Please wait a minute...
img img
高级检索
地球科学进展  2021, Vol. 36 Issue (1): 17-28    DOI: 10.11867/j.issn.1001-8166.2021.007
综述与评述     
景观格局变化的水质净化服务响应关系研究进展
王飞1(),陶宇1,2,欧维新1,2()
1.南京农业大学土地管理学院,江苏 南京 210095
2.农村土地资源利用与 整治国家地方联合工程研究中心,江苏 南京 210095
Research Progress on Response Relationship of Water Quality Purification Service with Landscape Pattern Change
Fei WANG1(),Yu TAO1,2,Weixin OU1,2()
1.College of Land Management,Nanjing Agricultural University,Nanjing 210095,China
2.National & Local Joint Engineering,Research Center for Rural Land Resources Use and Consolidation,Nanjing 210095,China
 全文: PDF(1896 KB)   HTML
摘要:

景观格局变化对生态系统水质净化服务具有重要影响。为深入探究景观格局对水质净化服务的影响机制,通过国内外相关文献的系统梳理,总结出不同时空尺度下,景观格局对水质净化服务的影响存在差异,即水质净化服务对景观格局的响应具有尺度依赖性。相同尺度下,不同地形条件和景观基质也会使得景观格局对水质净化服务的影响表现出空间分异性。同时,景观格局与水质净化服务之间存在阈值效应,这使得决策者进行景观格局优化与水质保护时需要更为全面地考虑各种因素。针对当前研究存在的水质净化服务对景观格局响应的特征空间尺度不明晰、景观配置及空间分异特征研究有待加强,阈值效应不明确等问题,未来需开展多等级多尺度的对比研究,从不同侧面阐释景观格局与水质净化服务作用的特征尺度,发展能表征生态过程的景观格局指数,加强景观配置对水质净化服务影响的研究,深化不同影响因素下,两者之间空间分异特征探索,探究水质净化服务对景观格局响应的阈值识别方法,有效地判定阈值,为区域景观格局优化和水环境管理提供决策支持。

关键词: 景观格局水质净化服务响应关系尺度    
Abstract:

The change of landscape pattern has an important influence on the ecosystem water purification service. In order to explore the influence mechanism of the landscape pattern on the water purification service, in this article we systematically sorted out and analyzed the domestic and foreign relevant literature. It is concluded that there are differences in the influence of landscape pattern on water purification service at different spatial and temporal scales; that is, the response of water purification service to landscape pattern has scale dependence. At the same scale, different terrain conditions and landscape matrix also make the impact of landscape pattern on water purification service show spatial heterogeneity. At the same time, there is a threshold effect between landscape pattern and water purification service, which makes decision makers need to consider various factors more comprehensively in optimizing landscape pattern and water quality protection. In the current research, the characteristic spatial scale of water purification service response to landscape pattern is unclear; the study of landscape configuration and spatial differentiation characteristics needs to be strengthened; threshold effect is not clear. In the future, it is necessary to carry out multi-level and multi-scale comparative research to explain the characteristic scale of landscape pattern and water purification service from different aspects. Developing the landscape pattern index which can represent the ecological process and strengthening the research on the influence of landscape configuration on water purification service will deepen the exploration of spatial differentiation characteristics under different influencing factors. Strengthen the exploration of threshold recognition method of water quality purification service to landscape pattern response, effectively determines the threshold, and provides decisions support for regional landscape pattern optimization and water environment management.

Key words: Landscape pattern    Water purification service    Response relationship    Scale.
收稿日期: 2020-10-30 出版日期: 2021-03-19
ZTFLH:  P901  
基金资助: 国家自然科学基金项目“太湖流域景观格局变化的水生态服务响应机制及调控研究”(41971230);“太湖流域水生态服务供需空间量化、格局演变与驱动机制”(41701211)
通信作者: 欧维新     E-mail: 2019209024@njau.edu.cn;owx@njau.edu.cn
作者简介: 王飞(1993-),女,山西临汾人,博士研究生,主要从事土地利用与景观生态研究. E-mail:2019209024@njau.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王飞
陶宇
欧维新

引用本文:

王飞,陶宇,欧维新. 景观格局变化的水质净化服务响应关系研究进展[J]. 地球科学进展, 2021, 36(1): 17-28.

