1 |
Naujokas M F,Anderson B,Ahsan H,et al. The broad scope of health effects from chronic arsenic exposure: Update on a worldwide public health problem[J]. Environmental Health Perspectives, 2013, 121(3): 295-302.
|
2 |
Oberoi S,Devleesschauwer B,Gibb H J,et al. Global burden of cancer and coronary heart disease resulting from dietary exposure to arsenic, 2015[J]. Environmental Research, 2019,171: 185-192.
|
3 |
Mandal B K,Suzuki K T. Arsenic round the world: A review[J]. Talanta, 2002, 58(1): 201-235.
|
4 |
Bakhat H F,Zia Z,Abbas S,et al. Factors controlling arsenic contamination and potential remediation measures in soil-plant systems[J]. Groundwater for Sustainable Development, 2019, 9: 100 263.
|
5 |
Singh R,Singh S,Parihar P,et al. Arsenic contamination, consequences and remediation techniques: A review[J]. Ecotoxicology and Environmental Safety, 2015, 112: 247-270.
|
6 |
Souza L R R,Pomarolli L C,da Veiga M. From classic methodologies to application of nanomaterials for soil remediation: An integrated view of methods for decontamination of toxic metal(oid)s[J]. Environmental Science and Pollution Research, 2020, 27(10): 10 205-10 227.
|
7 |
Houben D,Pircar J,Sonnet P. Heavy metal immobilization by cost-effective amendments in a contaminated soil: Effects on metal leaching and phytoavailability[J]. Journal of Geochemical Exploration, 2012, 123: 87-94.
|
8 |
Wu S,Cajthaml T,Semerad J,et al. Nano zero-valent iron aging interacts with the soil microbial community: A microcosm study[J]. Environmental Science—Nano, 2019, 6(4): 1 189-1 206.
|
9 |
Wu Heqiu,Hou Qinxuan,Zhang Ying. Review of remedying the arsenic-contaminated soil with Fe-based media[J]. Soil and Fertilizer Sciences in China, 2018(2): 13-21, 66.
|
|
吴和秋,侯钦宣,张英.含铁介质用于修复砷污染土壤研究综述[J].中国土壤与肥料,2018(2): 13-21, 66.
|
10 |
Catalano J G,Park C,Fenter P,et al. Simultaneous inner- and outer-sphere arsenate adsorption on corundum and hematite[J]. Geochimica et Cosmochimica Acta,2008, 72(8):1 986-2 004.
|
11 |
Wang S,Mulligan C N. Speciation and surface structure of inorganic arsenic in solid phases: A review[J]. Environment International, 2008, 34(6): 867-879.
|
12 |
Li Z,Wang L,Wu J,et al. Zeolite-supported nanoscale zero-valent iron for immobilization of cadmium, lead, and arsenic in farmland soils: Encapsulation mechanisms and indigenous microbial responses[J]. Environmental Pollution, 2020, 260: 114 098.
|
13 |
Lin Longyong,Yan Xiulan,Yang Shuo. Stabilizing effects of Fe-Ce oxide on soil As(Ⅴ) and P[J]. Environmental Science, 2019, 40(8): 3 785-3 791.
|
|
林龙勇,阎秀兰,杨硕.铁铈氧化物对土壤As(Ⅴ)和P的稳定化效果[J].环境科学,2019, 40(8):3 785-3 791.
|
14 |
An B,Zhao D. Immobilization of As(III) in soil and groundwater using a new class of polysaccharide stabilized Fe-Mn oxide nanoparticles[J]. Journal of Hazardous Materials, 2012, 211:332-341.
|
15 |
Abad-Valle P,Alvarez-Ayuso E,Murciego A. Evaluation of ferrihydrite as amendment to restore an arsenic-polluted mine soil[J]. Environmental Science and Pollution Research, 2015, 22(9):6 778-6 788.
|
16 |
Cornell R M, Schwertmann U. The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses[M]. 2nd Edition. Weinheim: VCH, 1996.
|
17 |
Komarek M,Vanek A,Ettler V. Chemical stabilization of metals and arsenic in contaminated soils using oxides—A review[J]. Environmental Pollution, 2013, 172: 9-22.
