Progress on the projections of future climate change with various emission scenarios[J]. Advances in Earth Science, 2009, 23(2): 174-185.
|
|
张雪芹, 彭莉莉, 林朝晖.未来不同排放情景下气候变化预估研究进展[J]. 地球科学进展, 2009, 23(2): 174-185.
|
11 |
Wang Xiaoxin, Jiang Dabang, Lang Xianmei. Temperature and precipitation changes over China under a 1.5 ℃ global warming scenario based on CMIP5 models[J]. Chinese Journal of Atmospheric Sciences, 2019, 43(5): 1 158-1 170.
|
|
王晓欣, 姜大膀, 郎咸梅. CMIP5多模式预估的1.5 ℃升温背景下中国气温和降水变化[J]. 大气科学, 2019, 43(5): 1 158-1 170.
|
12 |
Gao Y, Xiao L, Chen D, et al. Comparison between past and future extreme precipitations simulated by global and regional climate models over the Tibetan Plateau[J]. International Journal of Climatology, 2017, 38: 1 285-1 297.
|
13 |
Jiang D, Tian Z, Lang X. Reliability of climate models for China through the IPCC third to fifth assessment reports[J]. International Journal of Climatology, 2016, 36(3): 1 114-1 133.
|
14 |
Hu Qin, Jiang Dabang, Fan Guangzhou. Evaluation of CMIP5 models over the Qinghai-Tibetan Plateau[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(5): 924-938.
|
|
胡芩, 姜大膀, 范广洲. CMIP5全球气候模式对青藏高原地区气候模拟能力评估[J]. 大气科学, 2014, 38(5): 924-938.
|
15 |
Xu Zhongfeng, Han Ying, Yang Zongliang. Dynamical downscaling of regional climate: A review of methods and limitations[J]. Science in China(Series D), 2019, 49(3): 487-498.
|
|
徐忠峰, 韩瑛, 杨宗良. 区域气候动力降尺度方法研究综述[J]. 中国科学: D辑, 2019, 49(3): 487-498.
|
16 |
Li Donghuan, Zou Liwei, Zhou Tianjun. Changes of extreme indices over China in response to 1.5 ℃ global warming projected by a regional climate model[J]. Advances in Earth Science, 2017, 32(4): 446-457.
|
|
李东欢, 邹立维, 周天军. 全球1.5 ℃温升背景下中国极端事件变化的区域模式预估[J]. 地球科学进展, 2017, 32(4): 446-457.
|
17 |
Gao Xuejie, Shi Ying, Giorgi F. A high resolution simulation of climate change over China[J]. Science in China (Series D), 2010, 40(7): 911-922.
|
|
高学杰, 石英, Giorgi F. 中国区域气候变化的一个高分辨率数值模拟[J]. 中国科学:D辑, 2010, 40(7): 911-922.
|
18 |
Gao Y, Xu J, Chen D. Evaluation of WRF mesoscale climate simulations over the Tibetan Plateau during 1979-2011[J]. Journal of Climate, 2015, 28(7): 2 823-2 841.
|
19 |
Zhang H, Gao Y, Xu J, et al. Decomposition of future moisture flux changes over the Tibetan Plateau Projected by Global and Regional Climate Models[J]. Journal of Climate, 2019, 32(20): 7 037-7 053.
|
20 |
Yi Lan, Tao Shiyan. Construction and analysis of a precipitation recycling model[J]. Advances in Water Science, 1997, 8(3): 205-211.
|
|
伊兰, 陶诗言. 一个降水再循环模型的建立及分析[J]. 水科学进展, 1997, 8(3): 205-211.
|
21 |
Wei J, Dirmeyer P A, Bosilovich M G. Water vapor sources for Yangtze River Valley rainfall: Climatology, variability, and implications for rainfall forecasting[J]. Journal of Geophysical Research, 2012, 117: 1-11.
