[1] |
Zhou Youwu, Guo Dongxin, Qiu Guoqing, et al.Permafrost in China[M]. Beijing: Science Press, 2000.
|
|
[周幼吾, 郭东信, 邱国庆, 等. 中国冻土[M]. 北京: 科学出版社, 2000.]
|
[2] |
Pan Baotian, Li Jijun. Qinghai-Xizang (Tibetan) Plateau: A driver and amplifier of global climatic changes Ⅱ.Uplift processes of Qinghai-Xizang (Tibetan) Plateau[J]. Journal of Lanzhou University (Natural Sciences), 1995, 31(4): 160-167.
|
|
[潘保田, 李吉均. 青藏高原:全球气候变化的驱动机与放大器Ⅱ. 青藏高原隆起的基本过程[J]. 兰州大学学报:自然科学版, 1995, 31(4): 160-167.]
|
[3] |
Wu Qingbai, Zhang Tingjun.Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007[J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D9).DOI:10.1029/2009JD012974.
|
[4] |
Li Ren, Zhao Lin, Ding Yongjian, et al. Temporal and spatial variations of the active layer along the Qinghai-Tibet Highway in a permafrost region[J]. Chinese Science Bulletin, 2012, 57(35): 4 609-4 616.
doi: 10.1007/s11434-012-5323-8
URL
|
[5] |
Wu Qingbai, Zhu Yuanlin, Liu Yongzhi.Evaluating model of frozen soil environment change under engineering actions[J]. Science in China (Series D), 2002, 45(10): 893-902.
|
|
[吴青柏, 朱元林, 刘永智. 人类工程活动下冻土环境变化评价模型[J]. 中国科学: D 辑, 2002, 32(2): 141-148.]
doi: 10.3321/j.issn:1006-9267.2002.02.007
URL
|
[6] |
Nan Zhuotong, Li Shuxun, Cheng Guodong.Prediction of permafrost distribution on the Qinghai-Tibet Plateau in the next 50 and 100 years[J]. Science in China (Series D), 2005, 48(6): 797-804.
|
|
[南卓铜, 李述训, 程国栋. 未来50 与 100a 青藏高原多年冻土变化情景预测[J]. 中国科学: D 辑, 2004, 34(6): 528-534.]
|
[7] |
Olefeldt D, Goswami S, Grosse G, et al. Circumpolar distribution and carbon storage of thermokarst landscapes[J]. Nature Communications, 2016, 7. DOI:10.1038/ncomms13 043.
doi: 10.1038/ncomms13043
URL
pmid: 27725633
|
[8] |
Fritz M, Vonk J E, Lantuit H.Collapsing Arctic coastlines[J]. Nature Climate Change, 2017, 7(1): 6-7.
doi: 10.1038/nclimate3188
URL
|
[9] |
Zhang G, Yao T, Xie H, et al. Lakes’ state and abundance across the Tibetan Plateau[J]. Chinese Science Bulletin, 2014, 59(24): 3 010-3 021.
doi: 10.1007/s11434-014-0258-x
URL
|
[10] |
Luo J, Niu F, Lin Z, et al. Thermokarst lake changes between 1969 and 2010 in the Beilu River Basin, Qinghai-Tibet Plateau, China[J]. Science Bulletin, 2015, 60(5): 556-564.
doi: 10.1007/s11434-015-0730-2
URL
|
[11] |
Smith L C, Sheng Y, MacDonald G M, et al. Disappearing Arctic lakes[J]. Science, 2005, 308(5 727): 1 429.
doi: 10.1126/science.1108142
URL
|
[12] |
Niu F J, Cheng G D, Luo J, et al. Advances in thermokarst lake research in permafrost regions[J]. Sciences in Cold and Arid Regions, 2014, 6(4): 388-397.
doi: 10.3724/SP.J.1226.2014.00388
URL
|
[13] |
Niu F J, Lin Z J, Liu H, et al. Characteristics of thermokarst lakes and their influence on permafrost in Qinghai-Tibet Plateau[J]. Geomorphology, 2011, 132(3): 222-233.