Fei WANG,Yu TAO,Weixin OU. Research Progress on Response Relationship of Water Quality Purification Service with Landscape Pattern Change. Advances in Earth Science, 2021, 36(1): 17-28.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2021.007        http://www.adearth.ac.cn/CN/Y2021/V36/I1/17

类别景观指数指数描述参考文献
面积—边界指数斑块类型面积百分比(Percentage of Landscape,PLAND)某一斑块类型占景观总面积百分比[1,4~42]
边界密度(Edge Density,ED)景观类型被边界分割的复杂程度[1,9,11,14,16,18,20,22~25,29,31,32,35]
最大斑块指数(Largest Patch Index,LPI)每个单元中最大斑块的面积比重[1,4,6,9~14,16,20~23,31,35]
总面积(Total Area,TA)度量景观或类型总面积[1,14,24,30]
平均斑块面积(Mean Patch Area,AREA_MN)景观或各类型中斑块的平均面积[4,10,14,19,22]
多样性指数香农多样性指数(Shannon's Diversity Index,SHDI)反映各斑块类型的异质性[1,4,6,8~12,14~16,20~23,25,31,35]
香农均匀性指数(Shannon's Evenness Index,SHEI)景观中不同斑块类型分配的均匀程度[1,8,14]
聚集度指数蔓延度指数(Contagion,CONTAG)度量不同类型斑块的团聚程度[1,4,6,8,10~12,16,18,20~23,25,31,32,35]
聚集度(Aggregation Index,AI)景观或斑块类型的非随机或聚集程度[1,4,9,11~13,16,22,23]
聚合度指数(Patch Cohesion index,COHESION)反映相应斑块间的物理连通性[1,6,10~12,15,18,22,23]
斑块密度(Patch Density,PD)每平方千米的斑块数,景观破碎化程度[6,8~16,18,20~25,29,31,32,35]
景观形状指数(Landscape Shape Index,LSI)表示景观形状的复杂程度[6,10,12~14,20,21,25,31,35]
交叉与并列指数(Interspersion Juxtaposition Index,IJI)反映景观或各斑块类型间的总体散布和并列情况[1,11,14,15,20,29,31]
斑块数量(Number of Patches,NP)景观或类型中斑块的数量[1,3,8,9,12,19,22]
形状指数平均形状指数(Mean Shape Index,SHAPE_MN)经数学转化的斑块边长与面积比[6,11,15,23]
面积加权平均分维数(Area-Weighted Mean Fractal Dimension Index,FRAC_AM)运用分维理论来测量斑块和景观的空间形状复杂性[10,11,14,16,24]
表1  常用景观格局指数描述
指标参数选择参考文献
物理指标电导率(Electrical Conductivity, EC)[4~6,9,11,13,22,30,32,33]
色度(Chroma)[11]
溶解氧(Dissolved Oxygen, DO)[4~6,8~11,13,19,22,27,29,30,34,37]
可溶性固体总量(Total Dissolved Solids,TDS)[5,11,33]
总悬浮固体(Total Suspended Solids,TSS)[1,6,11,12,19,20,27,31]
氧还原电位(Oxygen Reduction Potential, ORP)[9,30]
温度(Water Temperature,WT)[9,13,27,30]
浊度(Turbidity)[1,11,30]
化学指标酸碱度(Potential of hydrogen,pH)[4,5,6,9,11,22,27,30]
