地球科学进展 ›› 2015, Vol. 30 ›› Issue (3): 385 -395. doi: 10.11867/j.issn.1001-8166.2015.03.0385

上一篇    下一篇

边缘海浮游生态系统对生物泵的调控作用
黄邦钦( ), 柳欣   
  1. 厦门大学 滨海湿地生态系统教育部重点实验室,福建省海陆界面生态环境重点实验室,环境与生态学院,福建 厦门361102
  • 出版日期:2015-04-08
  • 基金资助:
    国家自然科学基金重点项目“南海浮游生态系统结构及其对生物泵效率的调控机制”(编号: 41330961)资助

Review on Planktonic Ecosystem and Its Control on Biological Pump in the Marginal Seas

Bangqin Huang( ), Xin Liu   

  1. Key Laboratory of Coastal and Wetland Ecosystems, Ministry of Education,Fujian Provincial Key Laboratory of Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen
  • Online:2015-04-08 Published:2015-03-20

海洋生物泵及其与碳循环关键生物地球化学研究是当今全球变化研究的前沿课题。边缘海是全球海洋的重要组分,在生态系统的物质循环、能量流动和气候调节中起着十分重要的调控作用,同时也是海洋生态系统和生物地球化学过程相互作用研究的热点和难点区域。针对“边缘海浮游生物群落结构如何调控生物泵效率”这一科学命题,归纳分析了浮游生态系统主要生物组分及其在碳循环和生物泵(颗粒有机碳输出)过程中的作用,总结了当前国内外相关研究进展和存在的问题。目前大多数的研究思路是将整个浮游生态系统看成黑箱模式,关注该生态系统某些方面的动态与生物泵效率的关系。最新研究表明,浮游生态系统对生物泵的调控并不是简单的线性关系,该系统内不同营养级间的碳流与颗粒有机碳输出的相关过程非常复杂。简单地利用浮游生物不同类群(含营养级)生物量和生产力等指标来阐明浮游生态系统结构和生物泵效率的耦合机制非常困难。针对当今存在的问题,提出从整个浮游生态系统入手,在研究生态系统群落组成和生物量(即各类群颗粒有机碳储库)的基础上,更加关注有机碳在不同营养级之间的转换过程及其速率,期望阐明影响生物泵效率的关键生物地球化学过程和机制,同时构建不同浮游生态系统的碳流传递过程和颗粒有机碳的输出模式,从而最终揭示浮游生物群落结构调控生物泵效率的问题。

Biological pump study, coupling with carbon biogeochemical cycle is the hot issue of current global change research. Marginal sea is an important component of the world's oceans, playing key roles in the regulations of nutrient cycling and energy flow, as well as climate regulation, which makes it the hotspot of studies on marine ecosystems and biogeochemistry. Based on the scientific question of “how planktonic community structure regulates biological pump efficiency in the marginal seas”, this review paper described the roles that main biological components of planktonic ecosystem play in regulating both biological pump (that is particulate organic carbon (POC) export) and carbon flow, and summarized progresses that have been made so far as well as problems remain in the field. The idea of most previous studies is to take the whole planktonic ecosystem as a black box, focusing on only parts of the ecosystem (e.g. physical processes, biological production, community structure and so on) to deduce the relationships between these dynamics and efficiency of biological pump. Recent studies also indicated that how planktonic ecosystem regulates biological pump was not simple or linear as the process of how carbon flow among different components within the ecosystem acts on POC export are very complex. In order to address the current issues, we come up with the idea that takes the whole planktonic ecosystem as a unit, investigating community composition, biomass, as well as key carbon transfer conversion rates among different trophic levels. We aim to reveal key processes influencing the efficiency of biological pump, and establish the coupling models of carbon flow and POC export for different planktonic ecosystems, and thus eventually explain how planktonic community regulates biological pump efficiency in the marginal seas.

