地球科学进展 ›› 2018, Vol. 33 ›› Issue (4): 335 -342. doi: 10.11867/j.issn.1001-8166.2018.04.0335

所属专题: 青藏高原研究——青藏科考虚拟专刊

科技重大计划进展    下一篇

青藏高原多年冻土区热喀斯特湖环境及水文学效应研究
牛富俊 1( ), 王玮 2, 林战举 1, 罗京 1   
  1. 1.冻土工程国家重点实验室 中国科学院西北生态环境资源研究院,甘肃 兰州 730000
    2. 环境科学与工程学院 长安大学,陕西 西安 710054
  • 收稿日期:2018-01-15 修回日期:2018-03-03 出版日期:2018-04-20
  • 基金资助:
    *国家自然科学基金重点项目“青藏高原多年冻土区热喀斯特湖环境及水文学效应”(编号: 41730640) 资助.

Study on Environmental and Hydrological Effects of Thermokarst Lakes in Permafrost Regions of the Qinghai-Tibet Plateau

Fujun Niu 1( ), Wei Wang 2, Zhanju Lin 1, Jing Luo 1   

  1. 1 .State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences, Lanzhou 730000, China
    2 .School of Environmental Science and Engineering, Changan University, Xian 710000, China
  • Received:2018-01-15 Revised:2018-03-03 Online:2018-04-20 Published:2018-05-24
  • About author:

    First author:Niu Fujun(1970-), male, Huining County, Gansu Province, Professor. Research areas include permafrost engineering and thawing hazards.E-mail:niufujun@lzb.ac.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Study on environmental and hydrological effects of thermokarst lakes in permafrost regions of the Qinghai-Tibet Plateau”(No. 41730640).

结合国际冻土研究的热点问题和青藏高原脆弱生态环境可持续发展的需求,针对多年冻土退化过程中趋于加剧的热喀斯特现象,及其因融穿冻土、造成区域地下水位的改变而诱发的生态环境影响,在国家自然科学基金重点项目支持下开展“青藏高原多年冻土区热喀斯特湖环境及水文学效应”研究。项目主要通过遥感分析及野外调查,分析气候变化和工程活动影响下的青藏工程走廊内热喀斯湖时空分布规律,评价其生态环境效应;选取热喀斯湖广泛发育区域,调查其发育条件、规模和几何分布特点,揭示典型热喀斯特湖影响因素变化、水热状况等,通过水文学、同位素示踪试验等阐明热喀斯特湖与地下水之间的转换关系;结合抽水疏干试验进行热喀斯特湖对区域地下水位影响分析,并通过数值模型及模拟,依热喀斯特湖发育不同阶段、规模,分析其对区域冻土、水文条件及生态环境的影响。研究成果将有助于区域性冻土生态环境演化准确评价及趋势预测,以及深入理解诸如江河源多年冻土区水文状况演化影响因素,及其相应的生态环境响应机制。

Thermokarst lake is the most visible morphologic landscape developing during the process of permafrost degradation, and it is still an international hot topic in permafrost research. The climate warming, and the consequent degradation of the permafrost on the Qinghai-Tibet Plateau aggravate thermokarst lake development. The permafrost is normally considered as an aquiclude, and the permafrost degradation, especially when the permafrost is completely thawed by a thermokarst lake, might influence regional ground water. Therefore, a research program focusing on environmental and hydrological effects of thermokarst lakes in permafrost regions of the Qinghai-Tibet Plateau was started and supported by the National Natural Science Foundation of China. The work proposed by the application includes: To analysis the spatial and temporal distribution rule of thermokarst lakes in the Qinghai-Tibet Engineering Corridor (QTEC) under the climate change and engineering activities, and to evaluate the ecological environment effects through remote sensing and field investigation; to reveal the main factors influencing a typical thermokarst lake and its hydrothermal condition, and to elucidate the conversion relationship between the thermokarst lake and the groundwater with hydrological and isotope tracer tests; to make an analysis of the influences of different lake stage and size on regional permafrost, hydrological conditions and ecological environment through numerical simulation and statistical modelling, considering the relationships between the thermokarst lake and the ground water level. The research results will help to accurately assess regional permafrost ecological environment evolution and trend prediction, and to reasonably understand the impact factors of the permafrost hydrological evolution and its response mechanism to the ecological environment in the river source regions of the Qinghai-Tibet Plateau. In this paper, the research status analysis, the main research contents, research objectives and prospects were introduced so as to provide some references for related researchers and engineers.

