地球科学进展 ›› 2021, Vol. 36 ›› Issue (7): 727 -739. doi: 10.11867/j.issn.1001-8166.2021.056

青藏高原综合科学考察研究 上一篇    下一篇

青藏高原东北缘晚更新世以来环境变化研究进展
柯思茵 1, 2, 3( ),张冬丽 1, 2, 3,王伟涛 1, 2, 3( ),王孟豪 1, 2, 3,段磊 1, 2, 3,杨敬钧 1, 2, 3,孙鑫 1, 2, 3,郑文俊 1, 2, 3   
  1. 1.中山大学地球科学与工程学院 广东省地球动力作用与地质灾害重点实验室,广东 广州 510275
    2.南方海洋科学与工程广东省实验室(珠海),广东 珠海 519082
    3.中国地震局地质研究所 地震动力学国家重点实验室,北京 100029
  • 收稿日期:2021-04-09 修回日期:2021-05-24 出版日期:2021-07-10
  • 通讯作者: 王伟涛 E-mail:kesy3@mail2.sysu.edu.cn;wangweitao@mail.sysu.edu.cn
  • 基金资助:
    第二次青藏高原综合科学考察研究项目“活动断裂与地震灾害”(2019QZKK0901);国家自然科学基金项目“基于三维构造模型的滨海断裂带地震危险性评价和震害情景预测”(41774049)

Progress of Environmental Change in the Northeastern Tibetan Plateau Since Late Pleistocene

Siyin KE 1, 2, 3( ),Dongli ZHANG 1, 2, 3,Weitao WANG 1, 2, 3( ),Menghao WANG 1, 2, 3,Lei DUAN 1, 2, 3,Jingjun YANG 1, 2, 3,Xin SUN 1, 2, 3,Wenjun ZHENG 1, 2, 3   

  1. 1.Guangdong Provincial Key Laboratory of Geodynamics and Geohazards,School of Earth Sciences and Engineering,Sun Yat-sen University,Guangzhou 510275,China
    2.Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai),Zhuhai Guangdong 519082,China
    3.State Key Laboratory of Earthquake Dynamics,Institute of Geology,China Earthquake Administration,Beijing 100029,China
  • Received:2021-04-09 Revised:2021-05-24 Online:2021-07-10 Published:2021-08-20
  • Contact: Weitao WANG E-mail:kesy3@mail2.sysu.edu.cn;wangweitao@mail.sysu.edu.cn
  • About author:KE Siyin (1996-), female, Maoming City, Guangdong Province, Master student. Research areas include quaternary sediments and environment. E-mail: kesy3@mail2.sysu.edu.cn
  • Supported by:
    the Second Tibetan Plateau Scientific Expedition and Research "Active faults and earthquake disasters"(2019QZKK0901);The National Natural Science Foundation of China "Seismic risk assessment and damage scenario prediction of coastal fault zone based on 3D structural model"(41774049)

青藏高原东北缘作为响应东亚季风边缘区环境变化的理想场所,其丰富的沉积记录可反映详细的环境变化过程。重点对近30年来青藏高原东北缘沉积与环境演化研究中的年代学、环境代用指标、环境演化过程及区域一致性等方面的主要研究进展进行总结。青藏高原东北缘环境研究中粒度、磁化率、碳酸盐含量和以总有机碳、常微量元素为主的地球化学指标是最常用的研究手段;综合区域晚更新世以来沉积环境研究结果,将高原东北缘环境演化过程分成5个阶段,即在东亚季风和西风环流的共同影响下经历了温暖湿润—寒冷干燥—温暖偏湿—偏冷干燥转温凉偏湿—相对温湿转相对冷干的发展阶段;而青藏高原东北缘气候记录与亚洲区域及全球记录对比结果显示具有区域性,其主要因素可能是北半球太阳辐射变化的驱动所导致的高纬度温度和冰量变化以及北大西洋温盐环流的影响;青藏高原东北缘晚更新世可能存在两期大范围的高湖面,分别在MIS 3和MIS 5阶段,其时间的差异显示从高原内部向东北方向高湖面出现的时间逐渐变年轻,可能反映了高原东北缘构造与环境变化的响应。综合认为,未来青藏高原东北缘环境研究重点可从高分辨率沉积序列的建立、高湖面时间的确立以及更精确的环境代用指标应用等方面进一步深入研究,以期获得更高分辨的环境变化信息。

The northeastern Tibetan Plateau is an ideal area to study the environmental changes in the East Asian monsoon marginal zone, and its rich sedimentary records can reflect the detailed environmental change process. The main research progress of sedimentation environment evolution on the northeastern Tibetan Plateau during the past 30 years is summarized, focusing on the chronological frame, the proxies for environmental research, environmental evolution process and the regional consistency of environmental changes in the northeastern Tibetan Plateau. The grain size, magnetic susceptibility and geochemical indicators dominated by carbonate content, total organic carbon and major and minor elements are the most commonly research methods in environmental studies in the northeastern Tibetan Plateau. Based on the research results of sedimentary environment since Late Pleistocene, the evolution process can be divided into five stages, which experienced the development stages of being warm and humid cold and dry, slightly warm and humid, slightly cold and dry then slightly moderate-wet, relatively moderate warm and humid then moderate cold and dry with the common influence of East Asian monsoon and west wind. The climate records of the northeastern margin of the Qinghai-Tibet Plateau are regional compared with those of Asia and the world, and the main factors may be driven by the change of solar radiation in the northern hemisphere and the North Atlantic thermohaline circulation. The research shows that there may be two periods of high lake level with large area, namely MIS 3 and MIS 5 stages. The difference of times shows that the occurrence time of high lake level becomes younger from the interior of the Tibetan Plateau to the northeast, which may reflect a response of tectonic and environmental changes in the northeastern Tibetan Plateau. In conclusion, the further environmental research on the northeastern Tibetan Plateau may focus on the establishment of high-resolution sedimentary sequence, the time of high lake level and the application of more accurate environmental proxies, in order to obtain higher resolution environmental change information.