中图分类号: 

图1 简化的海洋浮游生态系统碳流模型 虚线:初级生产;点线:呼吸作用;实线:浮游生态系统内部循环和输出
Fig. 1 Simplified carbon flow model in marine planktonic ecosystem Dashed line: primary production; dotted line: respiration; solid line: inner loop and output
[1] Longhurst A. Seasonal cycles of pelagic production and consumption[J]. Progress in Oceanography, 1995, 36(2): 77-167.
[2] Luo Xiaofan, Wei Hao. Progess on the study of continental shelf carbon cycle model[J].Advances in Marine Science, 2014,32(2):277-287.
[罗晓凡, 魏皓. 陆架海碳循环模式研究现状与进展[J]. 海洋科学进展, 2014,32(2):277-287.]
[3] Libes S M. Introduction to Marine Biogeochemistry[M]. Salt Lake City: Academic Press, 2009.
[4] Jiao N Z, Herndl G J, Hansell D A, et al. The microbial carbon pump and the oceanic recalcitrant dissolved organic matter pool[J]. Nature Reviews Microbiology, 2011, 9(7): 555.
[5] Henson S A, Sanders R, Madsen E, et al. A reduced estimate of the strength of the ocean’s biological carbon pump[J]. Geophysical Research Letters, 2011, 38(4):L04606.
[6] Sarmiento J L, Toggweiler J R. A new model for the role of the oceans in determining atmospheric pCO2[J]. Nature, 1984, 308(5 960):621-624.
[7] Field C B, Behrenfeld M J, Randerson J T, et al. Primary production of the biosphere: Integrating terrestrial and oceanic components[J]. Science, 1998, 281(5 374):237-240.
[8] Berelson W M. Particle settling rates increase with depth in the ocean[J]. Deep-Sea Research Part II: Topical Studies in Oceanography,2001, 49(1/3):237-251.
[9] Eppley R W, Peterson B J. Particulate organic-matter flux and planktonic new production in the deep ocean[J]. Nature, 1979, 282(5 740):677-680.
[10] De La Rocha C L, Passow U. Factors influencing the sinking of POC and the efficiency of the biological carbon pump[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2007, 54(5/7):639-658.
[11] Dugdale R C, Wilkerson F P, Minas H J. The role of a silicate pump in driving new production[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 1995, 42(5):697-719.
[12] Buesselera K O, Ball L, Andrews J, et al. Upper ocean export of particulate organic carbon and biogenic silica in the Southern Ocean along 170°W[J].Deep-Sea Research II: Topical Studies in Oceanography, 2001, 48(19/20):4 275-4 297.
[13] Fujii M. Effects of biogenic silica dissolution on silicon cycling and export production[J]. Geophysical Research Letters, 2005, 32(5),doi:10.1029/2004GL022054.
[14] Sun Jun. Organic carbon pump and carbonate counter pump of living coccolithophorid[J]. Advances in Earth Science, 2007, 22(12):1 231-1 239.
[孙军. 今生颗石藻的有机碳泵和碳酸盐反向泵[J]. 地球科学进展, 2007, 22(12):1 231-1 239.]
[15] Cortes M Y, Bollmann J, Thierstein H R. Coccolithophore ecology at the HOT station ALOHA, Hawaii[J]. Deep-Sea Research II: Topical Studies in Oceanography, 2001, 48(8/9):1 957-1 981.
[16] Broerse A. Coccolithophore Export Production in Selected Ocean Environments: Seasonality, Biogeography, Carbonate Production[D]. Amsterdam: Vrije Universiteit Amsterdam,2000.
[17] Harris R P. Zooplankton grazing on the coccolithophore Emiliania-Huxleyi and its role in inorganic carbon flux[J]. Marine Biology, 1994, 119(3):431-439.
[18] Lecourt M, Muggli D L, Harrison P J. Comparison of growth and sinking rates of non-coccolith- and coccolith-forming strains of Emiliania huxleyi (Prymnesiophyceae) grown under different irradiances and nitrogen sources[J]. Journal of Phycology, 1996, 32(1):17-21.
[19] Michaels A F, Silver W. Primary production, sinking fluxes and the microbial food web[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 1988,35(4): 473-490.