中图分类号: 

图1 发育在不同多年冻土区的热融湖塘现象
(a)俄罗斯雅库茨克地区;(b)加拿大育空地区;(c)青藏高原北麓河盆地;(d)东北大兴安岭
Fig.1 Thermokarst lakes in different permafrost regions
(a)Thermokarst lake developed in Yakutsk, Russia; (b)Yukon, Canada; (c)Beiluhe basin of the Qinghai-Tibet Plateau, China; (d)Daxinganling, Northeast China
图1 发育在不同多年冻土区的热融湖塘现象
(a)俄罗斯雅库茨克地区;(b)加拿大育空地区;(c)青藏高原北麓河盆地;(d)东北大兴安岭
Fig.1 Thermokarst lakes in different permafrost regions
(a)Thermokarst lake developed in Yakutsk, Russia; (b)Yukon, Canada; (c)Beiluhe basin of the Qinghai-Tibet Plateau, China; (d)Daxinganling, Northeast China
图2 热喀斯特湖融穿引起的周边生态环境退化(据参考文献[ 22 ]修改)
Fig.2 Ecosystem degradation caused by a thermokarst lake in permafrost region(modified after reference[22])
图2 热喀斯特湖融穿引起的周边生态环境退化(据参考文献[ 22 ]修改)
Fig.2 Ecosystem degradation caused by a thermokarst lake in permafrost region(modified after reference[22])
[1] Zhou Youwu, Guo Dongxin, Qiu Guoqing, et al.Permafrost in China[M]. Beijing: Science Press, 2000.
[周幼吾, 郭东信, 邱国庆, 等. 中国冻土[M]. 北京: 科学出版社, 2000.]
[2] Pan Baotian, Li Jijun. Qinghai-Xizang (Tibetan) Plateau: A driver and amplifier of global climatic changes Ⅱ.Uplift processes of Qinghai-Xizang (Tibetan) Plateau[J]. Journal of Lanzhou University (Natural Sciences), 1995, 31(4): 160-167.
[潘保田, 李吉均. 青藏高原:全球气候变化的驱动机与放大器Ⅱ. 青藏高原隆起的基本过程[J]. 兰州大学学报:自然科学版, 1995, 31(4): 160-167.]
[3] Wu Qingbai, Zhang Tingjun.Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007[J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D9).DOI:10.1029/2009JD012974.
[4] Li Ren, Zhao Lin, Ding Yongjian, et al. Temporal and spatial variations of the active layer along the Qinghai-Tibet Highway in a permafrost region[J]. Chinese Science Bulletin, 2012, 57(35): 4 609-4 616.
doi: 10.1007/s11434-012-5323-8     URL    
[5] Wu Qingbai, Zhu Yuanlin, Liu Yongzhi.Evaluating model of frozen soil environment change under engineering actions[J]. Science in China (Series D), 2002, 45(10): 893-902.
[吴青柏, 朱元林, 刘永智. 人类工程活动下冻土环境变化评价模型[J]. 中国科学: D 辑, 2002, 32(2): 141-148.]
doi: 10.3321/j.issn:1006-9267.2002.02.007     URL    
[6] Nan Zhuotong, Li Shuxun, Cheng Guodong.Prediction of permafrost distribution on the Qinghai-Tibet Plateau in the next 50 and 100 years[J]. Science in China (Series D), 2005, 48(6): 797-804.
[南卓铜, 李述训, 程国栋. 未来50 与 100a 青藏高原多年冻土变化情景预测[J]. 中国科学: D 辑, 2004, 34(6): 528-534.]
[7] Olefeldt D, Goswami S, Grosse G, et al. Circumpolar distribution and carbon storage of thermokarst landscapes[J]. Nature Communications, 2016, 7. DOI:10.1038/ncomms13 043.
doi: 10.1038/ncomms13043     URL     pmid: 27725633
[8] Fritz M, Vonk J E, Lantuit H.Collapsing Arctic coastlines[J]. Nature Climate Change, 2017, 7(1): 6-7.
doi: 10.1038/nclimate3188     URL    
[9] Zhang G, Yao T, Xie H, et al. Lakes’ state and abundance across the Tibetan Plateau[J]. Chinese Science Bulletin, 2014, 59(24): 3 010-3 021.
doi: 10.1007/s11434-014-0258-x     URL    
[10] Luo J, Niu F, Lin Z, et al. Thermokarst lake changes between 1969 and 2010 in the Beilu River Basin, Qinghai-Tibet Plateau, China[J]. Science Bulletin, 2015, 60(5): 556-564.
doi: 10.1007/s11434-015-0730-2     URL    
[11] Smith L C, Sheng Y, MacDonald G M, et al. Disappearing Arctic lakes[J]. Science, 2005, 308(5 727): 1 429.
doi: 10.1126/science.1108142     URL    
[12] Niu F J, Cheng G D, Luo J, et al. Advances in thermokarst lake research in permafrost regions[J]. Sciences in Cold and Arid Regions, 2014, 6(4): 388-397.
doi: 10.3724/SP.J.1226.2014.00388     URL    
[13] Niu F J, Lin Z J, Liu H, et al. Characteristics of thermokarst lakes and their influence on permafrost in Qinghai-Tibet Plateau[J]. Geomorphology, 2011, 132(3): 222-233.