|
18 |
Parfitt R L. Phosphate reactions with natural allophane, ferrihydrite and goethite[J]. Journal of Soil Science, 1989, 40(2):359-369.
|
19 |
Xu Wenyi,Li Min,Huang Minsheng,et al. Effect of freeze-thaw cycles on stabilizing arsenic contaminated soil by iron-containing materials[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6 497-6 503.
|
|
徐文义,李敏,黄民生,等.冻融循环对含铁材料稳定砷污染土壤的影响[J].环境工程学报, 2017, 11(12): 6 497-6 503.
|
20 |
Salazar-Camacho C,Villalobos M. Goethite surface reactivity: III. Unifying arsenate adsorption behavior through a variable crystal face—Site density model[J]. Geochimica et Cosmochimica Acta, 2010, 74(8): 2 257-2 280.
|
21 |
Michalkova Z,Komarek M,Veselska V,et al. Selected Fe and Mn (nano)oxides as perspective amendments for the stabilization of As in contaminated soils[J]. Environmental Science and Pollution Research, 2016, 23(11): 10 841-10 854.
|
22 |
Shao Jinqiu,Wen Qiqian,Yan Xiulan,et al. Adsorption and mechanism of arsenic by natural iron-containing minerals[J]. Environmental Science, 2019, 40(9): 4 072-4 080.
|
|
邵金秋,温其谦,阎秀兰,等.天然含铁矿物对砷的吸附效果及机制[J].环境科学, 2019, 40(9): 4 072-4 080.
|
23 |
Hartley W,Edwards R,Lepp N W. Arsenic and heavy metal mobility in iron oxide-amended contaminated soils as evaluated by short- and long-term leaching tests[J]. Environmental Pollution, 2004, 131(3): 495-504.
|
24 |
Doherty S J,Tighe M K,Wilson S C. Evaluation of amendments to reduce arsenic and antimony leaching from co-contaminated soils[J]. Chemosphere, 2017, 174: 208-217.
|
25 |
Tiberg C,Kumpiene J,Gustafsson J P,et al. Immobilization of Cu and As in two contaminated soils with zero-valent iron—Long-term performance and mechanisms[J]. Applied Geochemistry, 2016, 67: 144-152.
|
26 |
Mayo J T,Yavuz C,Yean S,et al. The effect of nanocrystalline magnetite size on arsenic removal[J]. Science and Technology of Advanced Materials, 2007, 8(1/2): 71-75.
|
27 |
Yan X,Shao J,Wen Q, et al. Stabilization of soil arsenic by natural limonite after mechanical activation and the associated mechanisms[J]. Science of the Total Environment, 2020, 708:135 118.
|
28 |
Gillispie E C,Taylor S E,Qafoku N P,et al. Impact of iron and manganese nano-metal-oxides on contaminant interaction and fortification potential in agricultural systems—A review[J]. Environmental Chemistry, 2019, 16(6): 377-390.
|
29 |
Mueller N C,Braun J,Bruns J,et al. Application of Nanoscale Zero Valent Iron (NZVI) for groundwater remediation in Europe[J]. Environmental Science and Pollution Research, 2012, 19(2): 550-558.
|
30 |
Gil-Diaz M,Alonso J,Rodriguez-Valdes E,et al. Comparing different commercial zero valent iron nanoparticles to immobilize As and Hg in brownfield soil[J]. Science of the Total Environment, 2017, 584: 1 324-1 332.
|
31 |
Gil-Diaz M,Rodriguez-Valdes E,Alonso J,et al. Nanoremediation and long-term monitoring of brownfield soil highly polluted with As and Hg[J]. Science of the Total Environment, 2019, 675: 165-175.
|
32 |
Li Xinli,Wang Zhikang,Qin Fanxin,et al. Stabilization of arsenic in soil by nano-TiO_2 and Fe supported on activated carbon[J]. Ecology and Environmental Sciences,2018,27(7): 1 298-1 305.
|
|
李新丽,王志康,秦樊鑫,等.活性炭负载纳米二氧化钛及铁修饰改性对土壤砷的稳定化试验研究[J].生态环境学报, 2018, 27(7): 1 298-1 305.
