地球科学进展 ›› 2014, Vol. 29 ›› Issue (9): 1003 -1010. doi: 10.11867/j.issn.1001-8166.2014.09.1003

上一篇    下一篇

地球系统变化对叠层石衰减影响的研究综述
房启飞( ), 张虎权   
  1. 中国石油勘探开发研究院西北分院,甘肃 兰州 730020
    中国石油天然气集团公司油藏描述重点实验室,甘肃 兰州 730020
  • 收稿日期:2014-06-16 修回日期:2014-08-01 出版日期:2014-09-10
  • 基金资助:
    国家重大科技专项“海相碳酸盐岩储层地震描述与油气藏有效预测”(编号:2011ZX05004-03)资助

A Review of Earth System Change Impacts on the Stromatolite Decline

Qifei Fang( ), Huquan Zhang   

  1. 1.Northwest Research Institute of Petroleum Exploration & Development,Petrochina,Lanzhou 730020,China;
    2.Key Laboratory of Reservoir Description,CNPC,Lanzhou 730020,China
  • Received:2014-06-16 Revised:2014-08-01 Online:2014-09-10 Published:2014-09-10

关于叠层石衰减的影响因素至今存在争议。现今研究多集中于显生宙后生动物及微观环境的影响,而忽略了地球系统变化的作用。地史中全球变化从区域尺度调控着大气圈、生物圈、水圈,共同影响叠层石生长所必需的一系列环境因素,与全球叠层石衰减的时间和因果关系具有良好的相关性。在不同地质时期,全球变化以不同的事件组合选择性地作用于造叠层石微生物群落发育以及碳酸盐岩沉积速率上,从而主导着叠层石的兴衰。在综述国内外研究进展的基础上,综合分析了不同时期叠层石衰减与全球变化的响应关系,为今后的相关研究提出了重要线索,同时对未来研究应关注的问题及方向提出了建议。

Discussion in the influencing factors of stromatolite decline would provide a great significance to the research of microbolites. The influencing factors of stromatolite decline are disputed. Now the influences of metazoan and microcosmic environment are focused,but weakening the role of global events weakens. During the geologic history, the global change regulates the atmosphere,biosphere and hydrosphere from the perspective of regional scale. It contains the increase of atmospheric oxygen amount,the supercontinent event,the "snowball" event and the biological outbreak and extinction. All these jointly work on a series of environment factors which are necessary for the stromatolite growth. In addition, stromatolite decline has a perfect time fitness and causal relationship with these global changes. During the different geologic time, global change with several different event combinations manages the rise and decline of stromatolite, by acting on the development of stromatolite biogenesis and the deposition rate of carbonatite selectively. By reviewing and summarizing literature data, the response relationship between stromatolite decline and global change is analyzed synthetically. It is the study that puts forward the important clues for future related research. Moreover, the tendency and key issues of stromatolite decline and global change for future research are touched upon.

中图分类号: 

