地球科学进展 ›› 2018, Vol. 33 ›› Issue (1): 27 -41. doi: 10.11867/j.issn.1001-8166.2018.01.0027

综述与评述 上一篇    下一篇

土壤风蚀过程研究回顾与展望
张春来 1( ), 宋长青 1, 王振亭 2, 邹学勇 1, 王雪松 1   
  1. 1.地表过程与资源生态国家重点实验室,防沙治沙教育部工程研究中心,北京师范大学地理科学学部,北京 100875
    2.中国科学院西北生态环境资源研究院,甘肃 兰州 730000
  • 收稿日期:2017-10-21 修回日期:2017-11-30 出版日期:2018-01-10
  • 基金资助:
    国家自然科学基金重点项目“土壤风蚀速率对影响因子动态变化的响应”(编号: 41630747)和“土壤风蚀影响因子参数化”(编号: 41330746)资助

Review and Prospect of the Study on Soil Wind Erosion Process

Chunlai Zhang 1( ), Changqing Song 1, Zhenting Wang 2, Xueyong Zou 1, Xuesong Wang 1   

  1. 1.State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
    2.Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
  • Received:2017-10-21 Revised:2017-11-30 Online:2018-01-10 Published:2018-03-06
  • About author:

    First author:Zhang Chunlai(1972-), male, Haiyuan County, Ningxia Hui Autonomous Region, Professor. Research areas include soil wind erosion and aeolian geomorphology.E-mail:clzhang@bnu.edu.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Response of soil wind erosion rate to dynamic changes of impact factors” (No.41630747) and “Parameterization of factors influencing soil wind erosion” (No.41330746)

土壤风蚀过程包含风蚀动力过程和风蚀因子及风蚀速率在风蚀过程中的动态变化过程。前者实验和理论研究成果丰富,较清晰地刻画了颗粒起动、搬运和沉降过程;后者重点研究风蚀过程中各类风蚀因子的动态变化规律及其互馈机制,以及土壤风蚀速率对风蚀因子动态变化的响应机制,尚缺乏系统的研究成果。土壤风蚀过程研究的难点在于:①风蚀因子的动力学参数化;②风蚀因子动态变化过程的观测和定量表达;③风蚀过程的尺度问题;④模型的预报能力。现阶段土壤风蚀研究迫切需要开展以下工作:建立标准风蚀观测场,获取连续、完整的大田风蚀资料;研究风沙流饱和路径,解决尺度问题;构建具有扎实理论基础、基于动力过程和动态变化过程的风蚀模型。

Soil wind erosion processes include mechanical process and dynamic changes of the factors affecting soil wind erosion, as well as the corresponding changes of wind erosion rate. The former is rich in experimental and theoretical researches that have clearly defined the process of particle starting, transporting and settling. The latter focuses on the dynamic changes of various wind erosion factors and the response of soil wind erosion rate to the change of the factors, of which systematic research of which is very limited. The difficulties in research of soil wind erosion process include: ①Dynamic parameterization of wind erosion factors; ②Observation and quantitative expression of the dynamic changes of wind erosion factors; ③Scaling problem of wind erosion process; ④Prediction ability of wind erosion models. At present, it is urgent to carry out the following work on soil wind erosion. The first is to establish standard wind erosion observation field in typical regions to obtain continuous and complete data of wind erosion in the field; the second is to study the saturation path of wind sand flow to solve scale problem; and the third is to construct a wind erosion model with solid theoretical foundation and fully consider both mechanical process of soil wind erosion and dynamic changes of the factors.

中图分类号: 

表1 土壤风蚀影响因子分类
Table 1 Classification of wind soil erosion factors
分类与出处 因子分类 要素 参考文献
Chepil因子分类 空气因子
地表因子
土壤因子
空气因子包括风速、湍流、空气密度、黏滞系数,地表因子包括粗糙度、地表覆盖、障碍物、温度、地形,土壤因子包括土壤结构(取决于有机质含量、碳酸钙含量和机械组成)、容重、含水率 [66]
风蚀方程
(WEQ)
可蚀性因子
气候因子
坡长和坡度因子
地表粗糙度因子
作物残茬因子
迎风坡长度小于152.4 m时的山丘可蚀性、年均风速、降水量、蒸发量、土垄高度、土垄间距、田块总长度、风障保护长度、作物残余物重量、残余物截面指数、植被粗糙变量 [67]
Bocharov模型 风况因子
表层土壤因子
气象因子
农业活动因子
4类因子中,共有25个风蚀影响要素。风况因子包括瞬时、日平均、年平均、最大风速、风向、气流湍流程度和风速的频率分布;表层土壤因子包括土壤机械组成、土壤湿度、土壤团块结构(不可蚀成分含量)、结皮、土壤结构的水稳性等;气象因子包括气温、土壤温度(土壤冻结)、降雨强度与降雨量、空气相对湿度等;农业活动因子包括农业活动引起的田块内表土微地形起伏和沟垄尺寸、上年风蚀性质、顺风向田块长度、邻近田块的性质、田块周围防护措施类型和结构、植被覆盖度和作物残留物覆盖状况、耕作方法 [68]
德克萨斯侵蚀分析模型(TEAM) 风力因子
土壤可蚀性因子
地表覆盖因子
顺风向裸露地表长度
风力因子(摩阻速度)
土壤可蚀性因子
地表覆盖因子
顺风向裸露地表长度
[69]
风蚀预报系统
(WEPS)
气候因子
水文因子
土壤因子
作物因子
分解因子
管理因子
气候子模型;水文子模型包括融雪、地表径流、土壤贮水量、潜在蒸散量、潜在土壤蒸发和植物蒸腾量;管理子模型包括地表处理方式、土壤处理方式、植物体处理方式和土壤改良;土壤子模型包括垄沟高度、自由糙度、结皮、结皮厚度、结皮覆盖度、结皮稳定性、结皮的松散可蚀性物、干团聚体稳定性、团聚体粒径分布;作物子模型包括物候、作物生长期日长、作物萌发、生物量产出、地上和地下生物量分量、叶茎面积生长过程、衰亡期叶面积指数下降过程、植株高度;分解子模型包括作物的直立秸秆分解、地表残留秸秆分解、埋入土壤秸秆分解、根系分解 [72]
风蚀评价模型
(WEAM)
风力因子(摩阻速度)
土壤可蚀性因子(粒度和水分)
土壤表面覆盖因子
[70]
修正风蚀方程
(RWEQ)
可蚀性因子
气候因子
土壤结皮因子
地表粗糙度因子
结合残茬因子
田块长度、由正坡向负坡转折点的长度;易蚀碎屑含量;土壤湿度;土壤粗糙度;气候因子包括风速、风向、太阳辐射、降雨量、雪覆盖;土壤结皮因子取决于黏粒、有机质含量;植被因子包括平铺残留物、直立作物残留物、植被冠层、作物残茬分解等 [71]
土壤风蚀动力模型
(DMSWE)
风力侵蚀因子
粗糙干扰因子
土壤抗蚀因子
风力侵蚀因子包括风速、风向、湍流、空气密度、空气黏度;粗糙干扰因子包括植被/留茬覆盖、植被/留茬高度、平铺残余物覆盖、平铺残余物质量、土垄高度和间距、地形起伏度、砾石覆盖、土块覆盖、土块尺寸、空气动力学粗糙度等;土壤抗蚀因子包括土壤比重、土壤颗粒尺寸分布、盐分含量、有机质含量、土壤水分含量、土块密度、植物根系密度、pH值、结皮覆盖等 [4]
[1] Liu Xianwan.Experimental Blown Sand Physics and Blown Sand Control[M]. Beijing: Science Press, 1995.