中图分类号: 

图1 青藏高原东北缘地质概况及沉积示意图
Fig. 1 The map of geology and sedimentation in the NE Tibetan Plateau
图2 青藏高原东北缘环境代用指标研究进展和发展历程
Fig. 2 The process of environmental proxies in NE Tibetan Plateau
图3 青藏高原东北缘晚更新世以来各气候阶段划分
(a)湟水阶地黄土粒径大于63 μm的含量 14 ;(b)陇西盆地黄土频率磁化率 9 ;(c)柴达木盆地孢粉蒿属和藜科比值(A/C) 28 ;(d)察尔汗盐湖碳酸盐氧同位素 26 ;(e)青海湖碳酸盐含量 19 ;(f)达连海Rb/Sr值 24 ;(g)青海湖水深变化 62 ;(h)更尕海水深变化 22
Fig. 3 The climatic stages since late Pleistocene in the NE Tibetan Plateau
(a) Content of loess particle size larger than 63 μm in Huangshui terrace 14 ; (b) Frequency magnetic susceptibility of loess in Longxi Basin 9 ; (c) Artimisia/Chenopodiaceae(A/C) ratio of pollen of Qaidam Basin 28 ; (d) Carbonate oxygen isotope of Qarhan Salt Lake 26 ; (e) Qinghai Lake carbonate content 19 ; (f) Rb/Sr ratio of Dalian Lake 24 ; (g) Water depth of Qinghai Lake 62 ; (h) Water depth of Gengga Lake 22
图4 青藏高原东北缘气候记录与其他区域的对比
(a)深海底栖有孔虫氧同位素 3 ;(b)古里雅冰芯氧同位素 7 ;(c)湟水阶地黄土粒径大于63 μm的含量变化 14 ;(d)合作盆地黄土粒径大于40 μm的含量变化 10 ;(e)塔吉克斯坦黄土频率磁化率 72 ;(f)洛川黄土粒径大于40 μm的含量变化 73 ;(g)三宝洞石笋氧同位素 74 ;(h)7月65°N太阳辐射 75
Fig. 4 Comparison between climate records in the NE Tibetan Plateau and other regions
(a) Oxygen isotope of deep sea foraminiferan 3 ; (b) Oxygen isotope of Guliya ice core 7 ; (c) Content of loess particle size larger than 63 μm in Huangshui terrace 14 ; (d) Content of loess particle size larger than 40 μm in Hezuo Basin 10 ; (e) Frequency magnetic susceptibility of Tajikistan loess 72 ; (f) Content of loess particle size larger than 40 μm in Luochuan 73 ; (g) Oxygen isotope of stalagmite of Sanbao Cave 74 ; (h) 65°N solar radiation in July 75
图5 青藏高原东北缘及其周围高湖面出现的时间
Fig. 5 Time of high lake level in NE Tibetan Plateau and its surrounding areas
1 QIANG Mingrui, SONG Lei, CHEN Fahu, et al. A 16-ka lake-level record inferred from macrofossils in a sediment core from Genggahai Lake, northeastern Qinghai Tibetan Plateau (China)[J]. Journal of Paleolimnology, 2013, 49(4):575-590.
2 QIN Xiaoguang, YIN Zhiqiang, WANG Meihua, et al. Loess records of the Holocene climate change of Gonghe and Guide basins in the northeastern boundary of the Tibet Plateau[J]. Acta Geologica Sinica, 2017, 91(1):266-286.
秦小光,殷志强,汪美华,等.青藏高原东北缘共和—贵德盆地全新世气候变化[J].地质学报,2017,91(1):266-286.
3 LISIECKI L E, RAYMO M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1). DOI:10.1029/2004PA001071.
doi: 10.1029/2004PA001071    
4 HEINRICH H. Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years[J]. Quaternary Research, 1988, 29(2):142-152.
5 DANSGAARD W, JOHNSEN S J, CLAUSEN S B, et al. Evidence for general instability of past climate from a 250-kyr ice-core record[J]. Nature, 1993, 364(6 434):218-220.
6 BOND G, HEINRICH H, BROECKER W, et al. Evidence for massive discharges of icebergs into the North Atlantic Ocean during the Last Glacial Period[J]. Nature, 1992, 360(6 401):245-249.
