地球科学进展 ›› 2020, Vol. 35 ›› Issue (10): 1052 -1063. doi: 10.11867/j.issn.1001-8166.2020.084

综述与评述 上一篇    下一篇

含铁介质稳定砷与根际微生物的相互作用
殷怡童( ),罗锡明( )   
  1. 中国地质大学(北京)海洋学院,北京 100083
  • 收稿日期:2020-07-15 修回日期:2020-09-20 出版日期:2020-10-10
  • 通讯作者: 罗锡明 E-mail:kaqichuan@163.com;luoxm@cugb.edu.cn
  • 基金资助:
    中国地质调查局地质调查项目“莱州—莱西一带矿集区生态修复支撑调查”(DD20208080);国家自然科学基金项目“纳米零价铁在含水层中的腐蚀过程与产物演化对三氯乙烯去除的影响机理研究”(41572229)

Interactions Between Stabilized Arsenic by Fe-based Media and Soil Microbes in the Rhizosphere

Yitong Yin( ),Ximing Luo( )   

  1. School of Ocean Sciences,China University of Geosciences(Beijing),Beijing 100083,China
  • Received:2020-07-15 Revised:2020-09-20 Online:2020-10-10 Published:2020-11-30
  • Contact: Ximing Luo E-mail:kaqichuan@163.com;luoxm@cugb.edu.cn
  • About author:Yin Yitong (1997-), female, Dinghai City, Zhejiang Province, Master student. Research areas include pollution remediation. E-mail: kaqichuan@163.com
  • Supported by:
    the China Geology Survey “Ecological restoration support survey of the laizhou-laixi ore concentration area”(DD20208080);The National Natural Science Foundation of China "Influence mechanism of Trichloroethylene removal by corrosion processes and product evolution of nano-zero-valent iron in aquifers"(41572229)

对原位修复后植物复植区土壤中被稳定砷的稳定性进行评估是环境风险评价的重要内容,含铁介质稳定砷与根际微生物的相互作用是环境风险评价的关键。根据近5年的相关研究进展,从含铁介质修复砷污染土壤、砷污染土壤中的微生物群落结构特征及根际微生物参与的含铁介质中砷的释放过程3个方面来进行综述。综述发现,含铁介质是稳定土壤中砷的重要材料,但修复效果易受到环境变化和微生物作用的影响。在含铁介质稳定砷之后,土壤中的微生物群落会受到修复试剂的影响进而形成新的群落结构,而在继续进行植物复植后,由于根际环境作用,微生物群落结构还会发生进一步的演化从而最终形成新的微生物群落结构。在这个演化过程中,微生物与所接触的砷和铁的界面反应是影响土壤中砷的稳定性的重要因素,因此研究含铁介质稳定砷与根际微生物的相互作用具有重要意义。此外,对植物复植后根际微生物与含铁介质稳定砷的稳定性之间的关系进行了展望,旨在为更好地认识土壤复杂环境中砷的迁移提供参考。

Assessment of the stability of stabilized arsenic in soils in revegetated areas after in-situ restoration has been regarded as a key component in environmental risk assessment, while the interaction between stabilized arsenic by Fe-based media and soil microbes in the rhizosphere is also critical for environmental risk assessment. According to the relevant research progress in the last five years, the paper elucidated three key aspects of this problem: Arsenic-contaminated soil remediation with iron containing media, structural characterization of microbial communities in arsenic-contaminated soil, and the arsenic-releasing process that involves the participation of rhizosphere microorganisms on the Fe-based media. This review finds that Fe-based media is an essential material for stabilizing arsenic in soil, but its impact is strongly affected by circumstance change and microbial action. After arsenic stabilization, microbial communities in the soil would be changed by Fe-based reagents, then the further evolution of microbial community structure will occur during continuing revegetation because of rhizosphere effect, and finally new microbial communities will form. In this process, the interface reaction between rhizosphere microbes and iron containing media with arsenic is an important factor affecting the stability of arsenic in soils. Therefore, it is of great significance to understand this interaction in the future. Furthermore,the reaction between rhizosphere microorganisms in revegetated areas and the stability of stabilized arsenic was also discussed. The purpose of this paper was to provide more information for the mobility of arsenic in the complex soil environment.