[刘贤万. 实验风沙物理与风沙工程学[M]. 北京: 科学出版社, 1995.]
[2] Zobeck T M, Van Pelt R S. Wind erosion[M]∥Soil Management: Building A Stable Base for Agriculture. Madison: Soil Science Society of America, 2011: 209.
[3] Wu Zheng.Geomorphology of Wind-drift Sand and Their Controlled Engineering[M]. Beijing: Science Press, 2003.
[吴正. 风沙地貌与治沙工程学[M]. 北京: 科学出版社, 2003.]
[4] Zou Xueyong, Zhang Chunlai, Cheng Hong,et al.Classification and representation of factors affecting soil wind erosion in a model[J]. Advances in Earth Science, 2014, 29(8): 875-889.
[邹学勇, 张春来, 程宏, 等. 土壤风蚀模型中的影响因子分类与表达[J]. 地球科学进展, 2014, 29(8): 875-889.]
doi: 10.11867/j.issn.1001-8166.2014.08.0875     URL    
[5] Dong Zhibao, Li Zhenshan, Yan Ping.An outling of the wind erosion research history in the world[J].Journal of Desert Research, 1995, 15(1): 100-104.
[董治宝, 李振山, 严平. 国外土壤风蚀的研究历史与特点[J]. 中国沙漠, 1995, 15(1): 100-104.]
URL    
[6] Dong Zhibao, Zheng Xiaojing.Research achievements in Aeolian physics in China for last five decades (Ⅱ)[J]. Journal of Desert Research, 2005, 25(6):795-815.
[董治宝, 郑晓静. 中国风沙物理研究50 a(Ⅱ)[J]. 中国沙漠, 2005, 25(6): 795-815.]
doi: 10.3321/j.issn:1000-694X.2005.06.001     URL    
[7] Li Xiaoyan, Li Fuxing, Liu Lianyou.Research history and trend on soil property factors concerning wind erosion[J], Journal of Desert Research, 1998, 18(1): 91-95.
[李小雁, 李福兴, 刘连友. 土壤风蚀中有关土壤性质因子的研究历史与动向[J]. 中国沙漠, 1998, 18(1): 91-95.]
URL    
[8] Yang Xiuchun, Yan Ping, Liu Lianyou.Advances and commentaries on wind erosion of soil[J].Agricultural Research in the Arid Areas, 2003, 21(4): 147-153.
[杨秀春, 严平, 刘连友. 土壤风蚀研究进展与评述[J]. 干旱地区农业研究, 2003, 21(4): 147-153.]
[9] Nan Ling, Du Lingtong, Zhan Xiuli.Advances in study on soil erodibility for wind erosion[J]. Soils, 2014, 46(2): 204-211.
[南岭, 杜灵通, 展秀丽. 土壤风蚀可蚀性研究进展[J]. 土壤, 2014, 46(2): 204-211.]
doi: 10.3969/j.issn.1006-6055.2013.04.018     URL    
[10] Shao Y.Physics and Modelling of Wind Erosion[M]. Heidelberg: Springer, 2008: 117-246.
[11] Kok J F, Parteli E J R, Michaels T I, et al. The physics of wind-blown sand and dust[J]. Reports on Progress in Physics, 2012, 75: 106 901.
doi: 10.1088/0034-4885/75/10/106901     URL     pmid: 22982806
[12] Shao Y, Lu H.A simple expression for wind erosion threshold friction velocity[J].Journal of Geophysical Research, 2000, 105: 22 437-22 443.
doi: 10.1029/2000JD900304     URL    
[13] Bagnold R A.The Physics of Blown Sand and Desert Dunes[M]. London: Methuen, 1941.
[14] Greeley R, Iversen J D.Wind as A Geological Process on Earth, Mars, Venus and Titan[M]. New York:Cambridge University Press, 1985: 67-142.
[15] Zimon A D.Adhesion of Dust and Powder[M]. New York: Consultants Bureau, 1982: 1-30.
[16] Rice M A, Willetts B B, McEwan I E. An experimental study of multiple grain-size ejecta produced by collisions of saltating grains with a flatbed[J]. Sedimentology, 1995, 42: 695-706.
doi: 10.1111/j.1365-3091.1995.tb00401.x     URL    
[17] Lu H, Shao Y.A new model for dust emission by saltation bombardment[J].Journal of Geophysical Research, 1999, 104: 16 827-15 842.
doi: 10.1029/1999JD900169     URL    
[18] Anderson R S, Haff P K.Wind modification and bed response during saltation of sand in air[M]∥Aeolian Grain Tvansport1.Vienna: Springer,1991: 21-51.
[19] Zheng X.Mechanics of Wind-blown Sand Movements[M]. Berlin: Springer, 2009:61-104.
[20] Zhang J, Teng Z, Huang N, et al.Surface renewal as a significant mechanism for dust emission[J]. Atmospheric Chemistry and Physics, 2016, 16:15 517-15 528.
doi: 10.5194/acp-2016-421     URL    
[21] Dietrich R.Impact abrasion of harder by softer materials[J].The Journal of Geology,1977, 85: 242-246.
doi: 10.1086/628289     URL    
[22] Wang Z T, Wang H T, Niu Q H,et al.Abrasion of yardangs[J]. Physical Review E, 2011, 84(3).DOI:10.1103/physRevE.84.031304.
doi: 10.1103/PhysRevE.84.031304     URL     pmid: 22060358
[23] Kok J.A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle[J]. Proceedings of the National Academy of Sciences, 2011, 108: 1 016-1 021.
doi: 10.1073/pnas.1014798108     URL     pmid: 21189304
[24] Wilson G R.Modeling Wind Erosion: Detachment and Maximum Transport Rate[D]. Texas:Texas Tech University, 1994.