7 YAO Tandong, THOMPSON L G, SHI Yafeng, et al. Climate variation since the Last Interglaciation recorded in the Guliya ice core[J]. Science in China (Series D), 1997, 27:447-452.
姚檀栋,THOMPSON L G,施雅风,等.古里雅冰芯中末次冰期以来气候变化记录研究[J]. 中国科学:D辑,1997,27:447-452.
8 WANG Weitao, KIRBY E, ZHANG Peizhen, et al. Tertiary basin evolution along the northeastern margin of the Tibetan Plateau: evidence for basin formation during Oligocene transtension[J]. Geological Society of America Bulletin, 2013, 125(3/4):377-400.
9 YANG Dong, JIAO Jinyu, TIAN Na, et al. Process of monsoon variations of the northeastern Qnghai-Xizang Pateau from the loess record of Longxi Basin since the Last Interglacial Epoch[J]. Arid Land Geography, 2008, 31(1):23-30.
杨东,焦金鱼,田娜,等.陇西黄土沉积记录反映的末次间冰期以来青藏高原东北部季风的演化过程[J].干旱区地理,2008,31(1):23-30.
10 Lianqing Lü, FANG Xiaomin, LU Huayu, et al. Millennialscale climate change since the Last Glaciation recorded by grain sizes of loess deposits on the northeastern Tibetan Plateau[J]. Chinese Science Bulletin, 2004, 49(11):1 157-1 164.
吕连清,方小敏,鹿化煜,等.青藏高原东北缘黄土粒度记录的末次冰期千年尺度气候变化[J].科学通报,2004,49(11):1 157-1 164.
11 LU Huayu, WANG Xiaoyong, MA Haihzou, et al. The plateau monsoon variation during the past 130 kyr revealed by loess deposit at northeast Qinghai Tibet (China)[J]. Global and Planetary Change, 2004, 41:207-214.
12 RAO Zhiguo, CHEN Fahu, WANG Haibin, et al. Eastern Asian summer monsoon variation during MIS 5e as recorded by paleosoil S1 at Jiuzhoutai loess section[J]. Marine Geology & Quaternary Geology, 2006, 26(2):103-111.
饶志国,陈发虎,汪海斌,等.九州台古土壤S1记录的末次间冰期东亚夏季风变化[J].海洋地质与第四纪地质,2006,26(2):103-111.
13 YIN Zhiqiang, WEI Gang, QIN Xiaoguang, et al. Study on the loess record of the climate change since 26 ka B.P. from Xunhua to Guanting Basin in the northern boundary of the Tibetan Plateau[J]. Quaternary Science,2019, 39(5):1 181-1 190.
殷志强,魏刚,秦小光,等.青藏高原东北缘循化—官亭地区2.6万年以来气候变化研究[J].第四纪研究,2019,39(5):1 181-1 190.
14 LI Guoqiang, ZHANG Haixia, LIU Xiangjun, et al. Paleoclimatic changes and modulation of East Asian summer monsoon by high-latitude forcing over the last 130,000 years as revealed by independently dated loesspaleosol sequences on the NE Tibetan Plateau[J]. Quaternary Science Reviews, 2020. DOI:10.1016/j.quascirev.2020.106283.
doi: 10.1016/j.quascirev.2020.106283    
15 YIN Ke, HONG Hanlie, GAO Wenpeng, et al. Clay mineralogical and geochemical records of paleoclimate in Linxia since the Last Interglacial[J]. Acta Pedologica Sinica, 2012, 49(2):246-259.
殷科,洪汉烈,高文鹏,等.末次间冰期以来临夏地区气候变化的黏土矿物学及地球化学记录[J].土壤学报,2012,49(2):246-259.
16 WANG Huanye, DONG Hailiang, ZHANG Chuanlun, et al. Water depth affecting thaumarchaeol production in Lake Qinghai, northeastern Qinghai-Tibetan Plateau: implications for paleo lake levels and paleoclimate[J]. Chemical Geology, 2014, 368:76-84.
17 LANG Lili. Dust storm recorded by Lake Genggahai since 15 ka BP[D]. Lanzhou: Lanzhou University, 2010.
郎丽丽.15 ka来更尕海湖泊沉积记录的尘暴事件[D].兰州:兰州大学,2010.
18 WANG Xianyan, YI Shuangwen, LU Huayu, et al. Aeolian process and climatic changes in loess records from the northeastern Tibetan Plateau: response to global temperature forcing since 30 ka[J]. Paleoceanography,2015, 30(6): 612-620.
19 AN Zhisheng, COLMAN S M, ZHOU Weijian, et al. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka[J]. Scientific Reports,2012, 2:619.
20 CHEN Zhong. Carbon and oxygen isotope record of climatic environmental evolution in the Gahai Lake, Delingha since Late Deglaciation[D]. Beijing: University of Chinese Academy of Sciences, 2007.
陈忠.冰消期晚期以来德令哈尕海湖气候环境演变的碳、氧同位素记录[D].北京:中国科学院大学,2007.