中图分类号: 

图1 以砷为关键词的共现网络图
Fig.1 A co-occurrence network with arsenic as the key word
表1 含铁介质修复土壤效果案例
Table 1 Cases of soil remediation effect by Fe-based media
图2 砷污染土壤优势菌
Fig.2 Dominant bacteria in arsenic-contaminated soil
图3 砷释放途径
Fig.3 Pathways of arsenic release
1 Naujokas M F,Anderson B,Ahsan H,et al. The broad scope of health effects from chronic arsenic exposure: Update on a worldwide public health problem[J]. Environmental Health Perspectives, 2013, 121(3): 295-302.
2 Oberoi S,Devleesschauwer B,Gibb H J,et al. Global burden of cancer and coronary heart disease resulting from dietary exposure to arsenic, 2015[J]. Environmental Research, 2019,171: 185-192.
3 Mandal B K,Suzuki K T. Arsenic round the world: A review[J]. Talanta, 2002, 58(1): 201-235.
4 Bakhat H F,Zia Z,Abbas S,et al. Factors controlling arsenic contamination and potential remediation measures in soil-plant systems[J]. Groundwater for Sustainable Development, 2019, 9: 100 263.
5 Singh R,Singh S,Parihar P,et al. Arsenic contamination, consequences and remediation techniques: A review[J]. Ecotoxicology and Environmental Safety, 2015, 112: 247-270.
6 Souza L R R,Pomarolli L C,da Veiga M. From classic methodologies to application of nanomaterials for soil remediation: An integrated view of methods for decontamination of toxic metal(oid)s[J]. Environmental Science and Pollution Research, 2020, 27(10): 10 205-10 227.
7 Houben D,Pircar J,Sonnet P. Heavy metal immobilization by cost-effective amendments in a contaminated soil: Effects on metal leaching and phytoavailability[J]. Journal of Geochemical Exploration, 2012, 123: 87-94.
8 Wu S,Cajthaml T,Semerad J,et al. Nano zero-valent iron aging interacts with the soil microbial community: A microcosm study[J]. Environmental Science—Nano, 2019, 6(4): 1 189-1 206.
9 Wu Heqiu,Hou Qinxuan,Zhang Ying. Review of remedying the arsenic-contaminated soil with Fe-based media[J]. Soil and Fertilizer Sciences in China, 2018(2): 13-21, 66.
吴和秋,侯钦宣,张英.含铁介质用于修复砷污染土壤研究综述[J].中国土壤与肥料,2018(2): 13-21, 66.
10 Catalano J G,Park C,Fenter P,et al. Simultaneous inner- and outer-sphere arsenate adsorption on corundum and hematite[J]. Geochimica et Cosmochimica Acta,2008, 72(8):1 986-2 004.
11 Wang S,Mulligan C N. Speciation and surface structure of inorganic arsenic in solid phases: A review[J]. Environment International, 2008, 34(6): 867-879.
12 Li Z,Wang L,Wu J,et al. Zeolite-supported nanoscale zero-valent iron for immobilization of cadmium, lead, and arsenic in farmland soils: Encapsulation mechanisms and indigenous microbial responses[J]. Environmental Pollution, 2020, 260: 114 098.
13 Lin Longyong,Yan Xiulan,Yang Shuo. Stabilizing effects of Fe-Ce oxide on soil As(Ⅴ) and P[J]. Environmental Science, 2019, 40(8): 3 785-3 791.
林龙勇,阎秀兰,杨硕.铁铈氧化物对土壤As(Ⅴ)和P的稳定化效果[J].环境科学,2019, 40(8):3 785-3 791.