[25] Ungar J E, Haff P K.Steady state saltation in air[J]. Sedimentology, 1987, 34: 289-300.
doi: 10.1111/j.1365-3091.1987.tb00778.x     URL    
[26] Anderson R S, Sørensen M, Willetts B B.A review of recent progress in our understanding of aeolian sediment transport[M]∥Aeolian Grain Tvansport1.Vienna: Springer,1991:1-19.
[27] Pye K.Aeolian Dust and Dust Deposits[M]. London: Academic Press, 1987:29-91.
[28] Ling Yuquan, Wu Zheng.Experiment on the dynamic photography of the movement of sand-driving wind[J].Acta Geographica Sinica, 1980, 35(2): 174-181.
[凌裕泉, 吴正. 风沙运动的动态摄影实验[J]. 地理学报, 1980, 35(2): 174-181.]
[29] Rice M A, Willetts B B, McEwan I K. Observations of collisions of saltating grains with a granular bed from high-speed cine-film[J].Sedimentology, 1996, 43: 21-31.
doi: 10.1111/j.1365-3091.1996.tb01456.x     URL    
[30] Zou Xueyong, Hao Qingzhen, Zhang Chunlai,et al.Analysis on trajectory parameters of saltating grains in wind-blown sand[J]. Chinese Science Bulletin, 1999, 44(10): 1 084-1 088.
[邹学勇, 郝青振, 张春来, 等. 风沙流中跃移轨迹参数分析[J]. 科学通报, 1999, 44(10): 1 084-1 088.]
doi: 10.3321/j.issn:0023-074X.1999.10.015     URL    
[31] Pye K, Tsoar H.Aeolian Sand and Sand Dunes[M]. Berlin: Springer, 2009: 99-140.
[32] Wang Z T, Zhang C L, Wang H T.Forces on a saltating grain in air[J].The European Physical Journal E, 2013, 36: 112.
doi: 10.1140/epje/i2013-13112-2     URL     pmid: 24091939
[33] Owen P R.Saltation of uniform grains in air[J].Journal of Fluid Mechanics, 1964, 20: 225-242.
doi: 10.1111/j.1468-2273.1987.tb01791.x     URL    
[34] Anderson R S.Simulation of eolian saltation[J].Science, 1988, 241(4 867):820-823.
doi: 10.1126/science.241.4867.820     URL    
[35] Raupach M R.Saltation layer vegetation canopies and roughness lengths[M]∥Aeolian Grain Tvansport1.Vienna: Springer,1991:135-144.
[36] Wu Chuijie, Wang Ming, Wang Liang.Large-eddy simulation of the formation of three-dimentional aeolian sand ripples in a turbulent field[J]. Science in China (Series G), 2008, 38(6): 637-652.
[吴锤结, 王明, 王亮. 湍流风场中三维风成沙波纹形成过程的大涡模拟研究[J]. 中国科学:G辑, 2008, 38(6): 637-652.]
[37] Walter B, Horender S, Voegeli C,et al.Experimental assessment of Owen’s second hypothesis on surface shear stress induced by a fluid during sediment saltation[J]. Geophysical Research Letters,2014, 41: 6 298-6 305.
doi: 10.1002/2014GL061069     URL    
[38] White B R, Schultz J C.Magnus effect in saltation[J]. Journal of Fluid Mechanics, 1977, 81: 497-512.
doi: 10.1017/S0022112077002183     URL    
[39] Schmidt D S, Schmidt R A, Dent J D.The electrostatic force on saltating sand[J].Journal of Geophysical Research: Atmospheres, 1998, 103: 8 997-9 002.
doi: 10.1029/98JD00278     URL    
[40] Yang Bao.Discussion on drag coefficient and lift coefficient of saltation particles in air flow[J].Journal of Desert Research, 1998, 18(1): 70-76.
[杨保. 气流中颗粒阻力系数和升力系数的讨论[J]. 中国沙漠, 1998, 18(1): 70-76.]
[41] Zou X Y, Cheng H, Zhang C L,et al.Effects of the Magnus and Saffman forces on the saltation trajectories of sand grain[J]. Geomorphology, 2007, 90: 11-22.
doi: 10.1016/j.geomorph.2007.01.006     URL    
[42] Cheng H, Zou X, Liu C,et al.Transport mass of creeping sand grains and their movement velocities[J]. Journal of Geophysical Research: Atmospheres, 2013, 118: 6 374-6 382.
doi: 10.1002/jgrd.50439     URL    
[43] Swann C, Sherman D J.A bedload trap for aeolian sand transport[J].Aeolian Research, 2013, 11: 61-65.
doi: 10.1016/j.aeolia.2013.09.003     URL    
[44] Wang Y, Wang D, Wang L,et al.Measurement of sand creep on a flat sand bed using a high-speed digital camera[J]. Sedimentology, 2009, 56: 1 705-1 712.
doi: 10.1111/sed.12232     URL    
[45] Malina F J.Recent developments in the dynamics of wind erosion[C]∥22nd Annual Meeting of the American Geophysical Union Transactions II, 1941: 262-284.
[46] Tsoar H, Pye K.Dust transport and the question of desert loess formation[J].Sedimentology, 1987, 34: 139-153.
doi: 10.1111/j.1365-3091.1987.tb00566.x     URL    
[47] Chien Ning, Wan Zhaohui.Mechanics of Sediment Transport[M]. Beijing: Science Press, 2003: 515-543.
[钱宁, 万兆惠. 泥沙运动力学[M]. 北京: 科学出版社, 2003: 515-543.]
[48] Goudie A S, Middleton N J.Desert Dust in the Global System[M]. Heidelberg: Springer, 2006: 1-31.
[49] Wang Z T.A theoretical interpretation of the “giant” dust particle conundrum[J]. Science of the Total Environment, 2016, 553: 673-675.
doi: 10.1016/j.scitotenv.2016.02.177     URL     pmid: 26970665
[50] Wang Z T, Lai Z P.A theoretical model on the relation between wind speed and grain size in dust transportation and its paleoclimatic implications[J].Aeolian Research, 2014, 13: 105-108.
doi: 10.1016/j.aeolia.2014.04.003     URL    
[51] Coudé-Gaussen G.Local, proximal and distal Saharan dusts: Characterization and contribution to the sedimentation[C]∥Leinen M, Sarnthein M, eds. Paleoclimatology and Paleometeorology: Modern and Past Patterns of Global Atmospheric Transport. Kluwer Academic Publishers, 1989: 339-358.