doi: 10.1016/j.geomorph.2011.05.011     URL    
[14] Gao Z, Niu F, Wang Y, et al. Impact of a thermokarst lake on the soil hydrological properties in permafrost regions of the Qinghai-Tibet Plateau, China[J]. Science of the Total Environment, 2017, 574: 751-759.
doi: 10.1016/j.scitotenv.2016.09.108     URL    
[15] Niu F, Lin Z, Lu J, et al. Assessment of terrain susceptibility to thermokarst lake development along the Qinghai-Tibet engineering corridor, China[J]. Environmental Earth Sciences, 2015, 73(9): 5 631-5 642.
doi: 10.1007/s12665-014-3818-0     URL    
[16] Wang Dexiang, Li Yibing, Yang Gaihe.Progress in the study of the environment of the source regions of Yangtse River, Yellow River and Lantsang River[J]. Journal of Northwest Sci-Tech University of Agricultural and Forestry (Natural Science Edition), 2004, 32(1): 5-10.
[王得祥, 李轶冰, 杨改河. 江河源区生态环境问题研究现状及进展[J]. 西北农林科技大学学报:自然科学版, 2004, 32(1): 5-10.]
doi: 10.3321/j.issn:1671-9387.2004.01.002     URL    
[17] Cheng Guodong.Some understandings about the eco-environmental protection and buildings in the source region of Yangtze and Yellow Rivers[J]. Advances in Earth Science, 1998, 13(Suppl.):1-5.
[程国栋. 关于江河源区生态环境保护与建设研究的几点认识[J]. 地球科学进展, 1998, 13(增刊): 1-5.]
[18] Zhang G, Yao T, Xie H, et al. Increased mass over the Tibetan Plateau: From lakes or glaciers?[J]. Geophysical Research Letters, 2013, 40(10): 2 125-2 130.
doi: 10.1002/grl.50462     URL    
[19] Shen Weishou, Zhang Hui, Zou Changxin.Ecological Impact Prediction and Evaluation of Qinghai-Tibet Railway[M]. Beijing: China Environmental Science Press, 2005.
[沈寿,张慧,邹长新. 青藏铁路生态影响预测与评价[M]. 北京: 中国环境科学出版社, 2005.]
[20] Czudek T, Demek J.Thermokarst in Siberia and its influence on the development of lowland relief[J]. Quaternary Research, 1970, 1(1): 103-120.
doi: 10.1016/0033-5894(70)90013-X     URL    
[21] Karlsson J M, Lyon S W, Destouni G.Thermokarst lake, hydrological flow and water balance indicators of permafrost change in Western Siberia[J]. Journal of Hydrology, 2012, 464(1 465): 459-466.
doi: 10.1016/j.jhydrol.2012.07.037     URL    
[22] Yoshikawa K, Hinzman L D.Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska[J]. Permafrost and Periglacial Processes, 2003, 14(2): 151-160.
doi: 10.1002/ppp.451     URL    
[23] Lin Z J, Niu F J, Xu Z Y, et al. Thermal regime of a thermokarst lake and its influence on permafrost, Beiluhe Basin, Qinghai-Tibet Plateau[J]. Permafrost and Periglacial Processes, 2010, 21(4): 315-324.
doi: 10.1002/ppp.v21.4     URL    
[24] Burn C R.Lake-bottom thermal regimes, western Arctic coast, Canada[J]. Permafrost and Periglacial Progresses, 2005, 16(4): 355-367.
doi: 10.1002/ppp.542     URL    
[25] Ling F, Zhang T J.Numerical simulation of permafrost thermal regime and talik development under shallow thermokarst lakes on the Alaskan Arctic Coastal Plain[J]. Journal of Geophysical Research, 2003, 108(16): 26-36.
doi: 10.1029/2002JD003014     URL    
[26] West J J, Plug L J.Time-dependent morphology of thaw lakes and taliks in deep and shallow ground ice[J]. Journal of Geophysical Research, 2008, 113(F1).DOI:10.1029/2006JF000696.
doi: 10.1029/2006JF000696     URL    
[27] Kokelj S V, Lantz T C, Kanigan J, et al. Origin and polycyclic behaviour of thaw slumps, Mackenzie Delta region[J]. Permafrost and Periglacial Processes, 2009, 20(2): 173-184.
doi: 10.1002/ppp.642     URL    
[28] Lombardo U, Veit H.The origin of oriented lakes: Evidence from the Bolivian Amazon[J]. Geomorphology, 2014, 204: 502-509.
doi: 10.1016/j.geomorph.2013.08.029     URL    