|
33 |
Zhou Haiyan, Deng Yirong, Lin Longyong, et al. Stabilization of arsenic-contaminated soils using Fe-Mn oxide under different water conditions[J]. Environmental Science, 2019, 40(8): 3 792-3 798.
|
|
周海燕,邓一荣,林龙勇,等.铁锰氧化物在不同水分条件下对土壤As的稳定化作用[J].环境科学, 2019, 40(8): 3 792-3 798.
|
34 |
Yang Z,Liu L,Chai L,et al. Arsenic immobilization in the contaminated soil using poorly crystalline Fe-oxyhydroxy sulfate[J]. Environmental Science and Pollution Research, 2015, 22(16): 12 624-12 632.
|
35 |
Arenas-Lago D,Abreu M M,Andrade Couce L,et al. Is nanoremediation an effective tool to reduce the bioavailable As, Pb and Sb contents in mine soils from Iberian Pyrite Belt?[J] Catena, 2019, 176: 362-371.
|
36 |
Vitkova M,Puschenreiter M,Komarek M. Effect of nano zero-valent iron application on As, Cd, Pb, and Zn availability in the rhizosphere of metal(loid) contaminated soils[J]. Chemosphere, 2018, 200: 217-226.
|
37 |
Jeong S,Hong J K,Jho E H,et al. Interaction among soil physicochemical properties, bacterial community structure, and arsenic contamination: Clay-induced change in long-term arsenic contaminated soils[J]. Journal of Hazardous Materials, 2019, 378: 120 729.
|
38 |
Bunin E,Khatisashvili G,Varazi T,et al. Study of arsenic-contaminated soil bacterial community using biochip technology[J]. Water Air and Soil Pollution, 2020, 231(5): 198.
|
39 |
Sun W,Xiao E,Xiao T,et al. Response of soil microbial communities to elevated antimony and arsenic contamination indicates the relationship between the innate microbiota and contaminant fractions[J]. Environmental Science & Technology, 2017, 51(16): 9 165-9 175.
|
40 |
Sun W,Sun X,Li B,et al. Bacterial response to antimony and arsenic contamination in rice paddies during different flooding conditions[J]. Science of the Total Environment, 2019, 675: 273-285.
|
41 |
Gu Y,Van Nostrand J D,Wu L,et al. Bacterial community and arsenic functional genes diversity in arsenic contaminated soils from different geographic locations[J]. PLoS ONE, 2017, 12(5): e0189656.
|
42 |
Xiao E,Krumins V,Xiao T,et al. Depth-resolved microbial community analyses in two contrasting soil cores contaminated by antimony and arsenic[J]. Environmental Pollution, 2017, 221: 244-255.
|
43 |
Azarbad H,Niklinska M,Laskowski R,et al. Microbial community composition and functions are resilient to metal pollution along two forest soil gradients[J]. Fems Microbiology Ecology,2015, 91(1): 1-11.
|
44 |
Lorenz N,Hintemann T,Kramarewa T,et al. Response of microbial activity and microbial community composition in soils to long-term arsenic and cadmium exposure[J]. Soil Biology & Biochemistry, 2006, 38(6): 1 430-1 437.
|
45 |
Sheik C S,Mitchell T W,Rizvi F Z,et al. Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure[J]. PLoS ONE, 2012, 7(6). DOI: 10.1371/journal.pone.0040059.
doi: 10.1371/journal.pone.0040059
|
46 |
Crognale S,D'Annibale A,Pesciaroli L,et al. Fungal community structure and As-resistant fungi in a decommissioned gold mine site[J]. Frontiers in Microbiology, 2017, 8. DOI: 10.3389/fmicb.2017.02202.
doi: 10.3389/fmicb.2017.02202
|
47 |
Yin H,Niu J,Ren Y,et al. An integrated insight into the response of sedimentary microbial communities to heavy metal contamination[J]. Scientific Reports, 2015, 5: 14 266.
|
48 |
Zou Q,An W,Wu C,et al. Red mud-modified biochar reduces soil arsenic availability and changes bacterial composition[J]. Environmental Chemistry Letters, 2018, 16(2): 615-622.