[52] Díaz-Hernndez J L, Prraga J. The nature and tropospheric formation of iberulites: Pinkish mineral microspherulites[J].Geochimica et Cosmochimica Acta, 2008, 72: 3 883-3 906.
doi: 10.1016/j.gca.2008.05.037     URL    
[53] Jeong G Y, Kim J Y, Seo J,et al.Long-range transport of giant particles in Asian dust identified by physical, mineralogical, and meteorological analysis[J]. Atmospheric Chemistry and Physics, 2014, 14: 505-521.
doi: 10.5194/acp-14-505-2014     URL    
[54] Shao Y, Raupach M R.The overshoot and equilibration of saltation[J].Journal of Geophysical Research, 1992, 97: 20 559-20 564.
doi: 10.1029/92JD02011     URL    
[55] Stout J E.Wind erosion within a simple field[J].Transactions of the American Society of Agricultural Engineers, 1990, 33: 1 597-1 600.
doi: 10.13031/2013.31513     URL    
[56] Gillette D A, Fryrear D W, Xiao J B,et al.Large scale variability of wind erosion mass flux rates at Owens Lake Part I: Verticle profiles of horizontal mass fluxes of wind-eroded particles with diameter greater than 50 μm[J]. Journal of Geophysical Research, 1997, 102: 25 977-25 987.
doi: 10.1029/97JD00961     URL    
[57] Dong Z B, Liu X P, Wang H T,et al.The flux profile of a blowing sand cloud: A wind tunnel investigation[J]. Geomorphology, 2002, 49: 219-230.
doi: 10.1016/S0169-555X(02)00170-8     URL    
[58] Wang Z T, Zheng X J.Theoretical predict ion of creep flux in aeolian sand transport[J].Powder Technology, 2004, 139: 123-128.
doi: 10.1016/j.powtec.2003.11.001     URL    
[59] Butterfield G R.Near-bed mass flux profiles in aeolian sand transport: High-resolution measurements in a wind tunnel[J].Earth Surface Processes and Landforms, 1999, 24: 393-412.
doi: 10.1002/(ISSN)1096-9837     URL    
[60] Ni J R, Li Z S, Mendoza C.Vertical profiles of aeolian sand mass flux[J].Geomorphology, 2003, 49: 205-218.
doi: 10.1016/S0169-555X(02)00169-1     URL    
[61] Anderson R S.The pattern of grainfall deposition in the lee of aeolian dunes[J].Sedimentology, 1988, 35: 175-188.
doi: 10.1111/j.1365-3091.1988.tb00943.x     URL    
[62] Huang Ning, Gu Yandan.Review of the mechanism of dust emission and deposition[J]. Advances of Earth Science,2009, 24(11): 1 175-1 184.
[黄宁, 辜艳丹, 粉尘释放和沉积机制的研究进展[J]. 地球科学进展, 2009, 24(11): 1 175-1 184.]
[63] Knippertz P, Stuut J B.Mineral Dust: A Key Player in the Earth System[M]. Dordrecht, Netherlands: Springer, 2014: 179-200.
[64] Dorman R G.Dust Control and Air Cleaning[M]. Oxford: Pergamon Press, 1974.
[65] Slinn W G N. Precipitation scavenging[C]∥Randerson D, ed. Atmospheric Science and Power Production. Document DOE/TIC-27601. US Department of Energy, 1984: 466-532.
[66] Chepil W S.Dynamics of wind erosion: I. Nature of movement of soil by wind[J].Soil Science, 1945, 60: 305-320.
doi: 10.1097/00010694-194510000-00004     URL    
[67] Woodruff N P, Siddoway F H.A wind erosion equation[J].Soil Science Society of America Proceedings, 1965, 29(5): 602-608.
doi: 10.2136/sssaj1965.03615995002900050035x     URL    
[68] Bocharov A P.A Description of Devices Used in the Study of Wind Erosion of Soils[M]. New Delhi: Oxonian Press,1984.
[69] Gregory J M, Borrelli J, Fedler C B.TEAM: Taxas erosion analysis model[C]∥Procedings of 1988 Wind Erosion Conference. Texas, 1988:88-103.
[70] Shao Y, Raupach M R, Leys J F.A model for prediction aeolian and drift and dust entrainment on scales from paddock to region[J]. Australian Journal of Soil Research, 1996, 34: 309-402.
doi: 10.1071/sr9960309     URL    
[71] Fryrear D W, Saleh A, Bilbro J D,et al. Revised wind erosion equation[R]. Wind Erosion and Water Conservation Research Unit, USDA-ARS, Southern Plains Area Cropping System Research Laboratory. Technical Bulletin, No. 1, 1998.
[72] Hagen L J.A wind erosion prediction system to meet the user need[J].Journal of Soil and Water Conservation, 1991, 46(2):107-111.
doi: 10.1061/(ASCE)0733-9437(1991)117:2(309.2)     URL    
[73] Raupach M R, Gillette D A, Leys J F.The effect of roughness elements on wind erosion threshold[J].Journal of Geophysical Research, 1993, 98: 3 023-3 029.
doi: 10.1029/92JD01922     URL    
[74] Stout J E, Zobeck T M.Intermittent saltation[J]. Sedimentology, 1997, 44: 959-970.
doi: 10.1046/j.1365-3091.1997.d01-55.x     URL    
[75] Butterfield G R.Grain transport rates in steady and unsteady turbulent airflow[J]. Acta Mechanica, 1991, 1: 97-122.
doi: 10.1007/978-3-7091-6706-9     URL    
[76] Butterfield G R.Transitional behavior of saltation: Wind tunnel observations of unsteady winds[J]. Journal of Arid Environments, 1998, 39: 377-394.
doi: 10.1006/jare.1997.0367     URL    
[77] Zhang Kecun, Qu Jianjun, Dong Zhibao,et al.Effect of wind speed fluctuation on sand transport rate[J]. Journal of Desert Research, 2006, 26(3): 336-340.