[20] Pfannkuche O, Lochte K. Open ocean pelago-benthic coupling: Cyanobacteria as tracers of sedimenting salp faeces[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 1993, 40(4):727-737.
[21] Richardson T L, Jackson G A. Small phytoplankton and carbon export from the surface ocean[J]. Science, 2007, 315(5 813):838-840.
[22] Waite A M, Safi K A, Hall J A, et al. Mass sedimentation of picoplankton embedded in organic aggregates[J]. Limnology and Oceanography, 2000, 45(1):87-97.
[23] Lomas M W, Moran S B. Evidence for aggregation and export of cyanobacteria and nano-eukaryotes from the Sargasso Sea euphotic zone[J]. Biogeosciences, 2011, 8(1):203-216.
[24] Fernández E, Marañón E, Morán X A G,et al. Potential causes for the unequal contribution of picophytoplankton to total biomass and productivity in oligotrophic waters[J]. Marine Ecology-Progress Series, 2003, 254:101-109.
[25] Riegman R, Kuipers B R, Noordeloos A A, et al. Size-differential control of phytoplankton and the structure of plankton communities[J]. Netherlands Journal of Sea Research, 1993, 31(3):255-265.
[26] Burkill P, Mantoura R, Llewellyn C, et al. Microzooplankton grazing and selectivity of phytoplankton in coastal waters[J]. Marine Biology, 1987, 93(4):581-590.
[27] Verity P G. A decade of change in the Skidaway River Estuary. II. Particulate organic carbon, nitrogen, and chlorophyll a[J]. Estuaries, 2002, 25(5):961-975.
[28] De Troch M, Chepurnov V, Gheerardyn H, et al. Is diatom size selection by harpacticoid copepods related to grazer body size?[J]. Journal of Experimental Marine Biology and Ecology, 2006, 332(1):1-11.
[29] Liu H, Chen M, Suzuki K, et al. Mesozooplankton selective feeding in subtropical coastal waters as revealed by HPLC pigment analysis[J]. Marine Ecology-Progress Series, 2010, 407:111-123.
[30] Meyer-Harms B, Irigoien X, Head R, et al. Selective feeding on natural phytoplankton by Calanus finmarchicus before, during, and after the 1997 spring bloom in the Norwegian Sea[J]. Limnology and Oceanography, 1999, 41(1):154-165.
[31] Gasparini S, Daro M, Antajan E, et al. Mesozooplankton grazing during the Phaeocystis globosa bloom in the southern bight of the North Sea[J]. Journal of Sea Research, 2000, 43(3):345-356.
[32] Lionard M, Azemar F, Boulêtreau S, et al. Grazing by meso-and microzooplankton on phytoplankton in the upper reaches of the Schelde Estuary (Belgium/The Netherlands)[J]. Estuarine, Coastal and Shelf Science, 2005, 64(4):764-774.
[33] Archer S, Leakey R, Burkill P, et al. Microbial dynamics in coastal waters of East Antarctica: Herbivory by heterotrophic dinoflagellates[J]. Marine Ecology-Progress Series, 1996, 139(1):239-255.
[34] Landry M R, Ohman M D, Goericke R, et al. Pelagic community responses to a deep-water front in the California current ecosystem: Overview of the A-Front study[J]. Journal of Plankton Research, 2012, 34(9):739-748.
[35] Stukel M R, Landry M R, Selph K E. Nanoplankton mixotrophy in the eastern equatorial Pacific[J]. Deep-Sea Research Part II:Topical Studies in Oceanography, 2011, 58(3/4):378-386.
[36] Stukel M R, Landry M R, Benitez-Nelson C R,et al. Trophic cycling and carbon export relationships in the California Current Ecosystem[J]. Limnology and Oceanography, 2011, 56(5):1 866-1 878.
[37] Stukel M R, Landry M R. Contribution of picophytoplankton to carbon export in the equatorial Pacific: A reassessment of food web flux inferences from inverse models[J]. Limnology and Oceanography, 2010, 55(6):2 669-2 685.