doi: 10.1016/j.geomorph.2011.05.011
URL
|
[14] |
Gao Z, Niu F, Wang Y, et al. Impact of a thermokarst lake on the soil hydrological properties in permafrost regions of the Qinghai-Tibet Plateau, China[J]. Science of the Total Environment, 2017, 574: 751-759.
doi: 10.1016/j.scitotenv.2016.09.108
URL
|
[15] |
Niu F, Lin Z, Lu J, et al. Assessment of terrain susceptibility to thermokarst lake development along the Qinghai-Tibet engineering corridor, China[J]. Environmental Earth Sciences, 2015, 73(9): 5 631-5 642.
doi: 10.1007/s12665-014-3818-0
URL
|
[16] |
Wang Dexiang, Li Yibing, Yang Gaihe.Progress in the study of the environment of the source regions of Yangtse River, Yellow River and Lantsang River[J]. Journal of Northwest Sci-Tech University of Agricultural and Forestry (Natural Science Edition), 2004, 32(1): 5-10.
|
|
[王得祥, 李轶冰, 杨改河. 江河源区生态环境问题研究现状及进展[J]. 西北农林科技大学学报:自然科学版, 2004, 32(1): 5-10.]
doi: 10.3321/j.issn:1671-9387.2004.01.002
URL
|
[17] |
Cheng Guodong.Some understandings about the eco-environmental protection and buildings in the source region of Yangtze and Yellow Rivers[J]. Advances in Earth Science, 1998, 13(Suppl.):1-5.
|
|
[程国栋. 关于江河源区生态环境保护与建设研究的几点认识[J]. 地球科学进展, 1998, 13(增刊): 1-5.]
|
[18] |
Zhang G, Yao T, Xie H, et al. Increased mass over the Tibetan Plateau: From lakes or glaciers?[J]. Geophysical Research Letters, 2013, 40(10): 2 125-2 130.
doi: 10.1002/grl.50462
URL
|
[19] |
Shen Weishou, Zhang Hui, Zou Changxin.Ecological Impact Prediction and Evaluation of Qinghai-Tibet Railway[M]. Beijing: China Environmental Science Press, 2005.
|
|
[沈寿,张慧,邹长新. 青藏铁路生态影响预测与评价[M]. 北京: 中国环境科学出版社, 2005.]
|
[20] |
Czudek T, Demek J.Thermokarst in Siberia and its influence on the development of lowland relief[J]. Quaternary Research, 1970, 1(1): 103-120.
doi: 10.1016/0033-5894(70)90013-X
URL
|
[21] |
Karlsson J M, Lyon S W, Destouni G.Thermokarst lake, hydrological flow and water balance indicators of permafrost change in Western Siberia[J]. Journal of Hydrology, 2012, 464(1 465): 459-466.
doi: 10.1016/j.jhydrol.2012.07.037
URL
|
[22] |
Yoshikawa K, Hinzman L D.Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska[J]. Permafrost and Periglacial Processes, 2003, 14(2): 151-160.
doi: 10.1002/ppp.451
URL
|
[23] |
Lin Z J, Niu F J, Xu Z Y, et al. Thermal regime of a thermokarst lake and its influence on permafrost, Beiluhe Basin, Qinghai-Tibet Plateau[J]. Permafrost and Periglacial Processes, 2010, 21(4): 315-324.
doi: 10.1002/ppp.v21.4
URL
|
[24] |
Burn C R.Lake-bottom thermal regimes, western Arctic coast, Canada[J]. Permafrost and Periglacial Progresses, 2005, 16(4): 355-367.
doi: 10.1002/ppp.542
URL
|
[25] |
Ling F, Zhang T J.Numerical simulation of permafrost thermal regime and talik development under shallow thermokarst lakes on the Alaskan Arctic Coastal Plain[J]. Journal of Geophysical Research, 2003, 108(16): 26-36.
doi: 10.1029/2002JD003014
URL
|
[26] |
West J J, Plug L J.Time-dependent morphology of thaw lakes and taliks in deep and shallow ground ice[J]. Journal of Geophysical Research, 2008, 113(F1).DOI:10.1029/2006JF000696.