[张克存, 屈建军, 董治宝, 等. 风沙流中风速脉动对输沙量的影响[J]. 中国沙漠, 2006, 26(3): 336-340.]
doi: 10.3321/j.issn:1000-694X.2006.03.003     URL    
[78] Li Zhenshan, Ni Jinren.Experimental measurement of air flow velocity fluctuation of wind-sand flux[J].Journal of Basic Science and Engineering, 2003, 11(4): 354-360.
[李振山, 倪晋仁. 风沙流中风速脉动的实验测量[J]. 应用基础与工程科学学报, 2003, 11(4): 354-360.]
doi: 10.3969/j.issn.1005-0930.2003.04.003     URL    
[79] Bauer B O, Walker I J, Baas A C W, et al. Critical reflections on the coherent flow structures paradigm in aeolian geomorphology[C]∥Venditti J G, Best J L, Church M, et al, eds. Coherent Flow Structures at Earth’s Surface. Wiley Blackwell, 2013: 111-134.
[80] Wang Z T, Zhang C L, Wang H T.Coherent structures over flat sandy surfaces in aeolian environment[J]. Catena, 2017, 159: 144-148.
doi: 10.1016/j.catena.2017.08.011     URL    
[81] Wang G H, Zheng X J.Very large scale motions in the atmospheric surface layer: A field investigation[J]. Journal of Fluid Mechanics, 2016, 802: 464-489.
doi: 10.1017/jfm.2016.439     URL    
[82] McKenna Neuman C, Sanderson R S, Sutton S. Vortex shedding and morphodynamic response of bed surfaces containing non-erodible roughness elements[J].Geomorphology, 2013, 198: 45-56.
doi: 10.1016/j.geomorph.2013.05.011     URL    
[83] Zhang Chunlai, Dong Guangrong, Dong Zhibao,et al.Time problem in calculating soil wind erosion rate with wind tunnel experiment[J]. Journal of Desert Research, 1996, 16(2): 202-205.
[张春来, 董光荣, 董治宝, 等. 用风洞实验方法计算土壤风蚀量的时距问题[J].中国沙漠, 1996, 16(2): 202-205.]
URL    
[84] Liu Lianyou, Shi Peijun, Yang Yanyan,et al.The role of maximum wind speed in sand-transporting events[J]. Geomorphology, 2015, 238: 177-186.
doi: 10.1016/j.geomorph.2015.03.007     URL    
[85] Yang Yanyan, Qu Zhjiqiang, Shi Peijun, et al.Wind regime and sand transport in the corridor between the Badain Jaran and Tengger deserts, central Alxa Plateau, China[J]. Aeolian Research, 2014, 12: 143-156.
doi: 10.1016/j.aeolia.2013.12.006     URL    
[86] Chen Weinan.Desertificatopn in the Region of Shenfu-Dongsheng coal Field[D].Lanzhou: Institute of Desert Research, CAS, 1989.
[陈渭南. 神府东胜煤田地区的沙漠化问题[D]. 兰州:中国科学院兰州沙漠研究所,1989.]
[87] Schlichting H.Experimental investigations of the problem of surface roughness[R].Washington DC:Nation Advisory Committee for Aeronautics, 1937.
[88] Raupach M R.Drag and drag partition on rough surfaces[J].Boundary—Layer Meteorology, 1992, 60: 375-395.
doi: 10.1007/BF00155203     URL    
[89] Mayer H.Wind-induced tree sways[J].Trees, 1987, 1: 195-206.
doi: 10.1007/BF01816816     URL    
[90] Schindler D, Vogt R, Fugmann H,et al.Vibration behavior of plantation-grown Scots pine trees in response to wind excitation[J]. Agricultural and Forest Meteorology, 2010, 150: 984-993.
doi: 10.1016/j.agrformet.2010.03.003     URL    
[91] Theckes B, de Langre E, Boutillon X. Damping by branching: A bioinspiration from trees[J].Bioinspiration & Biomimetics, 2011, 6: 1-6.DOI:10.1088/1748-3182/614/046010.
doi: 10.1088/1748-3182/6/4/046010     URL     pmid: 22067509
[92] Finnigan J J.Turbulence in plant canopies[J].Annual Review of Fluid Mechanics, 2000, 32: 519-571.
doi: 10.1146/annurev.fluid.32.1.519     URL    
[93] Py C, de Langre E, Moulia B. A frequency lock-in mechanism in the interaction between wind and crop canopies[J]. Journal of Fluid Mechanics, 2006, 568: 425-449.
doi: 10.1017/S0022112006002667     URL    
[94] Kardous M, Bergametti G, Marticorena B.Aerodynamic roughness length related to non-aggregated tillage ridges[J].Annales Geophysicae, 2005, 23: 3 187-3 193.
doi: 10.5194/angeo-23-3187-2005     URL    
[95] Zobeck T M.Soil properties affecting wind erosion[J].Journal of Soil and Water Conservation, 1991, 6: 112-118.
doi: 10.1061/(ASCE)0733-9437(1991)117:2(309.2)     URL    
[96] Gao Shangyu, Zhang Chunlai, Zou Xueyong, et al.Benefits of Beijing-Tianjin Sand Source Control Engineering[M]. Beijing: Science Press, 2008.
[高尚玉, 张春来, 邹学勇, 等. 京津风沙源治理工程效益[M]. 北京: 科学出版社, 2008.]
[97] Hagen L J, Skidmore E L, Saleh A.Wind erosion: Predictions of aggregate abrasion coefficients[J].Transactions of the ASAE, 1992, 35(6): 1 847-1 850.
doi: 10.13031/2013.28805     URL    
[98] McKenna Neuman C, Maxwell C D. Temporal aspects of the abrasion of microphytic crusts under grain impact[J].Earth Surface Processes and Landforms, 2002, 27: 891-908.
doi: 10.1002/esp.360     URL    
[99] Wiggs G, Holmes P.Dynamic controls on wind erosion and dust generation on west-central Free State agricultural land, South Africa[J].Earth Surface Processes and Landforms, 2011, 36: 827-838.
doi: 10.1002/esp.2110     URL    
[100] Iversen J D, White B R.Saltation threshold on Earth, Mars and Venus[J].Sedimentology, 1982, 29: 111-119.
doi: 10.1111/j.1365-3091.1982.tb01713.x     URL    
[101] Bisal F, Hsieh J.Influence of moisture on erodibility of soil by wind[J].Soil Science, 1966, 102: 143-146.
doi: 10.1097/00010694-196609000-00001     URL    
[102] Dong Zhibao, Chen Weinan, Li Zhenshan,et al.On resistance of eolian sandy soil moisture to wind erosion[J]. Bulletin of Soil and Water Conservation, 1996, 16(2): 17-23.