14 An B,Zhao D. Immobilization of As(III) in soil and groundwater using a new class of polysaccharide stabilized Fe-Mn oxide nanoparticles[J]. Journal of Hazardous Materials, 2012, 211:332-341.
15 Abad-Valle P,Alvarez-Ayuso E,Murciego A. Evaluation of ferrihydrite as amendment to restore an arsenic-polluted mine soil[J]. Environmental Science and Pollution Research, 2015, 22(9):6 778-6 788.
16 Cornell R M, Schwertmann U. The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses[M]. 2nd Edition. Weinheim: VCH, 1996.
17 Komarek M,Vanek A,Ettler V. Chemical stabilization of metals and arsenic in contaminated soils using oxides—A review[J]. Environmental Pollution, 2013, 172: 9-22.
18 Parfitt R L. Phosphate reactions with natural allophane, ferrihydrite and goethite[J]. Journal of Soil Science, 1989, 40(2):359-369.
19 Xu Wenyi,Li Min,Huang Minsheng,et al. Effect of freeze-thaw cycles on stabilizing arsenic contaminated soil by iron-containing materials[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6 497-6 503.
徐文义,李敏,黄民生,等.冻融循环对含铁材料稳定砷污染土壤的影响[J].环境工程学报, 2017, 11(12): 6 497-6 503.
20 Salazar-Camacho C,Villalobos M. Goethite surface reactivity: III. Unifying arsenate adsorption behavior through a variable crystal face—Site density model[J]. Geochimica et Cosmochimica Acta, 2010, 74(8): 2 257-2 280.
21 Michalkova Z,Komarek M,Veselska V,et al. Selected Fe and Mn (nano)oxides as perspective amendments for the stabilization of As in contaminated soils[J]. Environmental Science and Pollution Research, 2016, 23(11): 10 841-10 854.
22 Shao Jinqiu,Wen Qiqian,Yan Xiulan,et al. Adsorption and mechanism of arsenic by natural iron-containing minerals[J]. Environmental Science, 2019, 40(9): 4 072-4 080.
邵金秋,温其谦,阎秀兰,等.天然含铁矿物对砷的吸附效果及机制[J].环境科学, 2019, 40(9): 4 072-4 080.
23 Hartley W,Edwards R,Lepp N W. Arsenic and heavy metal mobility in iron oxide-amended contaminated soils as evaluated by short- and long-term leaching tests[J]. Environmental Pollution, 2004, 131(3): 495-504.
24 Doherty S J,Tighe M K,Wilson S C. Evaluation of amendments to reduce arsenic and antimony leaching from co-contaminated soils[J]. Chemosphere, 2017, 174: 208-217.
25 Tiberg C,Kumpiene J,Gustafsson J P,et al. Immobilization of Cu and As in two contaminated soils with zero-valent iron—Long-term performance and mechanisms[J]. Applied Geochemistry, 2016, 67: 144-152.
26 Mayo J T,Yavuz C,Yean S,et al. The effect of nanocrystalline magnetite size on arsenic removal[J]. Science and Technology of Advanced Materials, 2007, 8(1/2): 71-75.
27 Yan X,Shao J,Wen Q, et al. Stabilization of soil arsenic by natural limonite after mechanical activation and the associated mechanisms[J]. Science of the Total Environment, 2020, 708:135 118.
28 Gillispie E C,Taylor S E,Qafoku N P,et al. Impact of iron and manganese nano-metal-oxides on contaminant interaction and fortification potential in agricultural systems—A review[J]. Environmental Chemistry, 2019, 16(6): 377-390.
29 Mueller N C,Braun J,Bruns J,et al. Application of Nanoscale Zero Valent Iron (NZVI) for groundwater remediation in Europe[J]. Environmental Science and Pollution Research, 2012, 19(2): 550-558.
30 Gil-Diaz M,Alonso J,Rodriguez-Valdes E,et al. Comparing different commercial zero valent iron nanoparticles to immobilize As and Hg in brownfield soil[J]. Science of the Total Environment, 2017, 584: 1 324-1 332.