氮浓度(Concentrations of nitrogen)、磷浓度(Concentrations of phosphorus)[1,9]
磷浓度(Concentrations of phosphorus)[21,33]
地上氮负载(Annual phosphorus loading)、地下氮浓度(Groundwater nitrate concentration)[2,18]
总氮(Total Nitrogen,TN)、总磷(Total Phosphorus,TP)[8,9,11~13,15,20,21~23,27~29,31,32,34,37,40~42]
总磷(Total Phosphorus, TP)[4,5,10,14,16,19]
总氮(Total Nitrogen, TN)[39]
化学需氧量(Chemical Oxygen Demand, CODcr)[6,11,16,20,22,23,27,31,32,34,40]
高锰酸盐(Permanganate index,COD Mn )[4,5,8~10,13,29,37]
硝酸盐氮(Nitrate nitrogen, NO3-N)[5,6,9,10,12~14,16,21,22,27,28,30,33,40]
硫酸根盐(Sulfate, SO42-)[5,33,37]
氯离子(Chloride, Cl-)[5,33]
亚硝酸盐氮(Nitrite nitrogen, NO2--N)[5,10,12,16,22,27,30,32,33]
氨氮(Ammonia Nitrogen, NH3-N)[4,5,8,11,13,14,16,19,27,29,30,33,34,37]
氨氮(Ammonia Nitrogen, NH4+-N)[6,9,10,12,20,21,22,28,31,32,40]
五日生化需氧量(Five Days Biochemical Oxygen Demand, BOD5)[6,10,11,19,23,27,34,37,41]
可溶性磷酸盐(Dissolved Phosphate, DP)[5,12,27,30,33,40]
总有机碳(Organic Carbon, OC)[28,32]
金属离子(Ca、Mg、Na、K、Zn、Pb)[33,37]
苯酚类(Phenol)石油类(Oils)[29,37]
阴离子表面活性剂(An-ionic surfactant,ANC)、挥发酚(Volatile-Phenol,VP)、硫化物(Sulfide, S2-[37]
水体抗生素[39]
生物指标周期性藻类硅藻(Periphytic algae, diatoms)[25]
大肠菌群(Escherichia Coli)[37]
叶绿素a(Chlorophyll-a, Chl-a)[13,22]
生态指标InVEST、SWAT模型计算:氮输出(Nitrogen Export, NE)与磷输出量(Phosphorus Export, PE)[3,7,17,24,35]
表2  研究中不同类型的水质参数
图1  景观格局对水质净化服务影响研究的基本框架
空间尺度时间尺度特征尺度基质/地形景观指数主导景观指数参考文献
流域非连续不同年份流域未考虑景观组成景观组成[7,17]
子流域旱季/雨季旱季坡度(高>低)景观组成景观组成[5]
旱季/雨季旱季未考虑景观组成和配置景观组成和配置[3,4]
旱季/雨季旱季未考虑景观组成和配置景观配置[21]
旱季/雨季雨季未考虑景观组成和配置景观配置[15]
雨季/雨季后雨季未考虑景观组成和配置景观配置[20]
春季和秋季春季和秋季未考虑景观组成和配置景观组成和配置[23]
非连续不同年份子流域未考虑景观组成和配置景观组成和配置[24]
某一年份子流域未考虑景观组成和配置景观组成和配置[16,22,34]
某一年份子流域未考虑景观组成和配置景观组成[18,35]
某一年份子流域坡度景观组成和配置景观组成和配置[25]
某一年份子流域坡度景观组成景观组成[39,42]
某一年份子流域未考虑景观组成景观组成[38,40]
子流域、河岸带缓冲区、采样点缓冲区旱季/雨季雨季/河岸带未考虑景观组成和配置景观组成和配置[6]
雨季前/中/后雨季/子流域未考虑景观组成景观组成[28]
某一年份子流域坡度景观组成和配置景观配置[13]
非连续不同年份子流域未考虑景观组成和配置景观配置[14]
子流域、河岸带缓冲区旱季/雨季旱季/子流域未考虑景观组成和配置景观组成和配置[9]
非连续不同年份河岸带缓冲区未考虑景观组成和配置景观组成[10]