[29] Soloviev P A.Thermokarst phenomena and landforms due to frost heaving in Central Yakutia[J]. Peryglacialny Biuletyn, 1973, 23: 135-155.
URL    
[30] Morgenstern A, Grosse G, Guenther F, et al. Spatial analyses of thermokarst lakes and basins in Yedoma landscapes of the Lena Delta[J]. The Cryosphere Discussions, 2011, 5: 849-867.
doi: 10.5194/tc-5-849-2011     URL    
[31] Smith L C, Sheng Y, MacDonald G M, et al. Disappearing Arctic lakes[J]. Science, 2005, 308(5 727): 1 429.
doi: 10.1126/science.1108142     URL    
[32] Kokelj S V, Jorgenson M T.Advances in thermokarst research[J]. Permafrost and Periglacial Processes, 2013, 24(2): 108-119.
doi: 10.1002/ppp.1779     URL    
[33] Marsh P, Russell M, Pohl S, et al. Changes in thaw lake drainage in the Western Canadian Arctic from 1950 to 2000[J]. Hydrological Processes, 2009, 23(1): 145-158.
doi: 10.1002/hyp.7179     URL    
[34] Carroll M L, Townshend J R G, DiMiceli C M, et al. Shrinking lakes of the Arctic: Spatial relationships and trajectory of change[J]. Geophysical Research Letters, 2011, 38(20): L20406.
doi: 10.1029/2011GL049427     URL    
[35] Jones B M, Grosse G, Arp C D, ,et al. Modern thermokarst lake dynamics in the continuous permafrost zone. Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska[J]. Journal of Geophysical Research-Biogeosciences, 2011, 116: G00M03.DOI:10.1029/2011JG001666.
[36] Lunardini V J.Climatic warming and the degradation of warm permafrost[J]. Permafrost and Periglacial Processes, 1996, 7(4): 311-320.
doi: 10.1002/(ISSN)1099-1530     URL    
[37] Moiseenko T I, Voinov A A, Megorsky V V, et al. Ecosystem and human health assessment to define environmental management strategies: The case of long-term human impacts on an Arctic lake[J]. Science of the Total Environment, 2006, 369(1): 1-20.
doi: 10.1016/j.scitotenv.2006.06.009     URL     pmid: 16920180
[38] Bouchard F, Francus P, Pienitz R, ,et al. Sedimentology and geochemistry of thermokarst ponds in discontinuous permafrost, subarctic Quebec, Canada[J]. Journal of Geophysical Research, 2011, 116: G00M04.DOI:10.1029/2011JG001675.
doi: 10.1029/2011JG001883     URL    
[39] Soloviev P A.Thermokarst phenomena and landforms due to frost heaving in Central Yakutia[J]. Biuletyn Peryglacjalny, 1973, 23: 135-155.
URL    
[40] Narancic B, Wolfe B B, Pienitz R, et al. Landscape-gradient assessment of thermokarst lake hydrology using water isotope tracers[J]. Journal of Hydrology, 2017, 545(2): 327-338.
doi: 10.1016/j.jhydrol.2016.11.028     URL    
[41] MacDonald L A, Wolfe B B, Turner K W, et al. A synthesis of thermokarst lake water balance in high-latitude regions of North America from isotope tracers[J]. Arctic Science, 2016, 3(2): 118-149.
[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[3] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[4] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[5] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[6] 贾诗超,张廷军,范成彦,刘琳,邵婉婉. InSAR技术多年冻土研究进展[J]. 地球科学进展, 2021, 36(7): 694-711.
[7] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[8] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[9] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[10] 张富贵, 周亚龙, 孙忠军, 方慧, 杨志斌, 祝有海. 中国多年冻土区天然气水合物地球化学勘探技术研究进展[J]. 地球科学进展, 2021, 36(3): 276-287.
[11] 李欣泽, 金会军, 吴青柏, 魏彦京, 温智. 北极多年冻土区埋地输气管道周边温度场数值分析[J]. 地球科学进展, 2021, 36(1): 69-82.
[12] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[13] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
[14] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[15] 苗毅, 刘海猛, 宋金平, 戴特奇. 青藏高原交通设施建设及影响评价研究进展[J]. 地球科学进展, 2020, 35(3): 308-318.
阅读次数
全文


摘要