doi: 10.1029/2006JF000696
URL
|
[27] |
Kokelj S V, Lantz T C, Kanigan J, et al. Origin and polycyclic behaviour of thaw slumps, Mackenzie Delta region[J]. Permafrost and Periglacial Processes, 2009, 20(2): 173-184.
doi: 10.1002/ppp.642
URL
|
[28] |
Lombardo U, Veit H.The origin of oriented lakes: Evidence from the Bolivian Amazon[J]. Geomorphology, 2014, 204: 502-509.
doi: 10.1016/j.geomorph.2013.08.029
URL
|
[29] |
Soloviev P A.Thermokarst phenomena and landforms due to frost heaving in Central Yakutia[J]. Peryglacialny Biuletyn, 1973, 23: 135-155.
URL
|
[30] |
Morgenstern A, Grosse G, Guenther F, et al. Spatial analyses of thermokarst lakes and basins in Yedoma landscapes of the Lena Delta[J]. The Cryosphere Discussions, 2011, 5: 849-867.
doi: 10.5194/tc-5-849-2011
URL
|
[31] |
Smith L C, Sheng Y, MacDonald G M, et al. Disappearing Arctic lakes[J]. Science, 2005, 308(5 727): 1 429.
doi: 10.1126/science.1108142
URL
|
[32] |
Kokelj S V, Jorgenson M T.Advances in thermokarst research[J]. Permafrost and Periglacial Processes, 2013, 24(2): 108-119.
doi: 10.1002/ppp.1779
URL
|
[33] |
Marsh P, Russell M, Pohl S, et al. Changes in thaw lake drainage in the Western Canadian Arctic from 1950 to 2000[J]. Hydrological Processes, 2009, 23(1): 145-158.
doi: 10.1002/hyp.7179
URL
|
[34] |
Carroll M L, Townshend J R G, DiMiceli C M, et al. Shrinking lakes of the Arctic: Spatial relationships and trajectory of change[J]. Geophysical Research Letters, 2011, 38(20): L20406.
doi: 10.1029/2011GL049427
URL
|
[35] |
Jones B M, Grosse G, Arp C D, ,et al. Modern thermokarst lake dynamics in the continuous permafrost zone. Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska[J]. Journal of Geophysical Research-Biogeosciences, 2011, 116: G00M03.DOI:10.1029/2011JG001666.
|
[36] |
Lunardini V J.Climatic warming and the degradation of warm permafrost[J]. Permafrost and Periglacial Processes, 1996, 7(4): 311-320.
doi: 10.1002/(ISSN)1099-1530
URL
|
[37] |
Moiseenko T I, Voinov A A, Megorsky V V, et al. Ecosystem and human health assessment to define environmental management strategies: The case of long-term human impacts on an Arctic lake[J]. Science of the Total Environment, 2006, 369(1): 1-20.
doi: 10.1016/j.scitotenv.2006.06.009
URL
pmid: 16920180
|
[38] |
Bouchard F, Francus P, Pienitz R, ,et al. Sedimentology and geochemistry of thermokarst ponds in discontinuous permafrost, subarctic Quebec, Canada[J]. Journal of Geophysical Research, 2011, 116: G00M04.DOI:10.1029/2011JG001675.
doi: 10.1029/2011JG001883
URL
|
[39] |
Soloviev P A.Thermokarst phenomena and landforms due to frost heaving in Central Yakutia[J]. Biuletyn Peryglacjalny, 1973, 23: 135-155.
URL
|
[40] |
Narancic B, Wolfe B B, Pienitz R, et al. Landscape-gradient assessment of thermokarst lake hydrology using water isotope tracers[J]. Journal of Hydrology, 2017, 545(2): 327-338.
doi: 10.1016/j.jhydrol.2016.11.028
URL
|
[41] |
MacDonald L A, Wolfe B B, Turner K W, et al. A synthesis of thermokarst lake water balance in high-latitude regions of North America from isotope tracers[J]. Arctic Science, 2016, 3(2): 118-149.
|