31 Gil-Diaz M,Rodriguez-Valdes E,Alonso J,et al. Nanoremediation and long-term monitoring of brownfield soil highly polluted with As and Hg[J]. Science of the Total Environment, 2019, 675: 165-175.
32 Li Xinli,Wang Zhikang,Qin Fanxin,et al. Stabilization of arsenic in soil by nano-TiO_2 and Fe supported on activated carbon[J]. Ecology and Environmental Sciences,2018,27(7): 1 298-1 305.
李新丽,王志康,秦樊鑫,等.活性炭负载纳米二氧化钛及铁修饰改性对土壤砷的稳定化试验研究[J].生态环境学报, 2018, 27(7): 1 298-1 305.
33 Zhou Haiyan, Deng Yirong, Lin Longyong, et al. Stabilization of arsenic-contaminated soils using Fe-Mn oxide under different water conditions[J]. Environmental Science, 2019, 40(8): 3 792-3 798.
周海燕,邓一荣,林龙勇,等.铁锰氧化物在不同水分条件下对土壤As的稳定化作用[J].环境科学, 2019, 40(8): 3 792-3 798.
34 Yang Z,Liu L,Chai L,et al. Arsenic immobilization in the contaminated soil using poorly crystalline Fe-oxyhydroxy sulfate[J]. Environmental Science and Pollution Research, 2015, 22(16): 12 624-12 632.
35 Arenas-Lago D,Abreu M M,Andrade Couce L,et al. Is nanoremediation an effective tool to reduce the bioavailable As, Pb and Sb contents in mine soils from Iberian Pyrite Belt?[J] Catena, 2019, 176: 362-371.
36 Vitkova M,Puschenreiter M,Komarek M. Effect of nano zero-valent iron application on As, Cd, Pb, and Zn availability in the rhizosphere of metal(loid) contaminated soils[J]. Chemosphere, 2018, 200: 217-226.
37 Jeong S,Hong J K,Jho E H,et al. Interaction among soil physicochemical properties, bacterial community structure, and arsenic contamination: Clay-induced change in long-term arsenic contaminated soils[J]. Journal of Hazardous Materials, 2019, 378: 120 729.
38 Bunin E,Khatisashvili G,Varazi T,et al. Study of arsenic-contaminated soil bacterial community using biochip technology[J]. Water Air and Soil Pollution, 2020, 231(5): 198.
39 Sun W,Xiao E,Xiao T,et al. Response of soil microbial communities to elevated antimony and arsenic contamination indicates the relationship between the innate microbiota and contaminant fractions[J]. Environmental Science & Technology, 2017, 51(16): 9 165-9 175.
40 Sun W,Sun X,Li B,et al. Bacterial response to antimony and arsenic contamination in rice paddies during different flooding conditions[J]. Science of the Total Environment, 2019, 675: 273-285.
41 Gu Y,Van Nostrand J D,Wu L,et al. Bacterial community and arsenic functional genes diversity in arsenic contaminated soils from different geographic locations[J]. PLoS ONE, 2017, 12(5): e0189656.
42 Xiao E,Krumins V,Xiao T,et al. Depth-resolved microbial community analyses in two contrasting soil cores contaminated by antimony and arsenic[J]. Environmental Pollution, 2017, 221: 244-255.
43 Azarbad H,Niklinska M,Laskowski R,et al. Microbial community composition and functions are resilient to metal pollution along two forest soil gradients[J]. Fems Microbiology Ecology,2015, 91(1): 1-11.
44 Lorenz N,Hintemann T,Kramarewa T,et al. Response of microbial activity and microbial community composition in soils to long-term arsenic and cadmium exposure[J]. Soil Biology & Biochemistry, 2006, 38(6): 1 430-1 437.