21 SHEN Ji, LIU Xingqi, MATSUMOTO R, et al. A high-resolution climatic change since the Late Glacial Age inferred from multiproxy of sediments in Qinghai Lake[J]. Science in China (Series D), 2004, 34(6):582-589.
沈吉,刘兴起,MATSUMOTO Ryo,等.晚冰期以来青海湖沉积物多指标高分辨率的古气候演化[J].中国科学:D辑,2004,34(6):582-589.
22 QIANG Mingrui, SONG Lei, JIN Yanxiang, et al. A 16ka oxygen-isotope record from Genggahai Lake on the northeastern Qinghai Tibetan Plateau: hydroclimatic evolution and changes in atmospheric circulation[J]. Quaternary Science Reviews, 2017, 162:72-87.
23 SAINI J, GüNTHER F, AICHNER B, et al. Climate variability in the past ~19,000 yr in NE Tibetan Plateau inferred from biomarker and stable isotope records of Lake Donggi Cona[J]. Quaternary Science Reviews,2017,157:129-140.
24 WU Duo, ZHOU Aifeng, ZHANG Jiawu, et al. Temperatureinduced dry climate in basins in the northeastern Tibetan Plateau during the early to middle Holocene[J]. Quaternary Science Reviews, 2020, 237(8). DOI:10.1016/j.quascirev.2020.106311.
doi: 10.1016/j.quascirev.2020.106311    
25 AN Fuyuan, MA Haizhou, WEI Haicheng, et al. Distinguishing aeolian signature from lacustrine sediments of the Qaidam Basin in northeastern Qinghai Tibetan Plateau and its palaeoclimatic implications[J]. Aeolian Research, 2012, 4:17-30.
26 FAN Qishun, MA Haizhou, WEI Haicheng, et al. Late Pleistocene paleoclimatic history documented by an oxygen isotope record from carbonate sediments in Qarhan Salt Lake, NE Qinghai-Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2014, 85:202-209.
27 HOU Xianhua, ZHENG Mianping, YANG Zhenjing, et al. Sporo-pollen assemblage and palaeoenvironment since 130 ka BP in Dalangtan Lake of Qaidam Basin[J]. Arid Land Geography, 2011, 34(2): 243-251.
侯献华,郑绵平,杨振京,等.柴达木盆地大浪滩130 ka BP以来的孢粉组合与古气候[J].干旱区地理,2011,34(2):243-251.
28 WEI Haicheng, FAN Qishun, ZHAO Yan, et al. A 94-10ka pollen record of vegetation change in Qaidam Basin, northeastern Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015,431:43-52.
29 ZHANG Hucai, LEI Guoliang, CHANG Fengqin, et al. Age determination of shell bar section in Salt Lake Qarhan, Qaidam Basin[J]. Quaternary Science, 2007, 27(4):511-521.
张虎才,雷国良,常凤琴,等.柴达木盆地察尔汗贝壳堤剖面年代学研究[J].第四纪研究,2007,27(4):511-521.
30 LIU Bing, JIN Heling, SUN Lianying, et al. Holocene climatic change revealed by aeolian deposits from the Gonghe Basin, northeastern Qinghai Tibetan Plateau[J]. Quaternary International, 2013, 296:231-240.
31 Zhiqiang Lü, LU Ruijie, LIU Xiaokang, et al. Holocene aeolian activities on sedimentary record at the east of Qinghai Lake[J]. Arid Land Geography, 2018, 41(3):536-544.
吕志强,鲁瑞洁,刘小槺,等.青海湖湖东沙地沉积记录的全新世以来风沙活动变化[J].干旱区地理,2018,41(3):536-544.
32 LI Mingzhi. Aeolian activity and climatic changes in the Gonghe Basin since the Last Glacial Maximum[D]. Lanzhou: Lanzhou University, 2012.
李明治.共和盆地末次盛冰期以来的风沙活动历史与气候变化[D].兰州:兰州大学,2012.
33 CHEN Tao. Climate change recorded by aeolian deposits from eastern Qaidam Basin since the Last Deglaciation period[D]. Beijing: University of Chinese Academy of Sciences, 2015.
陈涛.末次冰消期以来柴达木盆地东部风成沉积记录的气候变化[D].北京:中国科学院大学,2015.
34 HU Mengjun, LI Sen, GAO Shangyu, et al. Evolution process of land desertification around Qinghai Lake since 32 ka BP reflected by sediment grain-size features[J]. Journal of Desert Research, 2012, 32(5):1 240-1 247.
胡梦珺,李森,高尚玉,等.风成沉积物粒度特征及其反映的青海湖周边近32 ka以来土地沙漠化演变过程[J].中国沙漠,2012,32(5):1 240-1 247.
35 YU Suhua, ZHENG Honghan. REE of sediments of the Changliushui Section at Zhongwei County of Ningxia Province and the environmental significance[J]. Acta Sedimentologica Sinica, 1999, 17(1):149-155.
余素华,郑洪汉.宁夏中卫长流水剖面沉积物中稀土元素及其环境意义[J].沉积学报,1999,17(1):149-155.