[1] Riding R. The term stromatolite:Towards an essential definition[J]. Lethaia,1999,32(4):321-330.
[2] Riding R. Microbial carbonates:The geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology,2000,47(1):179-214.
[3] Cao Ruiji,Yuan Xunlai. Advances of stromatolite study in China[J]. Acta Palaeontologica Sinica,2009,48(3):314-321.
曹瑞骥,袁训来. 中国叠层石研究进展[J]. 古生物学报,2009,48(3):314-321.
[4] Cao Ruiji,Yuan Xunlai. Stromatolite[M]. Hefei:Press of University of Science and Technology of China,2006:383.
曹瑞骥,袁训来. 叠层石[M]. 合肥:中国科学技术大学出版社,2006:383.
[5] Chang Yuguang,Bai Wanbei,Qi Yong’an,et al. Microfossil assemblage and its sedimentary environment in Cambrian stromatolites,Western He’nan[J]. Advances in Earth Science,2014,29(4):456-463.
常玉光,白万备,齐永安,等. 豫西寒武纪叠层石微生物化石组合及其沉积环境[J]. 地球科学进展,2014,29(4):456-463.
[6] Hoffman. Archean stromatolites as microbial archives[C]∥Riding R,Awramik S M, eds. Microbial Sediment. Heidelberg: Springer-Verlag,2000:315-327.
[7] Riding R. Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time[J]. Sedimentary Geology,2006,185(3/4):229-238.
[8] Awramik S M. Precambrian columnar stromatolite diversity:Reflection of metazoan appearance[J]. Science,1971,174:825-827.
[9] Fischer A G. NAS Symposium on the evolution of the Earth’s atmosphere:Fossils,early life,and atmospheric history[J]. Proceedings of the National Academy of Sciences of the United States of America,1965,53(6):1 205.
[10] Walter M R,Heys G R. Links between the rise of the Metazoa and the decline of stromatolites[J]. Precambrian Research,1985,29:149-174.
[11] Grotzinger J P. Geochemical model for Proterozoic stromatolite decline[J]. American Journal of Science,1990,190A:80-103.
[12] Mei Mingxiang. Sedimentary features and their implication for the depositional succession of non-stromatolitic carbonates,Mesoproterozoic Gaoyuzhuang Formation in Yanshan area of north China[J]. Geoscience,2007,21(1):45-56.
梅冥相. 燕山地区中元古代高于庄组非叠层石碳酸盐岩序列的沉积特征及其重要意义[J]. 现代地质,2007,21(1):45-56.
[13] Mei Mingxiang. Brief introduction on megafossil of algae and relative Precambrian enigmas:Ponder on some phenomena from the third member of Gaoyuzhuang Formation of the early Mesoproterozoic at the Jixian section[J]. Geoscience,2009,23(4):616-624.
梅冥相.宏观藻类化石及其相关的“前寒武纪谜”:对天津蓟县剖面中元古代早期高于庄组第三段中一些现象的思考[J]. 现代地质,2009,23(4):616-624.
[14] Mei Mingxiang. Microbial-mat sedimentology:A young branch from sedimentology[J]. Advances in Earth Science,2011,26(6):586-597.
梅冥相. 微生物席沉积学:一个年轻的沉积学分支[J]. 地球科学进展,2011,26(6):586-597.
[15] Su Ling,Chen Liuqin. Stromatolite declines and molar-tooth carbonates:Contributions to the understanding of the Precambrian carbonate world[J]. Geological Science and Technology Information, 2008,27(6):17-23.
苏玲,陈留勤. 叠层石衰减事件及臼齿构造碳酸盐岩作用幕——了解前寒武纪碳酸盐岩世界的重要线索[J]. 地质科技情报, 2008,27(6):17-23.
[16] Knoll A H,Carroll S B. Early animal evolution:Emerging views from comparative biology and geology[J]. Science,1999,284:2 129-2 137.
[17] Shen Shuzhong,Zhu Maoyan,Wang Xiangdong,et al. A comparison of the biological,geological events and environmental backgrounds between the Neoproterozoic-Cambrian and Permian-Triassic transitions[J]. Science in China(Series D),2010,40(9):1 228-1 240.
沈树忠,朱茂炎,王向东,等. 新元古代—寒武纪与二叠—三叠纪转折时期生物和地质事件及其环境背景之比较[J]. 中国科学:D辑, 2010,40(9):1 228-1 240.