[董治宝, 陈渭南, 李振山, 等. 风沙土水分抗风蚀性研究[J]. 水土保持通报, 1996, 16(2): 17-23.]
[103] Pasak V.Wind erosion of soil (in Czech with English summary)[M]. Zbraslav: Vyskumny Ustav Melioraci, 1970.
[104] Webb N P, McGowan H A. Approaches to modelling land erodibility by wind[J].Progress in Physical Geography, 2009, 33(5): 587-613.
[105] Ma Shuoshi, Chen Zhi.Measuring and Controlling Techniques for Wind Erosion[M]. Beijing: Science Press, 2010.
[麻硕士, 陈智. 土壤风蚀测试与控制技术[M]. 北京: 科学出版社, 2010.]
[106] Ji Yaqin, Shan Chunyan, Wang Baoqing. Principles, Methodologies,Controlling Techniques for Wind Erosion[M]. Beijing: Science Press, 2015.
[姬亚芹, 单春艳, 王宝庆. 土壤风蚀原理和研究方法及控制技术[M]. 北京: 科学出版社, 2015.]
[107] Haigh M J.The use of erosion pins in the study of slope evolution[M]∥Shorter Technical MethodsⅡ, Technical Bulletin 18. British Geomorphological Research Group, 1977: 31-49.
[108] Gupta J P, Aggarawal R K, Raikhy N P.Soil erosion by wind from bare sandy plains in western Rajasthan, India[J].Journal of Arid Environments, 1981, 4: 15-20.
URL    
[109] Dunne T, Dietrich W E, Brunengo M J.Recent and past erosion rates in semi-arid Kenya[J].Zeitschriftfur Geomorphologie N F, 1978, 29: 130-140.
URL    
[110] Carrara P E, Carroll T R.The determination of erosion rates from exposed tree roots in the Piceance Basin, Colorado[J].Earth Surface Processes, 1979, 4: 307-317.
doi: 10.1002/esp.3290040402     URL    
[111] Wang Rende, Zou Xueyong, Zhao Jingyan.Field observation of farmland wind-erosion around Beijing[J].Journal of Desert Research, 2011, 31(2): 400-406.
[王仁德, 邹学勇, 赵婧妍. 北京市农田风蚀的野外观测研究[J]. 中国沙漠, 2011, 31(2): 400-406.]
[112] Wang Rende, Chang Chunping, Peng Shuai,et al.Estimation on farmland wind-erosion and dust emission amount in Bashang of Hebei province by grain composition contrast[J]. Transactions of the Chinese Society of Agricultural Engineerin, 2013, 29(21): 108-114.
[王仁德,常春平, 彭帅, 等. 基于粒度对比法的坝上农田风蚀与粉尘释放量估算[J]. 农业工程学报, 2013, 29(21): 108-114.]
doi: 10.3969/j.issn.1002-6819.2013.21.014     URL    
[113] Zhao Peiyi, Tuo Debao, Zheng Dawei,et al.Study on the method of quantitative observation on soil wind erosion in field[J]. Journal of Anhui Agricultural Science, 2008, 36(29): 12 810-12 812.
[赵沛义, 妥德宝, 郑大玮, 等. 野外土壤风蚀定量观测方法的研究[J]. 安徽农业科学, 2008, 36(29): 12 810-12 812.]
doi: 10.3969/j.issn.0517-6611.2008.29.113     URL    
[114] Dai Hailun, Jin Fuxin, Zhang Keli.A review of field measurement on wind erosion[J].Advances in Earth Science, 2011, 26(4): 401-408.
[戴海伦, 金复鑫, 张科利. 国内外风蚀监测方法回顾与评述[J]. 地球科学进展, 2011, 26(4): 401-408.]
doi: 10.11867/j.issn.1001-8166.2011.04.0401     URL    
[115] Chepil W S, Milne R A.Comparative study of soil drifting in the field and in a wind tunnel[J].Scientific Agriculture, 1939, 19: 249-257.
URL    
[116] Chepil W S.Properties of soil which influence wind erosion: I. The governing principle of surface roughness[J].Soil Science, 1950, 69: 149-162.
doi: 10.1097/00010694-195002000-00006     URL    
[117] Chepil W S.Properties of soil which influence wind erosion: II. Dry aggregate structure as an index of erodibility[J].Soil Science, 1950, 69: 403-414.
doi: 10.1097/00010694-195005000-00006     URL    
[118] Chepil W S.Properties of soil which influence wind erosion: III. The effect of apparent density and erodibility[J].Soil Science, 1951, 71: 141-153.
doi: 10.1097/00010694-195102000-00008     URL    
[119] Chepil W S.Properties of soil which influence wind erosion: IV. State of dry aggregate structure[J].Soil Science, 1951, 72: 387-401.
doi: 10.1097/00010694-195111000-00007     URL    
[120] Chepil W S.Properties of soil which influence wind erosion: V. Mechanical stability of structure[J].Soil Science, 1951, 72: 465-478.
doi: 10.1097/00010694-195112000-00007     URL    
[121] Chepil W S.Factors that influence clod structure and erodibility of soil by wind: I. Soil structure[J].Soil Science, 1953, 75: 473-483.
doi: 10.1097/00010694-195306000-00008     URL    
[122] Chepil W S.Factors that influence clod structure and erodibility of soil by wind: II. Water stable structure[J].Soil Science, 1953, 76: 389-399.
doi: 10.1097/00010694-195311000-00010     URL    
[123] Chepil W S.Factors that influence clod structure and erodibility of soil by wind: III. Calcium carbonate and decomposed organic material[J]. Soil Science, 1954, 77: 473-480.
doi: 10.1097/00010694-195406000-00008     URL    
[124] Chepil W S.Factors that influence clod structure and erodibility of soil by wind: IV. Sand, silt, and clay[J].Soil Science, 1955, 80: 155-162.
doi: 10.1097/00010694-195508000-00009     URL    
[125] Chepil W S.Factors that influence clod structure and erodibility of soil by wind: V. Organic matter at various stages of decomposition[J]. Soil Science, 1955, 80: 413-421.
doi: 10.1097/00010694-195511000-00008     URL    
[126] Wu X, Zou X, Zheng Z C,et al.Field measurement and scaled-down wind-tunnel model measurement of airflow field over a barchan dune[J]. Journal of Arid Environments, 2011,75(5): 438-445.