36 HAN Fang, ZHANG Kexin, WEI Yi, et al. Sedimentary sequences and Paleoclimate of Late Pleistocene in Xunhua Basin, Qinghai Province[J]. Eearth Science—Journal of China University of Geosciences, 2010, 35(5):849-856.
韩芳,张克信,韦一,等.青海循化盆地晚更新世沉积序列与古气候[J].地球科学——中国地质大学学报,2010,35(5):849-856.
37 LIU Sisi, HUANG Xiaozhong, QIANG Mingrui, et al. Vegetation and climate change during the mid-late Holocene reflected by the pollen record from lake Genggahai northeastern Tibetan Plateau[J]. Quaternary Sciences, 2016, 36(2):247-256.
刘思丝,黄小忠,强明瑞,等.孢粉记录的青藏高原东北部更尕海地区中晚全新世植被和气候变化[J].第四纪研究,2016,36(2):247-256.
38 HU Xiaofei, PAN Baotian, GAO Hongshan, et al. Development of Holocene fluvial terraces in the eastern Qilianshan Mountain and its relationship with climate changes[J]. Quaternary Sciences, 2013, 33(4):723-736.
胡小飞,潘保田,高红山,等.祁连山东段全新世河流阶地发育及其与气候变化的关系研究[J].第四纪研究,2013,33(4):723-736.
39 LIU Xingxing, VANDENBERGHE J, AN Zhihseng, et al. Grain size of Lake Qinghai sediments: implications for riverine input and Holocene monsoon variability[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 449:41-51.
40 CHENG Bo, CHEN Fahu, ZHANG Jiawu, et al. Palaeovegetational and palaeoenvironmental changes in Gonghe Basin since Last Deglaciation[J]. Acta Geographica Sinica, 2010, 65(11):1 336-1 344.
程波,陈发虎,张家武,等.共和盆地末次冰消期以来的植被和环境演变[J].地理学报,2010,65(11): 1 336-1 344.
41 ZHANG Xiying, QU Jingwei, ZHANG Wei, et al. Age model and palaeoclimatic changes of DG03 Core of Gahai Lake in Delingha Basin[J]. Ludong University Journal(Natural Science Edition), 2009, 25(1):68-72.
张西营,渠敬伟,张伟,等.德令哈盆地尕海湖DG03孔岩芯年龄模式与古气候变化[J].鲁东大学学报:自然科学版,2009,25(1):68-72.
42 LIU Xingqi, DONG Hailiang, RECH J A, et a1. Evolution of Chaka Salt Lake in NW China in response to climatic change during the Latest Pleistocene Holocene[J]. Quaternary Science Reviews, 2008, 27(7/8): 867-879.
43 SHEN Ji, LIU Xingqi, WANG Sumin, et al. Palaeoclimatic changes in the Qinghai Lake area during the last 18,000 years[J]. Quaternary International, 2005, 136(1):131-140.
44 YANG Shuaibin, QIAO Yansong, PENG Shasha, et al. Geochemical characteristics of eolian deposits in the northeastern margin of the Tibetan Plateau and implications for provenance and intensity[J]. Quaternary Sciences, 2017,37(1): 1-13.
杨帅斌,乔彦松,彭莎莎,等.青藏高原东北缘黄土的地球化学特征及其对物源和风化强度的指示意义[J].第四纪研究,2017,37(1):1-13.
45 LIU Bing, JIN Heling, SUN Zhong, et al. Progress of studies of climate and environment changes in Gonghe Basin, Northeastern Tibetan Plateau, since the Last Glacial Maximum Period[J]. Journal of Glaciology and Geocryology, 2012,34(2):403-410.
刘冰,靳鹤龄,孙忠,等.末次盛冰期以来青藏高原东北部共和盆地气候与环境变化研究进展[J].冰川冻土,2012,34(2):403-410.
46 WU Duo. Changes of regional hydrology and summer monsoon since the Last Glacial Maximum recorded by Dalianhai Lake, Tibetan Plateau[D]. Lanzhou: Lanzhou University, 2017.
吴铎.青藏高原达连海记录的末次盛冰期以来区域水文与夏季风变化研究[D].兰州:兰州大学,2017.
47 WEI Doudou. Study on Late Holocene environmental evolution recorded by Dalianhai Lake[D]. Xining: Qinghai University, 2015.
魏豆豆.达连海湖泊记录的晚全新世环境演变[D].西宁:青海大学,2015.
48 AN Fuyuan, MA Haizhou, WEI Haicheng, et al. Grainsize distribution patterns of lacustrine sediments of Qarhan area and its environmental significance[J]. Arid Land Geography, 2013, 36(2):212-220.
安福元,马海州,魏海成,等.柴达木盆地察尔汗湖相沉积物的粒度分布模式及其环境意义[J].干旱区地理,2013,36(2):212-220.
49 LEI Guoliang, ZHANG Hucai, ZHANG Wenxiang, et al. Characteristics of grainsize and sedimentation of Shell Bar section in Salt Lake Qarharn Qaidam Basin[J]. Acta Sedimentologica Sinica, 2007, 25(2):274-282.