45 Sheik C S,Mitchell T W,Rizvi F Z,et al. Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure[J]. PLoS ONE, 2012, 7(6). DOI: 10.1371/journal.pone.0040059.
doi: 10.1371/journal.pone.0040059    
46 Crognale S,D'Annibale A,Pesciaroli L,et al. Fungal community structure and As-resistant fungi in a decommissioned gold mine site[J]. Frontiers in Microbiology, 2017, 8. DOI: 10.3389/fmicb.2017.02202.
doi: 10.3389/fmicb.2017.02202    
47 Yin H,Niu J,Ren Y,et al. An integrated insight into the response of sedimentary microbial communities to heavy metal contamination[J]. Scientific Reports, 2015, 5: 14 266.
48 Zou Q,An W,Wu C,et al. Red mud-modified biochar reduces soil arsenic availability and changes bacterial composition[J]. Environmental Chemistry Letters, 2018, 16(2): 615-622.
49 Antisari L V,Carbone S,Gatti A,et al. Toxicity of metal oxide (CeO2, Fe3O4, SnO2) engineered nanoparticles on soil microbial biomass and their distribution in soil[J]. Soil Biology & Biochemistry, 2013, 60: 87-94.
50 Zhang Y,Zhao C,Chen G,et al. Response of soil microbial communities to additions of straw biochar, iron oxide, and iron oxide-modified straw biochar in an arsenic-contaminated soil[J]. Environmental Science and Pollution Research International, 2020, 27: 23 761-23 768.
51 Wu S,Vosatka M,Vogel-Mikus K,et al. Nano Zero-Valent Iron Mediated Metal(loid) uptake and translocation by arbuscular mycorrhizal symbioses[J]. Environmental Science & Technology, 2018, 52(14): 7 640-7 651.
52 Gomez-Sagasti M T,Epelde L,Anza M,et al. The impact of nanoscale zero-valent iron particles on soil microbial communities is soil dependent[J]. Journal of Hazardous Materials,2019,364: 591-599.
53 Zhang Bianhua,Jin Dongsheng,Gao Chunhua,et al. Comparison of different methods for analyzing the rhizosphere microbial diversity of different plants in industrial and mining reclamation areas[J]. Jiangsu Agricultural Sciences, 2019, 47(4):223-226.
张变华,靳东升,郜春花,等.不同方法分析工矿复垦区不同植物根际微生物多样性的比较[J].江苏农业科学,2019, 47(4): 223-226.
54 dos Santos J V,Rangel W M,Guimaraes A A,et al. Soil biological attributes in arsenic-contaminated gold mining sites after revegetation[J]. Ecotoxicology, 2013, 22(10): 1 526-1 537.
55 Tipayno S,Kim C-G,Sa T. T-RFLP analysis of structural changes in soil bacterial communities in response to metal and metalloid contamination and initial phytoremediation[J]. Applied Soil Ecology, 2012, 61: 137-146.
56 Sun X,Zhou Y,Tan Y,et al. Restoration with pioneer plants changes soil properties and remodels the diversity and structure of bacterial communities in rhizosphere and bulk soil of copper mine tailings in Jiangxi Province, China[J]. Environmental Science and Pollution Research, 2018, 25(22): 22 106-22 119.
57 Das S,Chou M L,Jean J S,et al. Arsenic-enrichment enhanced root exudates and altered rhizosphere microbial communities and activities in hyperaccumulator Pteris vittata[J]. Journal of Hazardous Materials, 2017, 325: 279-287.
58 Hu M,Sun W,Krumins V,et al. Arsenic contamination influences microbial community structure and putative arsenic metabolism gene abundance in iron plaque on paddy rice root[J]. Science of the Total Environment, 2019, 649: 405-412.
59 Xu Jiangbing,Wang Yanling,Luo Xiaosan,et al. Influence of Fe3O4 nanoparticles on lettuce(Lactuca sativa L.)growth and soil bacterial community structure[J]. Chinese Journal of Applied Ecology, 2017, 28(9): 3 003-3 010.