[38] Motegi C, Tanaka T, Piontek J, et al. Effect of CO2 enrichment on bacterial metabolism in an Arctic fjord[J]. Biogeosciences, 2013, 10(5):3 285-3 296.
[39] Stukel M R, Landry M R, Ohman M D, et al. Do inverse ecosystem models accurately reconstruct plankton trophic flows? Comparing two solution methods using field data from the California Current[J]. Journal of Marine Systems, 2012, 91(1):20-33.
[40] Turner J T. Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms[J]. Aquatic Microbial Ecology, 2002, 27(1):57-102.
[41] Turner J T. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump[J]. Progress in Oceanography, 2015, 130:205-248.
[42] Zhang Wuchang, Zhang Fang, Wang Ke. Marine zooplankton fecal pellets flux[J]. Advances in Earth Science, 2001, 16(1):113-119.
[张武昌, 张芳, 王克 . 海洋浮游动物粪便通量[J]. 地球科学进展, 2001, 16(1):113-119].
[43] Wilson S, Ruhl H, Smith Jr K. Zooplankton fecal pellet flux in the abyssal northeast Pacific: A 15 year time-series study[J]. Limnology and Oceanography, 2013, 58(3):881-892.
[44] González H E, Menschel E, Aparicio C, et al. Spatial and temporal variability of microplankton and detritus, and their export to the shelf sediments in the upwelling area off Concepción, Chile (~36°S), during 2002-2005[J]. Progress in Oceanography, 2007, 75(3):435-451.
[45] Feinberg L R, Dam H G. Effects of diet on dimensions, density and sinking rates of fecal pellets of the copepod Acartia tonsa[J]. Marine Ecology-Progress Series, 1998, 175:87-96.
[46] Besiktepe S, Dam H G. Coupling of ingestion and defecation as a function of diet in the calanoid copepod Acartia tonsa[J]. Marine Ecology-Progress Series,2002, 229:151-164.
[47] Dagg M J, Urban-Rich J, Peterson J O. The potential contribution of fecal pellets from large copepods to the flux of biogenic silica and particulate organic carbon in the Antarctic Polar Front region near 170°W[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2003, 50(3):675-691.
[48] Goldthwait S A, Steinberg D K. Elevated biomass of mesozooplankton and enhanced fecal pellet flux in cyclonic and mode-water eddies in the Sargasso Sea[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2008, 55(10):1 360-1 377.
[49] Steinberg D K, Carlson C A, Bates N R, et al. Zooplankton vertical migration and the active transport of dissolved organic and inorganic carbon in the Sargasso Sea[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2000, 47:137-158.
[50] Ducklow H W, Steinberg D K, Buesseler K O. Upper ocean carbon export and the biological pump[J]. Oceanography, 2001, 14(4):50-58.
[51] Zheng Zhong, Li Shaojing, Xu Zhenzu. Mairne Planktonic Biology[M]. Beijing: Ocean Press,1984.
[郑重, 李少菁, 许振祖. 海洋浮游生物学[M]. 北京: 海洋出版社, 1984.]
[52] Katechakis A, Stibor H, Sommer U, et al. Changes in the phytoplankton community and microbial food web of Blanes Bay (Catalan Sea, NW Mediterranean) under prolonged grazing pressure by doliolids (Tunicata), cladocerans or copepods (Crustacea)[J]. Marine Ecology-Progress Series, 2002, 234:55-69.
[53] Barber R T. Picoplankton do some heavy lifting[J]. Science, 2007, 315:777-778.
[54] Robison B H, Reisenbichler K R, Sherlock R E. Giant larvacean houses: Rapid carbon transport to the deep sea floor[J]. Science, 2005, 308(5 728):1 609-1 611.
[55] Hunt B, Pakhomov E, Hosie G, et al. Pteropods in southern ocean ecosystems[J]. Progress in Oceanography, 2008, 78(3):193-221.