雷国良,张虎才,张文翔,等.柴达木盆地察尔汗古湖贝壳堤剖面粒度特征及其沉积环境[J].沉积学报,2007,25(2):274-282.
50 HU Mengjun, FENG Shuqin, LI Xiangfeng, et al. The environmental evolution of the Gonghe basin since the 12ka revealed by magnetic susceptibility data[J]. Journal of Stratigraphy, 2019, 43(1):101-108.
胡梦珺,冯淑琴,李向锋,等.马四剖面揭示的共和盆地12 ka以来的环境演变[J].地层学杂志,2019,43(1):101-108.
51 LIU Bing, JIN Heling, SUN Zhong, et al. Spatiotemporal evolution of sandy land in the Gonghe Basin during the Holocene period and its driving mechanism[J]. Journal of Desert Research, 2014, 34(4):982-991.
刘冰,靳鹤龄,孙忠,等.全新世共和盆地沙地时空演化及其驱动机制[J].中国沙漠,2014,34(4):982-991.
52 LI Tengfei, LI Jinfeng, LU Ruijie, et al. Extraction of grainsize components with environmentally sensitivity of aeolian sediments in eastern shore of Qinghai Lake and their palaeoclimatic implications[J]. Journal of Desert Research, 2017, 37(5):878-884.
李腾飞,李金凤,鲁瑞洁,等.青海湖东岸沙地风成沉积物粒度敏感组分及其古气候意义[J].中国沙漠,2017,37(5):878-884.
53 ZHOU Liping, OLDFIELD F, WINTLE A G, et al. Partly pedogenic origin of magnetic variations in Chinese Loess[J]. Nature, 1990, 346:737-739.
54 LIU Bing, JIN Heling, SUN Zhong, et al. Millennial scale climate change in the Holocene revealed by trace elements of aeolian deposits in northeastern Qinghai-Tibet Plateau[J]. Journal of Palaeogeography, 2013, 15(3):423-433.
刘冰,靳鹤龄,孙忠,等.青藏高原东北部风成沉积微量元素揭示的全新世千年尺度气候变化[J].古地理学报,2013,15(3):423-433.
55 PAN Ninghui. The climate and environmental evolution and aeolian activity since the Holocene in the Gonghe Basin recorded by masi section[D]. Lanzhou: Northwest Normal University, 2017.
潘宁惠.共和盆地马四剖面记录的全新世以来的风沙活动与气候环境演变化[D].兰州:西北师范大学,2017.
56 ZHANG Wanyi, ZHNG Jingya, NURSAT N, et al. The records of Donggi Cona lake level fluctuations since the Holocene in the northeastern Tibetan Plateau[J]. Quaternary Science, 2019, 39(4):1 018-1 033.
张菀漪,张静雅,NUSRAT Nazir,等.青藏高原东北缘冬给错纳湖全新世湖面波动[J].第四纪研究,2019,39(4):1 018-1 033.
57 IJMKER J, STAUCH G, P?TSCH S, et al. Dry periods on the NE Tibetan Plateau during the Late Quaternary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 346/347(3/4):108-119.
58 HOU Xianhua, ZHENG Mianping, ZHANG Chengjun, et al. Sedimentary characteristics and paleoenvironmental of Dalangtan Salt Lake in western Qaidam Basin, since 140 ka BP[J]. Acta Geologica Sinica,2010, 84(11): 1 623-1 630.
侯献华,郑绵平,张成君,等.柴达木盆地西部大浪滩140 ka以来沉积特征与古环境[J].地质学报,2010,84(11):1 623-1 630.
59 WEI Haicheng, FAN Qishun, AN Fuyuan. Chemical elements in core sediments of the Qarhan Salt Lake and palaeoclimate evolution during94-9 ka[J]. Acta Geoscientica Sinica, 2016, 37(2): 193-203.
魏海成,樊启顺,安福元. 94~9 ka察尔汗盐湖的气候环境演化过程[J].地球学报,2016,37(2):193-203.
60 WANG H Y, DONG Hailiang, ZHANG Chuanlun, et al. Deglacial and Holocene archaeal lipid-inferred paleohydrology and paleotemperature history of Lake Qinghai, northeastern Qinghai-Tibetan Plateau[J]. Quaternary Research, 2015, 83(1):116-126.
61 WANG Huanye, LIU Weiguo. Advances in paleoclimate proxies based on microbial glycerol dialkyl glycerol tetraether lipids on the Qinghai-Tibet Plateau[J]. Journal of Salt Lake Research, 2016, 24(2):75-82.
王欢业,刘卫国.青藏高原微生物甘油二烷基甘油四醚类化合物古气候指标研究进展[J].盐湖研究,2016,24(2):75-82.
62 WANG Zheng, ZHANG Fan, LI Xianzhong, et al. Changes in the depth of Lake Qinghai since the Last Deglaciation and Asynchrony between lake depth and precipitation over the northeastern Tibetan Plateau[J]. Global and Planetary Change, 2020, 188:103156.
63 XU Shuying. The paleosols and their reflection of the environmental changes in the northeast region of the Qinghai Xizang Plateau[J]. Scientia Geographica Sinica, 1994, 14(3):225-232.