doi: 10.1016/j.jaridenv.2010.12.016     URL    
[127] Walling D E, He Q P, Blake W.Use of Be-7 and Cs-137 measurement to document short and medium-term rates of water-induced soil erosion on agricultural land[J].Water Resources Research, 1999, 35(2): 3 865-3 874.
doi: 10.1029/1999WR900242     URL    
[128] Pelt R S V, Zobeck T M, Ritchie J C,et al. Validating the use of 137Cs measurements to estimate rates of soil redistribution by wind[J]. Catena, 2007, 70: 455-464.
doi: 10.1016/j.catena.2006.11.014     URL    
[129] Krmar M, Velojiĉ M, Hansman J,et al.Wind erosion on Deliblato (the largest European continental sandy terrain) studied using 210Pbex and 137Cs measurements[J]. Journal of Radioanalytical & Nuclear Chemistry, 2015, 303(3): 2 511-2 515.
doi: 10.1007/s10967-014-3841-3     URL    
[130] Li M, Yao W Y, Shen Z Z,et al.Erosion rates of different land uses and sediment sources in a watershed using the 137Cs tracing method: Field studies in the Loess Plateau of China[J]. Environmental Earth Sciences, 2016, 75(7): 591.
doi: 10.1007/s12665-015-5225-6     URL    
[131] Yan Ping, Dong Zhibao, Dong Guangrong,et al.Preliminary results of using 137Cs to study wind erosion in the Qinghai-Tibet Plateau[J]. Journal of Arid Environments, 2001, 47: 443-452.
doi: 10.1006/jare.2000.0749     URL    
[132] Zhang Chunlai, Zou Xueyong, Dong Guangrong,et al.Characteristics of 137Cs Deposition in Steppe Area[J].Chinese Science Bulletin, 2002, 47(10): 848-852.
doi: 10.1360/02tb9191     URL    
[133] Zhang Chunlai, Zou Xueyong, Yang Ping,et al.Wind tunnel test and 137Cs tracing study on wind erosion of several soils in Tibet[J]. Soil and Tillage Research, 2007, 94(2): 269-282.
doi: 10.1016/j.still.2006.08.002     URL    
[134] Liu Jiyuan, Qi Yongqing, Shi Huading,et al.Estimation of wind erosion rates by using 137Cs tracing technique: A case study in Tariat-Xilin Gol transect, Mongolian Plateau[J].Chinese Science Bulletin, 2008, 53(5): 751-758.
doi: 10.1007/s11434-008-0007-0     URL    
[135] Lal D, Malhotra P K, Peters B.On the production of radioisotopes in the atmosphere by cosmic radiation and their application to meteorology[J].Journal of Atmospheric & Terrestrial Physics, 1958, 12:306-328.
doi: 10.1016/0021-9169(58)90062-X     URL    
[136] Akata N, Kawabata H, Hasegawa H,et al.Total deposition velocities and scavenging ratios of 7Be and 210Pb at Rokkasho, Japan[J]. Journal of Radioanalytical & Nuclear Chemistry, 2008, 277: 347-355.
doi: 10.1007/s10967-007-7095-1     URL    
[137] Yang Mingyi, Liu Puling, Tian Junliang.Soil erosion processes on cultivated slope on Loess Plateau using 7Be tracer[J]. Journal of Soil and Water Conservation, 2003, 17(3): 28-30, 104.
[杨明义, 刘普灵, 田均良. 黄土高原农耕地坡面侵蚀过程的7Be示踪试验研究[J]. 土保持学报, 2003, 17(3): 28-30, 104.]
[138] Zhang Fengbao.The Redistribution of 7Be Deposition to the Land Surface and Its Application on the Soil Erosion Processes of the Slopes[D]. Yangling:Northwest A & F University, 2008.
[张风宝. 7Be沉降在地表分配规律及其在示踪坡面侵蚀过程中的应用研究[D]. 杨凌:西北农林科技大学, 2008.]
[139] Liu G, Yang M Y, Warrington D N,et al.Using beryllium-7 to monitor the relative proportions of interrill and rill erosion from loessal soil slopes in a single rainfall event[J].Earth Surface Processes and Landforms, 2011, 36: 439-448.
doi: 10.1002/esp.2057     URL    
[140] Zhang F B, Zhang B, Yang M Y.Beryllium-7 atmospheric deposition and soil inventory on the northern Loess Plateau of China[J].Atmospheric Environment, 2013, 77: 178-184.
doi: 10.1016/j.atmosenv.2013.05.002     URL    
[141] Yang M Y, Walling D E, Sun X J,et al.A wind tunnel experiment to explore the feasibility of using beryllium-7 measurements to estimate soil loss by wind erosion[J]. Geochimica et Cosmochimica Acta, 2013, 114: 81-93.
doi: 10.1016/j.gca.2013.03.033     URL    
[142] Wang G, Li J R,Ravi S, et al.Tracer techniques in aeolian research: Approaches, applications, and challenges[J]. Earth-Science Reviews, 2017, 170: 1-16.
doi: 10.1016/j.earscirev.2017.05.001     URL    
[143] Zhang Guoping, Zhang Zengxiang, Liu Jiyuan.Spatial distribution of aeolian erosion of soil and its driving factors in China[J].Acta Geogrephica Sinica, 2001, 56(2): 146-158.
[张国平, 张增祥, 刘纪远. 中国土壤风力侵蚀空间格局及驱动因子分析[J]. 地理学报, 2001, 56(2): 146-158.]
[144] Shi Huading, Gao Qingxian, Qi Yongqing,et al.Wind erosion hazard assessment of Mongolian Plateau by using FMC fuzzy cluster method[J]. Journal of Natural Resources, 2009, 24(5):881-889.
[师华定, 高庆先, 齐永清,等. 蒙古高原土壤风蚀危险度的 FCM模糊聚类研究[J]. 自然资源学报, 2009, 24(5): 881-889.]
doi: 10.11849/zrzyxb.2009.05.015    
[145] Walker I J.Physical and logistical considerations of using ultrasonic anemometers in aeolian sediment transport research[J]. Geomorphology, 2005, 68(1/2): 57-76.
doi: 10.1016/j.geomorph.2004.09.031     URL    
[146] Boxel J H V, Sterk G, Arens S M. Sonic anemometers in aeolian sediment transport research[J]. Geomorphology, 2004, 59(1/4): 131-147.
doi: 10.1016/j.geomorph.2003.09.011     URL    
[147] Gillette D A, Stockton P H.Mass, momentum and kinetic energy fluxes of saltating particles[C]∥Nickling W G, ed. Aeolian Geomorphology. Boston: Allen and Unwin, 1986:35-56.