徐江兵,王艳玲,罗小三,等.纳米Fe3O4对生菜生长及土壤细菌群落结构的影响[J].应用生态学报,2017, 28(9): 3 003-3 010.
60 Cao J,Feng Y,Lin X,et al. Iron oxide magnetic nanoparticles deteriorate the mutual interaction between arbuscular mycorrhizal fungi and plant[J]. Journal of Soils and Sediments, 2017, 17(3): 841-851.
61 Zhang Guogang,Liu Xuewei,Gao Minling,et al. Effect of Fe-Mn-Ce modified biochar composite on microbial diversity and properties of arsenic-contaminated paddy soils[J].Chemosphere, 2020, 250: 126 249.
62 Zhai Weiwei,Dai Yuxia,Zhao Wenliang,et al. Simultaneous immobilization of the cadmium, lead and arsenic in paddy soils amended with titanium gypsum[J]. Environmental Pollution, 2020, 258: 113 790.
63 Liu Shusi,Lu Yixin,Yang Chen,et al. Effects of modified biochar on rhizosphere microecology of rice (Oryza sativa L.) grown in As-contaminated soil[J].Environmental Science and Pollution Research, 2017, 24(30): 23 815-23 824.
64 Feng Shibo,Jiang Yuelu,Cai Zhonghua,et al. The state of arts:Sources,microbial processesand ecological effects of iron in the marine environment[J]. Advances in Earth Science, 2019, 34(5):513-522.
冯世博,姜玥璐,蔡中华,等. 海洋环境中铁的来源、微生物作用过程及生态效应[J]. 地球科学进展, 2019, 34(5): 513-522.
65 Lentini C J,Wankel S D,Hansel C M. Enriched iron(III)-reducing bacterial communities are shaped by carbon substrate and iron oxide mineralogy[J]. Frontiers in Microbiology, 2012, 3. DOI: 10.3389/fmicb.2012.00404.
doi: 10.3389/fmicb.2012.00404    
66 Gavrilov S N,Lloyd J R,Kostrikina N A,et al. Fe(III) Oxide reduction by a gram-positive thermophile: Physiological mechanisms for dissimilatory reduction of poorly crystalline Fe(III) oxide by a thermophilic Gram-positive Bacterium Carboxydothermus ferrireducens[J]. Geomicrobiology Journal, 2012, 29(9): 804-819.
67 Chen Lei,Zhang Hongxia,Li Ying,et al. The role of microorganisms in the geochemical iron cycle[J]. Scientia Sinica Vitae, 2016, 46(9): 1 069-1 078.
陈蕾,张洪霞,李莹,等.微生物在地球化学铁循环过程中的作用[J].中国科学:生命科学,2016, 46(9): 1 069-1 078.
68 Marsili E,Baron D B,Shikhare I D,et al. Shewanella secretes flavins that mediate extracellular electron transfer[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(10): 3 968-3 973.
69 Vargas M,Malvankar N S,Tremblay P L,et al. Aromatic amino acids required for Pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens[J]. mBio, 2013, 4(2). DOI:10.1128/mBio.00105-13.
doi: 10.1128/mBio.00105-13    
70 Weber K A,Achenbach L A,Coates J D. Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction[J]. Nature Reviews Microbiology, 2006, 4(10): 752-764.
71 Richter H,Nevin K P,Jia H,et al. Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer[J]. Energy & Environmental Science,2009, 2(5): 506-516.
72 Gagen E J,Zaugg J,Tyson G W,et al. Goethite reduction by a neutrophilic member of the alphaproteobacterial genus telmatospirillum[J]. Frontiers in Microbiology, 2019, 10: 2 938.
73 Masuda Y,Itoh H,Shiratori Y,et al. Predominant but previously-overlooked prokaryotic drivers of reductive nitrogen transformation in paddy soils, revealed by metatranscriptomics[J]. Microbes and Environments, 2017, 32(2): 180-183.