[56] Pakhomov E, Froneman P, Perissinotto R. Salp/krill interactions in the Southern Ocean: Spatial segregation and implications for the carbon flux[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2002, 49(9):1 881-1 907.
[57] Tsurumi M, Mackas D, Whitney F, et al. Pteropods, eddies, carbon flux, and climate variability in the Alaska Gyre[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2005, 52(7):1 037-1 053.
[58] Azam F, Fenche T, Field J G, et al. The ecological role of water-column microbes in the sea[J]. Marine Ecology-Progress Series, 1983, 10(3):257-263.
[59] Robarts R, Zohary T, Waiser M, et al. Bacterial abundance, biomass, and production in relation to phytoplankton biomass in the Levantine Basin of the southeastern Mediterranean Sea[J]. Marine Ecology-Progress Series, 1996, 137(1):273-281.
[60] Ambrose P. Cetacean sanctuary in the Mediterranean Sea[J]. Marine Pollution Bulletin, 1999, 38(9):748-748.
[61] Lucea A, Duarte C M, Agusti S, et al. Nutrient (N, P and Si) and carbon partitioning in the stratified NW Mediterranean[J]. Journal of Sea Research, 2003, 49(3):157-170.
[62] Smith S, Mackenzie F. The ocean as a net heterotrophic system: Implications from the carbon biogeochemical cycle[J]. Global Biogeochemical Cycles, 1987, 1(3):187-198.
[63] Del Giorgio P A, Williams P J Le B. Respiration in Aquatic Ecosystems[M]. USA:Oxford University Press, 2005.
[64] Duarte C M, Agustí S. The CO2 balance of unproductive aquatic ecosystems[J]. Science, 1998, 281(5 374):234-236.
[65] Ducklow H W, Doney S C. What is the metabolic state of the oligotrophic ocean? A debate[J]. Annual Review of Marine Science, 2013, 3(5):525-533.
[66] Jin Jie, Liu Sumei. Adcance in studies of phosphorus utilization by marine phytoplankton[J]. Advances in Earth Science, 2013, 28(2):253-261.
[金杰, 刘素美. 海洋浮游植物对磷的响应研究进展[J]. 地球科学进展, 2013, 28(2):253-261.]
[67] Liu X, Furuya K, Shiozaki T, et al. Variability in nitrogen sources for new production in the vicinity of the shelf edge of the East China Sea in summer[J]. Continental Shelf Research, 2013, (61/62):23-30.
[68] Smetacek V, Klaas C, Strass V H, et al. Deep carbon export from a Southern Ocean iron-fertilized diatom bloom[J]. Nature, 2012, 487(7 407):313-319.
[69] Zhang H, Sun F. Dynamics analysis for flux of carbon dioxide across seasurface[J]. Acta Oceanologica Sinica, 1996,(4):447-455.
[70] Song Jinming. Sediment-Water Interface Chemistry in Coastal Waters of China[M]. Beijing: Ocean Press,1997.
[宋金明. 中国近海沉积物—海水界面化学[M]. 北京: 海洋出版社,1997.]
[71] Chen C T A, Lin C M, Huang B T, et al. Stoichiometry of carbon, hydrogen, nitrogen, sulfur and oxygen in the particulate matter of the western North Pacific marginal seas[J]. Marine Chemistry, 1996, 54(1/2):179-190.
[72] Xu Luqiang, Chen Jianfang, Tang Yunqian, et al. Downward flux of settling particulate amino acid in the northern South China Sea and its biogeochemical implications[J]. Acta Oceanologica Sinica, 1997, (2):58-60, 62-65.
[徐鲁强, 陈建芳, 唐运千, 等. . 南海北部沉降颗粒氨基酸通量及生物地球化学意义[J]. 海洋学报, 1997,(2):58-60, 62-65.]
[73] Guo S, Feng Y, Wang L, et al. Seasonal variation in the phytoplankton community of a continental-shelf sea: The East China Sea[J]. Marine Ecology-Progress Series, 2014, 516:103-126.