[18] Shen Wenjie,Zhang Hua,Sun Yongge,et al. Evidences for the Permian-Triassic wildfire event:Review and appraisal[J]. Advances in Earth Science,2012,27(6):613-623.
沈文杰,张华,孙永革,等. 二叠纪—三叠纪界线大火燃烧的地层记录:研究进展回顾与评述[J]. 地球科学进展,2012,27(6):613-623.
[19] Huang Keke,Huang Sijing,Lan Yefang,et al. Review of the carbon isotope of Early Triassic carbonates[J]. Advances in Earth Science,2013,28(3):357-365.
黄可可,黄思静,兰叶芳,等. 早三叠世海相碳酸盐碳同位素研究进展[J]. 地球科学进展,2013,28(3):357-365.
[20] Philip C J D, Jonathan B A. Origins of multicellularity[J]. Nature,2010,466:41-42.
[21] Shi Xiaoying,Zhang Chuanheng,Jiang Ganqing,et al. Microbial mats from the Mesoproterozoic carbonates of the North China platform and their potential for hydrocarbon-generation[J]. Geoscience, 2008,22(5):669-681.
史晓颖,张传恒,蒋干清,等. 华北地台中元古代碳酸盐岩中的微生物成因构造及其生烃潜力[J]. 现代地质,2008,22(5):669-681.
[22] Sun Shu,Wang Chengshan. Deep time and sedimentology[J]. Acta Sedimentologica Sinica,2009,27(5):792-810.
孙枢,王成善. “深时”(Deep Time)研究与沉积学[J]. 沉积学报, 2009,27(5):792-810.
[23] Zhao Zhenhua. Banded iron formation and related great oxidation event[J]. Earth Science Frontiers, 2010,17(2):1-12.
赵振华. 条带状铁建造(BIF)与地球大氧化事件[J]. 地学前缘,2010,17(2):1-12.
[24] Nisbet E,Fowler C M R. The evolution of the atmosphere in the Archaean and early Proterozoic[J]. Chinese Science Bulletin,2011,56:4-13.
[25] Catling D C,Claire M W,Zahnle K J. Anaerobic methanotrophy and the rise of atmospheric oxygen[J]. Philosophical Transactions of the Royal Society of London A:Physical, Mathematical and Engineering Sciences,2007,365(1 856):1 867-1 888.
[26] Kasting J F,Ono S. Palaeoclimates:The first two billion years[J]. Philosophical Transactions of the Royal Society of London B:Biological Sciences,2006,361(1 470):917-929.
[27] Holland H D. The oxygenation of the atmosphere and oceans[J]. Philosophical Transactions of the Royal Society of London B:Biological Sciences,2006,361(1 470):903-915.
[28] Claire M W,Catling D C,Zahnle K J. Biogeochemical modelling of the rise in atmospheric oxygen[J]. Geobiology,2006,4(4):239-269.
[29] Aspler L B,Wisotzek I E,Chiarenzelli J R,et al. Paleoproterozoic intracratonic basin processes,from breakup of Kenorland to assembly of Laurentia:Hurwitz Basin,Nunavut,Canada[J]. Sedimentary Geology,2001,141:287-318.
[30] Young G M. The geologic record of glaciation:Relevance to the climatic history of Earth[J]. Geoscience Canada,1991,18(3):100-108.
[31] Young G M. Stratigraphic and tectonic settings of Proterozoic glaciogenic rocks and banded iron-formations:Relevance to the snowball Earth debate[J]. Journal of African Earth Sciences,2002,35(4):451-466.
[32] Young G M. Earth’s two great Precambrian glaciations:Aftermath of the “Snowball Earth” hypothesis[C]∥Eriksson P G, Altermann W, Nelson D R, et al, eds. The Precambrian Earth: Tempos and Events. Amsterdam:Elsevier,2004:440-448.
[33] Trendall A F,Blockley J G. Precambrian iron-formation[C]∥Eriksson P G, Altermann W, Nelson D R, et al, eds. The Precambrian Earth: Tempos and Events. Amsterdam:Elsevier,2004:403-412.
[34] Lindsay J F,Brasier M D. The evolution of the Precambrian atmosphere:Carbon isotopic evidence from the Australian continent[C]∥Eriksson P G, Altermann W, Nelson D R, et al, eds. The Precambrian Earth: Tempos and Events. Amsterdam:Elsevier,2004:388-421.
[35] Rogers J J W,Santosh M. Configuration of Columbia,a Mesoproterozoic supercontinent[J]. Gondwana Research,2002,5(1):5-22.