74 Li L,Qu Z,Jia R,et al. Excessive input of phosphorus significantly affects microbial Fe(III) reduction in flooded paddy soils by changing the abundances and community structures of Clostridium and Geobacteraceae[J]. Science of the Total Environment, 2017, 607: 982-991.
75 Nevin K P,Lovley D R. Mechanisms for Fe(III) oxide reduction in sedimentary environments[J]. Geomicrobiology Journal, 2002, 19(2): 141-159.
76 Ferreira M J,Silva H,Cunha A. Siderophore-Producing Rhizobacteria as a promising tool for empowering plants to cope with iron limitation in saline soils: A review[J]. Pedosphere,2019, 29(4): 409-420.
77 Chauhan H,Bagyaraj D J,Selvakumar G,et al. Novel plant growth promoting rhizobacteria—Prospects and potential[J]. Applied Soil Ecology, 2015, 95: 38-53.
78 Simanova A A,Persson P,Loring J S. Evidence for ligand hydrolysis and Fe(III) reduction in the dissolution of goethite by desferrioxamine-B[J]. Geochimica et Cosmochimica Acta,2010, 74(23): 6 706-6 720.
79 Huang J-H,Voegelin A,Pombo S A,et al. Influence of arsenate adsorption to ferrihydrite, goethite, and boehmite on the Kinetics of arsenate reduction by Shewanella putrefaciens strain CN-32[J]. Environmental Science & Technology, 2011, 45(18): 7 701-7 709.
80 Yan G,Chen X,Du S,et al. Genetic mechanisms of arsenic detoxification and metabolism in bacteria[J]. Current Genetics,2019, 65(2): 329-338.
81 Roy M,Giri A K,Dutta S,et al. Integrated phytobial remediation for sustainable management of arsenic in soil and water[J]. Environment International, 2015, 75: 180-198.
82 Meharg A A,Zhao F J. Arsenic & Rice[M]. Dordrecht, Netherlands: Springer, 2012.
83 Dunivin T K,Yeh S Y,Shade A. A global survey of arsenic-related genes in soil microbiomes[J]. BMC Biology, 2019, 17. DOI:10.1186/s12915-019-0661-5.
doi: 10.1186/s12915-019-0661-5    
84 Yuan C,Qiao J,Li F,et al. Community dynamics of As(V)-reducing and As(III)-oxidizing genes during a wet-dry cycle in paddy soil amended with organic matter, gypsum, or iron oxide[J]. Journal of Hazardous Materials, 2020, 393: 122 485-122 485.
85 Malasarn D,Saltikov W,Campbell K M,et al. arrA is a reliable marker for As(V) respiration[J]. Science, 2004, 306(5 695):455-455.
86 Zobrist J,Dowdle P R,Davis J A,et al. Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate[J]. Environmental Science & Technology, 2000, 34(22): 4 747-4 753.
87 Yamamura S,Watanabe M,Kanzaki M,et al. Removal of arsenic from contaminated soils by microbial reduction of arsenate and quinone[J]. Environmental Science & Technology, 2008,42(16):6 154-6 159.
88 Perez-Jimenez J R,DeFraia C,Young L Y. Arsenate respiratory reductase gene (arrA) for Desulfosporosinus sp. strain Y5[J]. Biochemical and Biophysical Research Communications, 2005,338(2): 825-829.
89 Yamamura S,Sudo T,Watanabe M,et al. Effect of extracellular electron shuttles on arsenic-mobilizing activities in soil microbial communities[J]. Journal of Hazardous Materials, 2018, 342:571-578.
90 Luo T,Ye L,Chan T,et al. Mobilization of arsenic on nano-TiO2 in soil columns with sulfate reducing bacteria[J]. Environmental Pollution, 2018, 234: 762-768.
91 Muyzer G,Stams A J M. The ecology and biotechnology of sulphate-reducing bacteria[J]. Nature Reviews Microbiology,2008, 6(6): 441-454.
92 Ohtsuka T,Yamaguchi N,Makino T,et al. Arsenic dissolution from Japanese paddy soil by a dissimilatory arsenate-reducing bacterium Geobacter sp. OR-1[J]. Environmental Science & Technology, 2013, 47(12): 6 263-6 271.