[74] Guo C, Liu H, Zheng L, et al. Seasonal and spatial patterns of picophytoplankton growth, grazing and distribution in the East China Sea[J]. Biogeosciences, 2014, 11(7):1 847-1 862.
[75] Liu X, Huang B, Huang Q, et al. Seasonal phytoplankton response to physical processes in the southern Yellow Sea[J]. Journal of Sea Research, 2015, 95:45-55.
[76] Wu W, Huang B, Zhong C. Photosynthetic picoeukaryote assemblages in the South China Sea from the Pearl River Estuary to the SEATS station[J]. Aquatic Microbial Ecology, 2014, 71(3):271-284.
[77] Wu W, Huang B, Liao Y, et al. Picoeukaryotic diversity and distribution in the subtropical-tropical South China Sea[J]. FEMS Microbiology Ecology, 2014, 89(3):563-579.
[78] Hong H S, Liu X, Chiang K P, et al. The coupling of temporal and spatial variations of chlorophyll a concentration and the East Asian monsoons in the southern Taiwan Strait[J]. Continental Shelf Research, 2011, 31(6):S37-S47.
[79] Chen B, Wang L, Song S, et al. Comparisons of picophytoplankton abundance, size, and fluorescence between summer and winter in northern South China Sea[J]. Continental Shelf Research, 2011, 31(14):1 527-1 540.
[80] Huang B Q, Hu J, Xu H Z, et al. Phytoplankton community at warm eddies in the northern South China Sea in winter 2003/2004[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2010, 57(19/20):1 792-1 798.
[81] Lan W L, Huang B Q, Dai M H, et al. Dynamics of heterotrophic dinoflagellates off the Pearl River Estuary, northern South China Sea[J]. Estuarine, Coastal and Shelf Science, 2009, 85(3):422-430.
[82] Huang B Q, Lan W L, Cao Z R, et al. Spatial and temporal distribution of nanoflagellates in the northern South China Sea[J]. Hydrobiologia, 2008, 605:143-157.
[83] Chen B Z, Liu H B, Huang B Q, et al. Temperature effects on the growth rate of marine picoplankton[J]. Marine Ecology-Progress Series, 2014, 505:37-47.
[84] Chen B Z, Laws E A, Liu H B, et al. Estimating microzooplankton grazing half-saturation constants from dilution experiments with nonlinear feeding kinetics[J]. Limnology and Oceanography, 2014, 59(3):639-644.
[85] Chen B Z, Huang B Q, Xie Y Y, et al. The bacterial abundance and production in the East China Sea: Seasonal variations and relationships with the phytoplankton biomass and production[J]. Acta Oceanologica Sinica, 2014, 33(9):166-177.
[86] Chen B Z, Landry M R, Huang B Q, et al. Does warming enhance the effect of microzooplankton grazing on marine phytoplankton in the ocean?[J]. Limnology and Oceanography, 2012, 57(2):519-526.
[87] Huang B, Xiang W, Zeng X, et al. Phytoplankton growth and microzooplankton grazing in a subtropical coastal upwelling system in the Taiwan Strait[J]. Continental Shelf Research, 2011, 31(6):S48-S56.
[88] Hong H S, Chai F, Zhang C Y, et al. An overview of physical and biogeochemical processes and ecosystem dynamics in the Taiwan Strait[J]. Continental Shelf Research, 2011, 31(6):S3-S12.
[89] Chen B Z, Liu H B, Landry M R, et al. Close coupling between phytoplankton growth and microzooplankton grazing in the western South China Sea[J]. Limnology and Oceanography, 2009, 54(4):1 084-1 097.
[90] Huang B Q, Hong H S, Wang H L. Size-fractionated primary productivity and the phytoplankton-bacteria relationship in the Taiwan Strait[J]. Marine Ecology-Progress Series, 1999, 183:29-38.
[91] Huang B Q, Hong H S. Alkaline phosphatase activity and utilization of dissolved organic phosphorus by algae in subtropical coastal waters[J]. Marine Pollution Bulletin, 1999, 39(1/12):205-211.