|
22 |
Guo Y, Wang C. Trends in precipitation recycling over the Qinghai-Xizang Plateau in last decades[J]. Journal of Hydrology, 2014, 517: 826-835.
|
23 |
Curio J, Maussion F, Scherer D. A 12-year high-resolution climatology of atmospheric water transport over the Tibetan Plateau[J]. Earth System Dynamics, 2015, 6(1): 109-124.
|
24 |
Zhang C, Tang Q, Chen D. Recent changes in the moisture source of precipitation over the Tibetan Plateau[J]. Journal of Climate, 2017, 30(5): 1 807-1 819.
|
25 |
Wang Ning. Study on the Atmospheric Moisture Cycling over Continental China[D]. Changsha: National University of Defense Technology, 2018.
|
|
王宁. 中国大陆地区大气水循环的研究[D]. 长沙: 国防科技大学, 2018.
|
26 |
Collins W D, Rasch P J, Boville B A, et al. Description of the NCAR Community Atmosphere Model (CAM 3.0) (NCAR Technical Note NCAR/TN-464+STR, 226) [M]. Boulder, CO: National Center for Atmospheric Research, 2004.
|
27 |
Grell G, Dévényi D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques[J]. Geophysical Research Letters, 2002, 29(14): 10-13.
|
28 |
Hong S Y, Noh Y, Dudhia J. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Monthly Weather Review, 2006, 134: 2 318-2 341.
|
29 |
Niu G, Yang Z, Mitchell K E, et al. The community Noah land surface model with multiparameterization options (Noah‐MP): 1. Model description and evaluation with local‐scale measurements[J]. Journal of Geophysical Research, 2011, 116: D12109. DOI:10.1029/2010JD015139.
doi: 10.1029/2010JD015139
|
30 |
Rodell M, Houser P R, Jambor U, et al. The global land data assimilation system[J]. Bulletin of the American Meteorological Society, 2004, 85: 381-394.
|
31 |
Wang A, Zeng X. Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau[J]. Journal of Geophysical Research, 2012, 117: 1-12.
|
32 |
Dee D P, Uppala S M, Simmons A J, et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(656): 553-597.
|
33 |
Bao X, Zhang F. Evaluation of NCEP-CFSR, NCEP-NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau[J]. Journal of Climate, 2013, 26: 206-214.
|
34 |
Dirmeyer P A, Brubaker K L. Characterization of the global hydrologic cycle from a back-trajectory analysis of atmospheric water vapor[J]. Journal of Hydrometeorology, 2007, 8(1): 20-37.
|
35 |
Xu Y, Gao Y. Quantification of evaporative sources of precipitation and its changes in the southeastern Tibetan Plateau and middle Yangtze River Basin[J]. Atmosphere, 2019, 10: 428.
|
36 |
Zhou C, Zhao P, Chen J, et al. The interdecadal change of summer water vapor over the Tibetan Plateau and associated mechanisms[J]. Journal of Climate, 2019, 32: 4 103-4 119.
|
37 |
Lin C, Chen D, Yang K. Impact of model resolution on simulating the water vapor transport through the central Himalayas: Implication for models’ wet bias over the Tibetan Plateau[J]. Climate Dynamic, 2018, 51: 3 195-3 207.
|
38 |
Ding Yongjian, Zhang Shiqiang. Study on water internal recycle process and mechanism in typical mountain areas of inland basins, northwest China: Progress and challenge[J]. Advances in Earth Science, 2018, 33(7): 719-727.
|
|
丁永建, 张世强. 西北内陆河山区流域内循环过程与机理研究:现状与挑战[J]. 地球科学进展, 2018, 33(7): 719-727.
|
39 |
Yang Xianyu. A Study on the Typical Plateau Lake-Atmospheric Interaction and Its Impact on the Local Precipitation[D]. Beijing: University of Chinese Academy of Sciences, 2016.
|
|
杨显玉. 典型高原湖泊—大气相互作用及其对局地降水的影响研究[D]. 北京: 中国科学院大学, 2016.
|