|
49 |
Antisari L V,Carbone S,Gatti A,et al. Toxicity of metal oxide (CeO2, Fe3O4, SnO2) engineered nanoparticles on soil microbial biomass and their distribution in soil[J]. Soil Biology & Biochemistry, 2013, 60: 87-94.
|
50 |
Zhang Y,Zhao C,Chen G,et al. Response of soil microbial communities to additions of straw biochar, iron oxide, and iron oxide-modified straw biochar in an arsenic-contaminated soil[J]. Environmental Science and Pollution Research International, 2020, 27: 23 761-23 768.
|
51 |
Wu S,Vosatka M,Vogel-Mikus K,et al. Nano Zero-Valent Iron Mediated Metal(loid) uptake and translocation by arbuscular mycorrhizal symbioses[J]. Environmental Science & Technology, 2018, 52(14): 7 640-7 651.
|
52 |
Gomez-Sagasti M T,Epelde L,Anza M,et al. The impact of nanoscale zero-valent iron particles on soil microbial communities is soil dependent[J]. Journal of Hazardous Materials,2019,364: 591-599.
|
53 |
Zhang Bianhua,Jin Dongsheng,Gao Chunhua,et al. Comparison of different methods for analyzing the rhizosphere microbial diversity of different plants in industrial and mining reclamation areas[J]. Jiangsu Agricultural Sciences, 2019, 47(4):223-226.
|
|
张变华,靳东升,郜春花,等.不同方法分析工矿复垦区不同植物根际微生物多样性的比较[J].江苏农业科学,2019, 47(4): 223-226.
|
54 |
dos Santos J V,Rangel W M,Guimaraes A A,et al. Soil biological attributes in arsenic-contaminated gold mining sites after revegetation[J]. Ecotoxicology, 2013, 22(10): 1 526-1 537.
|
55 |
Tipayno S,Kim C-G,Sa T. T-RFLP analysis of structural changes in soil bacterial communities in response to metal and metalloid contamination and initial phytoremediation[J]. Applied Soil Ecology, 2012, 61: 137-146.
|
56 |
Sun X,Zhou Y,Tan Y,et al. Restoration with pioneer plants changes soil properties and remodels the diversity and structure of bacterial communities in rhizosphere and bulk soil of copper mine tailings in Jiangxi Province, China[J]. Environmental Science and Pollution Research, 2018, 25(22): 22 106-22 119.
|
57 |
Das S,Chou M L,Jean J S,et al. Arsenic-enrichment enhanced root exudates and altered rhizosphere microbial communities and activities in hyperaccumulator Pteris vittata[J]. Journal of Hazardous Materials, 2017, 325: 279-287.
|
58 |
Hu M,Sun W,Krumins V,et al. Arsenic contamination influences microbial community structure and putative arsenic metabolism gene abundance in iron plaque on paddy rice root[J]. Science of the Total Environment, 2019, 649: 405-412.
|
59 |
Xu Jiangbing,Wang Yanling,Luo Xiaosan,et al. Influence of Fe3O4 nanoparticles on lettuce(Lactuca sativa L.)growth and soil bacterial community structure[J]. Chinese Journal of Applied Ecology, 2017, 28(9): 3 003-3 010.
|
|
徐江兵,王艳玲,罗小三,等.纳米Fe3O4对生菜生长及土壤细菌群落结构的影响[J].应用生态学报,2017, 28(9): 3 003-3 010.
|
60 |
Cao J,Feng Y,Lin X,et al. Iron oxide magnetic nanoparticles deteriorate the mutual interaction between arbuscular mycorrhizal fungi and plant[J]. Journal of Soils and Sediments, 2017, 17(3): 841-851.
|
61 |
Zhang Guogang,Liu Xuewei,Gao Minling,et al. Effect of Fe-Mn-Ce modified biochar composite on microbial diversity and properties of arsenic-contaminated paddy soils[J].Chemosphere, 2020, 250: 126 249.
|
62 |
Zhai Weiwei,Dai Yuxia,Zhao Wenliang,et al. Simultaneous immobilization of the cadmium, lead and arsenic in paddy soils amended with titanium gypsum[J]. Environmental Pollution, 2020, 258: 113 790.
|
63 |
Liu Shusi,Lu Yixin,Yang Chen,et al. Effects of modified biochar on rhizosphere microecology of rice (Oryza sativa L.) grown in As-contaminated soil[J].Environmental Science and Pollution Research, 2017, 24(30): 23 815-23 824.