某一年份河岸带缓冲区100 m未考虑景观组成和配置景观组成和配置[31]
某一年份河岸带缓冲区100~200 m未考虑景观组成景观组成[37]
雨季前/中/后雨季中/河岸带缓冲区100 m未考虑景观组成和配置景观组成和配置[32]
采样点缓冲区非连续不同年份河岸带缓冲区未考虑景观组成和配置景观组成[19]
非连续不同年份河岸带缓冲区100~200 m高程景观组成景观组成[27]
非连续不同年份采样点缓冲区700~1 000 m未考虑景观组成和配置景观组成和配置[8]
某一年份采样点缓冲区小于等于300 m未考虑景观组成和配置景观组成和配置[12]
某一年份采样点缓冲区4 km未考虑景观组成和配置景观组成和配置[11]
某一年份采样点缓冲区未考虑景观组成和配置景观组成和配置[29]
某一年份采样点缓冲区未考虑景观组成景观组成[33,41]
采样点缓冲区1 km连续时间段采样点缓冲区1 km未考虑景观组成景观组成[30]
表3  不同尺度下景观格局与生态系统水质净化服务研究
特征尺度水质指标景观指数阈值参考文献
子流域硅藻类林地面积(PLAND)与林地边缘密度(ED)林地面积不低于47%且ED大于36 m/hm2时,水质提升[25]
子流域总磷(TP)、总氮(TN)耕地面积占比与湿地面积占比(PLAND)耕地面积占比低于60%且湿地面积占比大于6%时,水质提升[18]
河岸带缓冲区100 m高锰酸盐(CODMn)、总磷(TP)、总氮(TN)建设用地斑块密度(PD)与水体最大斑块指数(LPI)建设用地ED大于3~40个/km2且水体的LPI大于2.5%~3.5%时,水质提升[31]
河岸带缓冲区100~200 m溶解氧(DO)、高锰酸盐(CODMn)、五日生化需氧量(BOD5)、氨型氮(NH3-N)、总磷(TP)、硫酸根盐(SO42-)、硫化物(S2-)、挥发酚(VP)、阴离子表面活性剂(ANC)、大肠菌群(CGB)建设用地占比(PLAND)建设用地占比小于38.2%,水质提升[37]
采样点缓冲区4 km高锰酸盐(CODMn)、总磷(TP)、总氮(TN)、可溶性固体总量(TDS)区域景观边缘密度与耕地边缘密度(ED)、林地和草地聚集度(AI)区域景观的ED值为100~110 m/hm2,耕地的ED值为90~105 m/hm2,林草地的AI值为70%~90%,利于水质保护[11]
采样点缓冲区五日生化需氧量(BOD5)、总磷(TP)、总氮(TN)城市用地面积(PLAND)流域城市用地面积为1.1%~31.5%,提高河流水质的土地利用管理可能更有效[41]
表4  水质净化服务对景观格局响应的阈值
1 DUARTE G T, SANTOS P M, CORNELISSEN T G, et al. The effects of landscape patterns on ecosystem services: Meta-analyses of landscape services[J]. Landscape Ecology, 2018, 33: 1 247-1 257.
2 QIU J X, TURNER M G. Spatial interactions among ecosystem services in an urbanizing agricultural watershed[J]. PNAS, 2013, 110: 12 149-12 154.
3 LIU Yang, Jianshu Lü, BI Jun. Characterizing water purification services and quantifying their driving factors in watershed terrestrial ecosystems[J]. Progress in Geography, 2019, 38(4): 588-599.
3 刘洋, 吕建树, 毕军. 流域陆地生态系统水体净化服务表征及驱动力分析[J]. 地理科学进展, 2019, 38(4): 588-599.
4 JIAO Sheng, YANG Na, PENG Kai, et al. The effects of land-use and landscape pattern on water quality in Weihe River watershed[J]. Geographical Research, 2014, 33(12): 2 263-2 274.