[148] Baas A C W. Evaluation of saltation flux impact responders (Safires) for measuring instantaneous aeolian sand transport intensity[J]. Geomorphology, 2004, 59(1/4):99-118.
doi: 10.1016/j.geomorph.2003.09.009     URL    
[149] Tan L, Zhang W, Qu J,et al.Aeolian sediment transport over gobi: Field studies atop the Mogao Grottoes, China[J]. Aeolian Research, 2016, 21: 53-60.
doi: 10.1016/j.aeolia.2016.03.002     URL    
[150] Zheng Xiaojing, Wang Ping.Numerical simulation on stochastic movement of sands in wind blown sand[J].Journal of Desert Research, 2006, 26(2): 184-188.
[郑晓静, 王萍. 风沙流中沙粒随机运动的数值模拟研究[J]. 中国沙漠, 2006, 26(2): 184-188.]
[151] Huang N, Xia X, Tong D.Numerical simulation of wind sand movement in straw checkerboard barriers[J]. European Physical Journal E Soft Matter, 2013, 36(9): 1-7.
doi: 10.1140/epje/i2013-13001-8     URL     pmid: 23306446
[152] Tsoar H.Wind tunnel modeling of echo and climbing dunes[C]∥Brookfield M E, Ahlbrandt T S, eds. Eolian Sediments and Processes, Developments in Sedimentology. Amsterdam: Elsevier, 1983:247-259.
[153] Castro I P, Wiggs G F S. Pulse-wire anemometry on rough surfaces, with application to desert sand dunes[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1994, 52: 53-71.
doi: 10.1016/0167-6105(94)90039-6     URL    
[154] Wiggs G F S, Livingstone I, Warren A. The role of streamline curvature in sand dune dynamics: Evidence from field and wind tunnel measurements[J]. Geomorphology, 1996, 17(1): 29-46.
doi: 10.1016/0169-555X(95)00093-K     URL    
[155] Walker I J, Nickling W G.Simulation and measurement of surface shear stress over isolated and closely spaced transverse dunes[J]. Earth Surface Processes and Landforms, 2003, 28: 1 111-1 124.
doi: 10.1002/esp.520     URL    
[156] Li Xiaowen, Cao Chunxiang, Zhang Hao.Progress in scale study[J].Journal of Remote Sensing, 2009, 13(Suppl.1):12-20.
[李小文, 曹春香, 张颢. 尺度问题研究进展[J]. 遥感学报, 2009, 13(增刊1):12-20.]
[157] Rasmussen K R, Iversen J D, Rautaheimo P.Saltation and wind-flow interaction in a variable slope wind tunnel[J].Geomorphology, 1996, 17: 19-28.
doi: 10.1016/0169-555X(95)00090-R     URL    
[158] McKenna Neuman C, Maljaars M. Wind tunnel measurement of boundary-layer response to sediment transport[J].Boundary Layer Meteorology, 1997, 84: 67-83.
doi: 10.1023/A:1000349116747     URL    
[159] Zhang Chunlai, Zhou Na, Zhang Jiaqiong.Sand flux and wind profiles in the saltation layer above a rounded dune top[J].Science in China (Series D), 2014, 57(3): 523-533.
doi: 10.1007/s11430-013-4672-8     URL    
[160] Zhang Chunlai, Li Qing, Zhou Na,et al.Field observations of wind profiles and sand fluxes above the windward slope of a sand dune before and after the establishment of semi-buried straw checkerboard barriers[J]. Aeolian Research, 2016, 20(1): 59-70.
doi: 10.1016/j.aeolia.2015.11.003     URL    
[1] 贺缠生, 田杰, 张宝庆, 张兰慧. 土壤水文属性及其对水文过程影响研究的进展、挑战与机遇[J]. 地球科学进展, 2021, 36(2): 113-124.
[2] 庞姗姗, 王喜冬, 刘海龙, 邵彩霞. 热带海洋盐度障碍层多尺度变异机理及其对海气相互作用的影响研究进展[J]. 地球科学进展, 2021, 36(2): 139-153.
[3] 王飞, 陶宇, 欧维新. 景观格局变化的水质净化服务响应关系研究进展[J]. 地球科学进展, 2021, 36(1): 17-28.
[4] 王大伟,孙悦,司少文,吴时国. 海底周期阶坎研究进展与挑战[J]. 地球科学进展, 2020, 35(9): 890-901.
[5] 张永垂, 王宁, 周林, 刘科峰, 汪浩笛. 海洋中尺度涡旋表面特征和三维结构研究进展[J]. 地球科学进展, 2020, 35(6): 568-580.
[6] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[7] 郝志新,吴茂炜,张学珍,刘洋,郑景云. 过去千年中国年代和百年尺度冷暖阶段的干湿格局变化研究[J]. 地球科学进展, 2020, 35(1): 18-25.
[8] 康文敏,蔡芫镔,郑慧祯. 福州城市地表温度时空变化与贡献度研究[J]. 地球科学进展, 2020, 35(1): 88-100.
[9] 孙义博,苏德,全占军,商豪律,耿冰,林兴稳,荆平平,包扬,赵艳华,杨巍. 无人机涡动相关通量观测技术研究综述[J]. 地球科学进展, 2019, 34(8): 842-854.
[10] WangJingfeng,刘元波,张珂. 最大熵增地表蒸散模型:原理及应用综述[J]. 地球科学进展, 2019, 34(6): 596-605.
[11] 谢鑫昌,杨云川,田忆,廖丽萍,韦钧培,周津羽,陈立华. 广西降水非均匀性多尺度特征与综合评价[J]. 地球科学进展, 2019, 34(11): 1152-1164.
[12] 黄强,陈子燊,唐常源,李绍峰. 珠江流域重大干旱事件时空发展过程反演研究[J]. 地球科学进展, 2019, 34(10): 1050-1059.
[13] 王萌,张艳伟,刘志飞,吴家望. 南海北部中尺度涡的时空分布特征:基于卫星高度计资料的统计分析[J]. 地球科学进展, 2019, 34(10): 1069-1080.
[14] 栾海军, 田庆久, 章欣欣, 聂芹, 朱晓玲. 定量遥感地表参数尺度转换研究趋势探讨[J]. 地球科学进展, 2018, 33(5): 483-492.
[15] 易雪, 李得勤, 赵春雨, 沈历都, 敖雪, 刘鸣彦. 分析Nudging对辽宁地区降尺度的影响[J]. 地球科学进展, 2018, 33(5): 517-531.
阅读次数
全文


摘要