徐叔鹰.青藏高原东北部的古土壤及其对环境变化的反映[J].地理科学,1994,14(3):225-232.
64 YANG Qinghua, HOU Xianhua, YANG Zhenjing, et al. Vegetation characteristics and environmental changes since the Last Interglacial Period in western Qaidam Basin[J]. Mountain Research, 2017, 35(5):742-752.
杨庆华,侯献华,杨振京,等.柴达木盆地西部末次间冰期以来植被特征及其环境变化[J].山地学报,2017,35(5):742-752.
65 LUO Congwen, MA Yuzhen, WANG Kai, et al. Vegetation and climate inferred from pollen record in East Asian region during MIS 5: a review[J]. Advances in Earth Science, 2019, 34(5):540-551.
雒聪文,马玉贞,王凯,等.东亚地区MIS 5时期孢粉记录的植被与气候研究进展[J].地球科学进展,2019,34(5):540-551.
66 SHAN Fashou, DU Naiqiu, SUN Zhaochen. Vegetational and environmental changes in the last 350ka in Erlangjian Qinghai Lake[J]. Journal of Lake Science, 1993,5(1):9-17.
山发寿,杜乃秋,孙昭宸.青海湖盆地35万年来植被演化及环境变迁[J].湖泊科学,1993,5(1):9-17.
67 CHEN Kezao, BOWLER J M, KELTS K. Palaeocliniatic evolution within the Qinghai-Xizang (Tibet) Plateau in the last40 000 years[J]. Quaternary Science, 1990(1):21-30.
陈克造,BOWLER J M,KELTS K.四万年来青藏高原的气候变迁[J].第四纪研究,1990(1):21-30.
68 MCMANUS J F, OPPO D W, CULLEN J L. A 0.5-million-year record of millennialscale climate variability in the North Atlantic[J]. Science, 1999, 283(5 404): 971-975.
69 SONG Lei, QIANG Mingrui, LANG Lili, et al. Changes in palaeoproductivity of Genggahai Lake over the past 16 ka in the Gonghe Basin, northeastern Qinghai-Tibetan Plateau[J]. Chinese Science Bulletin, 2012, 57(19):1 763-1 774.
宋磊,强明瑞,郎丽丽,等.16ka BP共和盆地更尕海湖泊生产力演化历史[J].科学通报,2012,57(19):1 763-1 774.
70 WANG Xin, ZHANG Jinhui, JIA Jia, et al. Pleistocene loesspaleosol sequences in arid Central Asia:state of art[J]. Advances in Earth Science, 2019, 34(1):34-47.
王鑫,张金辉,贾佳,等.中亚干旱区第四系黄土和干旱环境研究进展[J].地球科学进展,2019,34(1):34-47.
71 CHENG Hai, SINHA A, WANG Xianfeng, et al. The global paleomonsoon as seen through speleothem records from Asia and the Americas[J]. Climate Dynamics, 2012, 39(5): 1 045-1 062.
72 WANG Youjun, JIA Jia, LIU Hao, et al. The magnetic susceptibility recorded millennial-scale variability in Central Asia during Last Glacial and Interglacial[J]. Geophysical Journal International, 2018, 215(3):1 781-1 788.
73 LU Huayu, AN Zhisheng. Paleoclimatic significance of grain size of loess-paleosol deposit in Chinese Loess Plateau[J]. Chinese Science Bulletin, 1997, 42(1):66-69.
鹿化煜,安芷生.洛川黄土粒度组成的古气候意义[J].科学通报,1997,42(1):66-69.
74 CHENG Hai, EDWARDS R L, SINHA A, et al. The Asian monsoon over the past 640,000 years and ice age terminations[J]. Nature, 2016, 534(7 609):640-646.
75 BERGER A L. Longterm variations of caloric insolation resulting from the Earth's orbital elements 1[J]. Quaternary Research, 1978, 9(2):139-167.
76 CHEN Fahu, JIA Jia, CHEN Jianhui, et al. A persistent Holocene wetting trend in arid Central Asia with wettest conditions in the late Holocene, revealed by multi-proxy analyses of loesspaleosol sequences in Xinjiang, China[J]. Quaternary Science Reviews, 2016,146(15):134-146.
77 LI Guoqiang, CHEN Fahu, XIA Dunsheng, et al. A Tianshan Mountains loesspaleosol sequence indicates antiphase climatic variations in arid Central Asia and in East Asia[J]. Earth and Planetary Science Letters, 2018, 494(15):153-163.
78 CHEN Fahu, XU Qinghai, CHEN Jianhui, et al. East Asian summer monsoon precipitation variability since the Last Deglaciation[J]. Scientific Reports, 2015,5. DOI:10.1038/srep11186.
doi: 10.1038/srep11186    
79 JIA Yulian, SHI Yafeng, CAO Jianting, et al. The precipitation of interior lakes in the southwestern Tibetan Plateau at 40~30 ka BP[J]. Advances in Earth Science, 2001, 16(3):346-351.
贾玉连,施雅风,曹建廷,等. 40~30 ka BP期间高湖面稳定存在时青藏高原西南部封闭流域的古降水量研究[J].地球科学进展,2001,16(3):346-351.