|
64 |
Feng Shibo,Jiang Yuelu,Cai Zhonghua,et al. The state of arts:Sources,microbial processesand ecological effects of iron in the marine environment[J]. Advances in Earth Science, 2019, 34(5):513-522.
|
|
冯世博,姜玥璐,蔡中华,等. 海洋环境中铁的来源、微生物作用过程及生态效应[J]. 地球科学进展, 2019, 34(5): 513-522.
|
65 |
Lentini C J,Wankel S D,Hansel C M. Enriched iron(III)-reducing bacterial communities are shaped by carbon substrate and iron oxide mineralogy[J]. Frontiers in Microbiology, 2012, 3. DOI: 10.3389/fmicb.2012.00404.
doi: 10.3389/fmicb.2012.00404
|
66 |
Gavrilov S N,Lloyd J R,Kostrikina N A,et al. Fe(III) Oxide reduction by a gram-positive thermophile: Physiological mechanisms for dissimilatory reduction of poorly crystalline Fe(III) oxide by a thermophilic Gram-positive Bacterium Carboxydothermus ferrireducens[J]. Geomicrobiology Journal, 2012, 29(9): 804-819.
|
67 |
Chen Lei,Zhang Hongxia,Li Ying,et al. The role of microorganisms in the geochemical iron cycle[J]. Scientia Sinica Vitae, 2016, 46(9): 1 069-1 078.
|
|
陈蕾,张洪霞,李莹,等.微生物在地球化学铁循环过程中的作用[J].中国科学:生命科学,2016, 46(9): 1 069-1 078.
|
68 |
Marsili E,Baron D B,Shikhare I D,et al. Shewanella secretes flavins that mediate extracellular electron transfer[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(10): 3 968-3 973.
|
69 |
Vargas M,Malvankar N S,Tremblay P L,et al. Aromatic amino acids required for Pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens[J]. mBio, 2013, 4(2). DOI:10.1128/mBio.00105-13.
doi: 10.1128/mBio.00105-13
|
70 |
Weber K A,Achenbach L A,Coates J D. Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction[J]. Nature Reviews Microbiology, 2006, 4(10): 752-764.
|
71 |
Richter H,Nevin K P,Jia H,et al. Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer[J]. Energy & Environmental Science,2009, 2(5): 506-516.
|
72 |
Gagen E J,Zaugg J,Tyson G W,et al. Goethite reduction by a neutrophilic member of the alphaproteobacterial genus telmatospirillum[J]. Frontiers in Microbiology, 2019, 10: 2 938.
|
73 |
Masuda Y,Itoh H,Shiratori Y,et al. Predominant but previously-overlooked prokaryotic drivers of reductive nitrogen transformation in paddy soils, revealed by metatranscriptomics[J]. Microbes and Environments, 2017, 32(2): 180-183.
|
74 |
Li L,Qu Z,Jia R,et al. Excessive input of phosphorus significantly affects microbial Fe(III) reduction in flooded paddy soils by changing the abundances and community structures of Clostridium and Geobacteraceae[J]. Science of the Total Environment, 2017, 607: 982-991.
|
75 |
Nevin K P,Lovley D R. Mechanisms for Fe(III) oxide reduction in sedimentary environments[J]. Geomicrobiology Journal, 2002, 19(2): 141-159.
|
76 |
Ferreira M J,Silva H,Cunha A. Siderophore-Producing Rhizobacteria as a promising tool for empowering plants to cope with iron limitation in saline soils: A review[J]. Pedosphere,2019, 29(4): 409-420.
|
77 |
Chauhan H,Bagyaraj D J,Selvakumar G,et al. Novel plant growth promoting rhizobacteria—Prospects and potential[J]. Applied Soil Ecology, 2015, 95: 38-53.
|
78 |
Simanova A A,Persson P,Loring J S. Evidence for ligand hydrolysis and Fe(III) reduction in the dissolution of goethite by desferrioxamine-B[J]. Geochimica et Cosmochimica Acta,2010, 74(23): 6 706-6 720.