[36] Lu Songnian,Yang Chunliang. North China continent and Columbia supercontinent[J]. Earth Science Frontiers,2002,9(4):225-233.
陆松年,杨春亮. 华北古大陆与哥伦比亚超大陆[J]. 地学前缘,2002,9(4):225-233.
[37] Altermann W. Precambrian stromatolites:Problems in definition, classification, morphology and stratigraphy[C]∥Eriksson P G, Altermann W, Nelson D R, et al, eds. The Precambrian Earth: Tempos and Events. Amsterdam:Elsevier,2004:564-574.
[38] Mei Mingxiang. Research on forming mechanism of long-term sequences:The second advance in sequence stratigraphy[J]. Journal of Palaeogeography,2010,12(6):711-728.
梅冥相. 长周期层序形成机制的探索:层序地层学进展之二[J]. 古地理学报,2010,12(6):711-728.
[39] McMenamin M A,McMenamin D L S. The Emergence of Animals:The Cambrian breakthrough[M]. New Tork: Columbia University Press,1990.
[40] Hoffman P F. The break-up of Rodinia,birth of Gondwana,true polar wander and the snow ball Earth[J]. Journal of African Earth Science,1998,28:17-33.
[41] Hoffman P F,Kaufman A J,Halverson G P. Comings and goings of global glaciation on a Neoproterozoic tropical platform in Namibia[J].GSA Today,1998,8:1-9.
[42] Hoffman P F,Kaufman A J,Halverson G P,et al. A Neoproterozoic snowball[J]. Earth Science,1998,281:1 342-1 346.
[43] Grotzinger J P,Knoll A H. Anomalous carbonate precipitates:Is the Precambrian the key to the Permian?[J]. Palaios,1995,10:578-596.
[44] Wang Ye,Yan Xiaodong. The study progress on the Earth’s climate during the Neoproterozoic[J]. Climatic and Environmental Research,2011,16(3):399-406.
王叶,延晓冬.新元古代地球气候研究进展[J].气候与环境研究,2011,16(3):399-406.
[45] Hoffman P F. The break-up of Rodinia,birth of Gondwana,true polar wander and the snowball Earth[J]. Journal of African Earth Science,1999,28:17-33.
[46] Zhang Qirui,Chu Xuelei. From global glaciation to snowball Earth:Recent researches on the Neoproterozoic glaciation events[J]. Geological Journal of China Universities,2002,8(4):473-481.
张启锐,储雪蕾. 从 “全球冰川” 到 “雪球假说”——关于新元古代冰川事件的最新研究[J]. 高校地质学报,2002,8(4):473-481.
[47] Boyle R A,Lenton T M,Williams H T P. Neoproterozoic ‘snowball Earth’ glaciations and the evolution of altruism[J]. Geobiology,2007,5:337-349.
[1] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[2] 张懿, 陈龙, 李建, 黄治清, 王东歌, 韦轶, 史强, 吴庆铭, 旷红伟, 柳永清. 新元古代微生物成锰作用——来自扬子北缘城口地区陡山沱组锰质叠层石的证据[J]. 地球科学进展, 2021, 36(10): 1052-1076.
[3] 张薇. 现代碳酸盐叠层石的重要进展及意义[J]. 地球科学进展, 2020, 35(1): 70-78.
[4] 陈发虎, 董广辉, 陈建徽, 郜永祺, 黄伟, 王涛, 陈圣乾, 侯居峙. 亚洲中部干旱区气候变化与丝路文明变迁研究:进展与问题[J]. 地球科学进展, 2019, 34(6): 561-572.
[5] 关秀宇, 郭杰, 陈海燕, 修迪, 张运强. 冀北承德盆地奥陶纪冶里组叠层石的发现及沉积环境[J]. 地球科学进展, 2018, 33(5): 545-553.
[6] 曲建升, 肖仙桃, 曾静静. 国际气候变化科学百年研究态势分析 *[J]. 地球科学进展, 2018, 33(11): 1193-1202.
[7] 史培军, 王爱慧, 孙福宝, 李宁, 叶涛, 徐伟, 王静爱, 杨建平, 周洪建. 全球变化人口与经济系统风险形成机制及评估研究[J]. 地球科学进展, 2016, 31(8): 775-781.
[8] 吴炳方, 邢强. 遥感的科学推动作用与重点应用领域[J]. 地球科学进展, 2015, 30(7): 751-762.
[9] 黄邦钦, 柳欣. 边缘海浮游生态系统对生物泵的调控作用[J]. 地球科学进展, 2015, 30(3): 385-395.
[10] 艾丽坤, 王晓毅. 全球变化研究中自然科学和社会科学协同方法的探讨[J]. 地球科学进展, 2015, 30(11): 1278-1286.
[11] 魏学琼, 叶瑜, 崔玉娟, 李蓓蓓, 袁存, 方修琦. 中国历史土地覆被变化重建研究进展[J]. 地球科学进展, 2014, 29(9): 1037-1045.
[12] 刘学, 张志强, 郑军卫, 赵纪东, 王立伟. 关于人类世问题研究的讨论[J]. 地球科学进展, 2014, 29(5): 640-649.
[13] 刘贤赵, 张勇, 宿庆, 田艳林, 全斌, 王国安. 现代陆生植物碳同位素组成对气候变化的响应研究进展[J]. 地球科学进展, 2014, 29(12): 1341-1354.
[14] 史培军, 孔锋, 叶谦, 汪明, 刘凯. 灾害风险科学发展与科技减灾[J]. 地球科学进展, 2014, 29(11): 1205-1211.
[15] 汪品先. 对地球系统科学的理解与误解——献给第三届地球系统科学大会[J]. 地球科学进展, 2014, 29(11): 1277-1279.
阅读次数
全文


摘要