80 LI Bingyuan. The Last Greatest Lakes on the Xizang (Tibetan) Plateau[J]. Acta Geographica Sinica, 2000(2):174-182.
李炳元.青藏高原大湖期[J].地理学报,2000(2):174-182.
81 ZHANG Hucai, WüNNEMANN B, MA Yuzhen, et al. Lake level and climate changes between 42,000 and 18,000 14 CyrBP in the Tengger Desert, northwestern China[J]. Quaternary Research, 2002, 58 (1): 62-72.
82 CHEN Fahu, FAN Yuxin, MADSEN D B, et al. Preliminary study on the formation mechanism of the "Jilantai-Hetao" megalake and the lake evolutionary history in Hetao region[J]. Quaternary Sciences, 2008, 28(5):866-873.
陈发虎,范育新,MADSEN Davaid B,等.河套地区新生代湖泊演化与“吉兰泰—河套”古大湖形成机制的初步研究[J].第四纪研究,2008,28(5):866-873.
83 FAN Qishun, LAI Zhongping, LONG Hao, et al. OSL chronology for lacustrine sediments recording high stands of Gahai Lake in Qaidam Basin, northeastern Qinghai-Tibetan Plateau[J]. Quaternary Geochronology, 2010, 5(2): 223-227.
84 MADSEN D B, MA Haihzou, RHODE D, et al. Age constraints on the Late Quaternary evolution of Qinghai lake, Tibetan Plateau[J]. Quaternary Research, 2008, 69(2):316-325.
85 LAI Zhongping, MISOHKE S, MADSEN D B, et al. Paleoenvironmental implications of new OSL dates on the formation of the "Shell Bar" in the Qaidam Basin, northeastern Qinghai Tibetan Plateau[J]. Journal of Paleolimnology2014, 51(2):197-210.
86 ZHOU Jie, ZHOU Weijian, DONG Guocheng, et al. Cosmogenic 10Be and 26Al exposure dating of Nam Co lake terraces since MIS 5, southern Tibetan Plateau[J]. Quaternary Science Reviews, 2020, 231. DOI:10.1016/j.quascirev.2020.106175.
doi: 10.1016/j.quascirev.2020.106175    
[1] 陈发虎, 董广辉, 陈建徽, 郜永祺, 黄伟, 王涛, 陈圣乾, 侯居峙. 亚洲中部干旱区气候变化与丝路文明变迁研究:进展与问题[J]. 地球科学进展, 2019, 34(6): 561-572.
[2] 周烨, 蒋富清, 南青云, 刘华华, 李安春. 奄美三角盆地晚更新世以来碎屑沉积物粒度特征及其物源和古气候意义[J]. 地球科学进展, 2016, 31(3): 298-309.
[3] 房启飞, 张虎权. 地球系统变化对叠层石衰减影响的研究综述[J]. 地球科学进展, 2014, 29(9): 1003-1010.
[4] 刘学, 张志强, 郑军卫, 赵纪东, 王立伟. 关于人类世问题研究的讨论[J]. 地球科学进展, 2014, 29(5): 640-649.
[5] 刘倩, 高辰晶, 赵元杰, 夏训诚. 塔克拉玛干沙漠南缘红柳沙包落叶阳离子含量及气候环境变化[J]. 地球科学进展, 2013, 28(12): 1326-1334.
[6] 史培军,李 宁,叶谦,董文杰,韩国义,方伟华. 全球环境变化与综合灾害风险防范研究[J]. 地球科学进展, 2009, 24(4): 428-435.
[7] 张虎才. 我国东北地区晚更新世中晚期环境变化与猛犸象—披毛犀动物群绝灭研究综述[J]. 地球科学进展, 2009, 24(1): 49-60.
[8] 曲建升,葛全胜,张雪芹. 全球变化及其相关科学概念的发展与比较[J]. 地球科学进展, 2008, 23(12): 1277-1284.
[9] 金海燕,翦知湣. 南海北部ODP 1144站中更新世气候转型期有孔虫稳定同位素古气候意义[J]. 地球科学进展, 2007, 22(9): 914-921.
[10] 郑度,姚檀栋. 青藏高原隆升及其环境效应[J]. 地球科学进展, 2006, 21(5): 451-458.
[11] 姚檀栋,朱立平. 青藏高原环境变化对全球变化的响应及其适应对策[J]. 地球科学进展, 2006, 21(5): 459-464.
[12] 刘燕华,葛全胜,方修琦,张雪芹. 全球环境变化与中国国家安全[J]. 地球科学进展, 2006, 21(4): 346-351.
[13] 赵生才. 中国全球环境变化研究[J]. 地球科学进展, 2005, 20(10): 1153-1156.
[14] 童庆禧. 空间对地观测与全球变化的人文因素[J]. 地球科学进展, 2005, 20(1): 1-005.
[15] 刘燕华;葛全胜;张雪芹. 关于中国全球环境变化人文因素研究发展方向的思考[J]. 地球科学进展, 2004, 19(6): 889-895.
阅读次数
全文


摘要