[92] Huang B Q, Hu J, Xu H Z, et al. Phytoplankton community at warm eddies in the northern South China Sea in winter 2003/2004[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2010, 57(19/20):1 792-1 798.
[93] Wang Lei. The Spatio-Temporal Variation of Phytoplankton Community Structure and Its Responses to Mesoscale Physical Processes in the South China Sea[D]. Xiamen: Xiamen Univerisity, 2012.
[王磊. 南海典型海区浮游植物群落结构的时空变动及其对中尺度过程的响应[D]. 厦门:厦门大学,2012.]
[94] Zhou K, Dai M, Kao S J, et al. Apparent enhancement of 234Th-based particle export associated with anticyclonic eddies[J]. Earth and Planetary Science Letters, 2013, 381:198-209.
[95] Cai P, Zhao D, Wang L, et al. Role of particle stock and phytoplankton community structure in regulating particulate organic carbon export in a large marginal sea[J]. Journal of Geophysical Research: Oceans, 2015, in press.
[1] 冯起, 常宗强, 席海洋, 苏永红, 温小虎, 朱猛, 张举涛, 张成琦. 基于碳氮循环的中蒙荒漠生态脆弱区生态系统对全球变化响应研究[J]. 地球科学进展, 2022, 37(11): 1101-1114.
[2] 殷怡童,罗锡明. 含铁介质稳定砷与根际微生物的相互作用[J]. 地球科学进展, 2020, 35(10): 1052-1063.
[3] 王芳慧, 陈莹, 王波, 李好文, 周升钱. 海洋微生物气溶胶的丰度、群落结构及影响机制[J]. 地球科学进展, 2018, 33(8): 783-793.
[4] 祁建华, 李孟哲, 高冬梅, 甄毓, 张大海. 沙尘天气对大气生物气溶胶中微生物浓度、特性和分布的影响[J]. 地球科学进展, 2018, 33(6): 568-577.
[5] 曲建升, 肖仙桃, 曾静静. 国际气候变化科学百年研究态势分析 *[J]. 地球科学进展, 2018, 33(11): 1193-1202.
[6] 史培军, 王爱慧, 孙福宝, 李宁, 叶涛, 徐伟, 王静爱, 杨建平, 周洪建. 全球变化人口与经济系统风险形成机制及评估研究[J]. 地球科学进展, 2016, 31(8): 775-781.
[7] 吴炳方, 邢强. 遥感的科学推动作用与重点应用领域[J]. 地球科学进展, 2015, 30(7): 751-762.
[8] 艾丽坤, 王晓毅. 全球变化研究中自然科学和社会科学协同方法的探讨[J]. 地球科学进展, 2015, 30(11): 1278-1286.
[9] 房启飞, 张虎权. 地球系统变化对叠层石衰减影响的研究综述[J]. 地球科学进展, 2014, 29(9): 1003-1010.
[10] 魏学琼, 叶瑜, 崔玉娟, 李蓓蓓, 袁存, 方修琦. 中国历史土地覆被变化重建研究进展[J]. 地球科学进展, 2014, 29(9): 1037-1045.
[11] 刘贤赵, 张勇, 宿庆, 田艳林, 全斌, 王国安. 现代陆生植物碳同位素组成对气候变化的响应研究进展[J]. 地球科学进展, 2014, 29(12): 1341-1354.
[12] 史培军, 孔锋, 叶谦, 汪明, 刘凯. 灾害风险科学发展与科技减灾[J]. 地球科学进展, 2014, 29(11): 1205-1211.
[13] 汪品先. 对地球系统科学的理解与误解——献给第三届地球系统科学大会[J]. 地球科学进展, 2014, 29(11): 1277-1279.
[14] WuGuoxiong, LinHai, ZouXiaolei, LiuBoqi, HeBian. 全球气候变化研究与科学数据[J]. 地球科学进展, 2014, 29(1): 15-22.
[15] 周广胜,何奇瑾. 生态系统响应全球变化的陆地样带研究[J]. 地球科学进展, 2012, 27(5): 563-572.
阅读次数
全文


摘要