93 Reyes C,Murphy J N,Saltikov C W. Mutational and gene expression analysis of mtrDEFomcA and mtrCAB during arsenate and iron reduction in Shewanella sp. ANA-3[J]. Environmental Microbiology, 2010, 12(7): 1 878-1 888.
94 Huang J-H. Characterising microbial reduction of arsenate sorbed to ferrihydrite and its concurrence with iron reduction[J]. Chemosphere, 2018, 194: 49-56.
95 Kato S,Nakamura R,Kai F,et al. Respiratory interactions of soil bacteria with (semi)conductive iron-oxide minerals[J]. Environmental Microbiology, 2010, 12(12): 3 114-3 123.
96 Chen Z,Zhang Y,Luo Q,et al. Maghemite (gamma-Fe2O3) nanoparticles enhance dissimilatory ferrihydrite reduction by Geobacter sulfurreducens: Impacts on iron mineralogical change and bacterial interactions[J]. Journal of Environmental Sciences, 2019, 78: 193-203.
[1] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[2] 李芦頔,吴冰,李鑫璐,杨洁,林良国. 土壤侵蚀中的片蚀研究综述[J]. 地球科学进展, 2021, 36(7): 712-726.
[3] 贺缠生, 田杰, 张宝庆, 张兰慧. 土壤水文属性及其对水文过程影响研究的进展、挑战与机遇[J]. 地球科学进展, 2021, 36(2): 113-124.
[4] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[5] 许海超,张建辉,戴佳栋,王勇. 耕作侵蚀研究回顾和展望[J]. 地球科学进展, 2019, 34(12): 1288-1300.
[6] 邹学勇,张梦翠,张春来,程宏,李慧茹,张峰. 输沙率对土壤颗粒特性和气流湍流脉动的响应[J]. 地球科学进展, 2019, 34(8): 787-800.
[7] 王全九,孙燕,宁松瑞,张继红,周蓓蓓,苏李君,单鱼洋. 活化灌溉水对土壤理化性质和作物生长影响途径剖析[J]. 地球科学进展, 2019, 34(6): 660-670.
[8] 潘根兴, 丁元君, 陈硕桐, 孙景玲, 冯潇, 张晨, 郑聚锋, 张旭辉, 程琨, 刘晓雨, 卞荣军, 李恋卿. 从土壤腐殖质分组到分子有机质组学认识土壤有机质本质[J]. 地球科学进展, 2019, 34(5): 451-470.
[9] 张金波,程谊,蔡祖聪. 土壤调配氮素迁移转化的机理[J]. 地球科学进展, 2019, 34(1): 11-19.
[10] 马芊红, 张科利. 西南喀斯特地区土壤侵蚀研究进展与展望 *[J]. 地球科学进展, 2018, 33(11): 1130-1141.
[11] 马芊红, 张科利. 西南喀斯特地区土壤侵蚀研究进展与展望[J]. 地球科学进展, 0, (): 54-.
[12] 法科宇, 雷光春, 张宇清, 刘加彬. 荒漠地区大气—土壤的碳交换过程[J]. 地球科学进展, 2018, 33(5): 464-472.
[13] 张亚峰, 姚振, 马强, 姬丙艳, 苗国文, 许光, 马风娟. 青藏高原北缘土壤碳库和碳汇潜力研究[J]. 地球科学进展, 2018, 33(2): 206-212.
[14] 张春来, 宋长青, 王振亭, 邹学勇, 王雪松. 土壤风蚀过程研究回顾与展望[J]. 地球科学进展, 2018, 33(1): 27-41.
[15] 张琪琳, 王占礼, 王栋栋, 刘俊娥. 黄土高原草地植被对土壤侵蚀影响研究进展[J]. 地球科学进展, 2017, 32(10): 1093-1101.
阅读次数
全文


摘要