|
79 |
Huang J-H,Voegelin A,Pombo S A,et al. Influence of arsenate adsorption to ferrihydrite, goethite, and boehmite on the Kinetics of arsenate reduction by Shewanella putrefaciens strain CN-32[J]. Environmental Science & Technology, 2011, 45(18): 7 701-7 709.
|
80 |
Yan G,Chen X,Du S,et al. Genetic mechanisms of arsenic detoxification and metabolism in bacteria[J]. Current Genetics,2019, 65(2): 329-338.
|
81 |
Roy M,Giri A K,Dutta S,et al. Integrated phytobial remediation for sustainable management of arsenic in soil and water[J]. Environment International, 2015, 75: 180-198.
|
82 |
Meharg A A,Zhao F J. Arsenic & Rice[M]. Dordrecht, Netherlands: Springer, 2012.
|
83 |
Dunivin T K,Yeh S Y,Shade A. A global survey of arsenic-related genes in soil microbiomes[J]. BMC Biology, 2019, 17. DOI:10.1186/s12915-019-0661-5.
doi: 10.1186/s12915-019-0661-5
|
84 |
Yuan C,Qiao J,Li F,et al. Community dynamics of As(V)-reducing and As(III)-oxidizing genes during a wet-dry cycle in paddy soil amended with organic matter, gypsum, or iron oxide[J]. Journal of Hazardous Materials, 2020, 393: 122 485-122 485.
|
85 |
Malasarn D,Saltikov W,Campbell K M,et al. arrA is a reliable marker for As(V) respiration[J]. Science, 2004, 306(5 695):455-455.
|
86 |
Zobrist J,Dowdle P R,Davis J A,et al. Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate[J]. Environmental Science & Technology, 2000, 34(22): 4 747-4 753.
|
87 |
Yamamura S,Watanabe M,Kanzaki M,et al. Removal of arsenic from contaminated soils by microbial reduction of arsenate and quinone[J]. Environmental Science & Technology, 2008,42(16):6 154-6 159.
|
88 |
Perez-Jimenez J R,DeFraia C,Young L Y. Arsenate respiratory reductase gene (arrA) for Desulfosporosinus sp. strain Y5[J]. Biochemical and Biophysical Research Communications, 2005,338(2): 825-829.
|
89 |
Yamamura S,Sudo T,Watanabe M,et al. Effect of extracellular electron shuttles on arsenic-mobilizing activities in soil microbial communities[J]. Journal of Hazardous Materials, 2018, 342:571-578.
|
90 |
Luo T,Ye L,Chan T,et al. Mobilization of arsenic on nano-TiO2 in soil columns with sulfate reducing bacteria[J]. Environmental Pollution, 2018, 234: 762-768.
|
91 |
Muyzer G,Stams A J M. The ecology and biotechnology of sulphate-reducing bacteria[J]. Nature Reviews Microbiology,2008, 6(6): 441-454.
|
92 |
Ohtsuka T,Yamaguchi N,Makino T,et al. Arsenic dissolution from Japanese paddy soil by a dissimilatory arsenate-reducing bacterium Geobacter sp. OR-1[J]. Environmental Science & Technology, 2013, 47(12): 6 263-6 271.
|
93 |
Reyes C,Murphy J N,Saltikov C W. Mutational and gene expression analysis of mtrDEF, omcA and mtrCAB during arsenate and iron reduction in Shewanella sp. ANA-3[J]. Environmental Microbiology, 2010, 12(7): 1 878-1 888.
|
94 |
Huang J-H. Characterising microbial reduction of arsenate sorbed to ferrihydrite and its concurrence with iron reduction[J]. Chemosphere, 2018, 194: 49-56.
|
95 |
Kato S,Nakamura R,Kai F,et al. Respiratory interactions of soil bacteria with (semi)conductive iron-oxide minerals[J]. Environmental Microbiology, 2010, 12(12): 3 114-3 123.
|
96 |
Chen Z,Zhang Y,Luo Q,et al. Maghemite (gamma-Fe2O3) nanoparticles enhance dissimilatory ferrihydrite reduction by Geobacter sulfurreducens: Impacts on iron mineralogical change and bacterial interactions[J]. Journal of Environmental Sciences, 2019, 78: 193-203.
|