4 焦胜, 杨娜, 彭楷, 等. 沩水流域土地景观格局对河流水质的影响[J]. 地理研究, 2014, 33(12): 2 263-2 274.
5 YU S Y, XU Z X, WU W, et al. Effect of land use types on stream water quality under seasonal variation and topographic characteristics in the Wei River basin, China[J]. Ecological Indicators, 2016, 60: 202-212.
6 SHI P, ZHANG Y, LI Z B, et al. Influence of land use and land cover patterns on seasonal water quality at multi-spatial scales[J]. Catena, 2017, 151: 182-190.
7 GAO J, LI F, GAO H, et al. The impact of land-use change on water-related ecosystem services: A study of the Guishui River Basin, Beijing, China[J]. Journal of Cleaner Production, 2017, 63: S148-S155.
8 YANG Jie, XU Youpeng, GAO Bin, et al. River water quality change and its relationship with landscape pattern under the urbanization: A case study of Suzhou City in Taihu Basin[J]. Journal of Lake Sciences, 2017, 29(4): 827-835.
8 杨洁, 许有鹏, 高斌, 等. 城镇化下河流水质变化及其与景观格局关系分析——以太湖流域苏州市为例[J]. 湖泊科学, 2017, 29(4): 827-835.
9 ZHANG Jing, LI Siyue, DONG Ruozhu, et al. Influences of land use metrics at multi-spatial scales on seasonal water quality: A case study of river systems in the Three Gorges Reservoir area, China[J]. Journal of Cleaner Production, 2019, 206: 76-85.
10 HUANG Jinlang, LI Qingsheng, HONG Huasheng, et al. Preliminary study on linking land use & landscape pattern and water quality in the Jiulong River Watershed[J]. Environmental Science, 2011, 32(1): 64-72.
10 黄金良, 李青生, 洪华生, 等. 九龙江流域土地利用/景观格局—水质的初步关联分析[J]. 环境科学, 2011, 32(1): 64-72.
11 WANG Xiaoping, ZHANG Fei, LI Xiaohang, et al. Correlation analysis between the spatial characteristics of land use / cover landscape pattern and surface-water quality in the Ebinur Lake area[J]. Acta Ecologica Sinica, 2017, 37(22): 7 438-7 452.
11 王小平, 张飞, 李晓航, 等.艾比湖区域景观格局空间特征与地表水质的关联分析[J]. 生态学报, 2017, 37(22): 7 438-7 452.
12 YANG Shasha, TANG Cuiwen, LIU Lijuan, et al. Relationships between river water quality and land use type at watershed scale[J]. Chinese Journal of Applied Ecology, 2013, 24(7): 1 953-1 961.
12 杨莎莎, 汤萃文, 刘丽娟, 等. 流域尺度上河流水质与土地利用的关系[J]. 应用生态学报, 2013, 24(7): 1 953-1 961.
13 DING J, JIANG Y, LIU Q, et al. Influences of the land use pattern on water quality in low-order streams of the Dongjiang River Basin, China: A multi-scale analysis[J]. Science of the Total Environment, 2016, 551/552: 205-216.
14 CAREY R O, MIGLIACCIO K W, LI Y C, et al. Land use disturbance indicators and water quality variability in the Biscayne Bay Watershed, Florida[J]. Ecological Indicators, 2011, 11: 1 093-1 104.
15 CAI Chunxiao, LIU Hongyu, LI Yufeng, et al. Research on the influence of urban land use structure and pattern on nitrogen, phosphorus of wetland water environment in Xianlin New Town of Nanjing[J]. Environmental Science, 2014, 35(8): 2 920-2 927.
15 蔡春晓, 刘红玉, 李玉凤, 等. 南京仙林新市区土地利用结构与格局对湿地水环境氮、磷影响研究[J]. 环境科学, 2014, 35(8): 2 920-2 927.
16 JI Dongqing, WEN Ya, WEI Jianbing, et al. Relationships between landscape spatial characteristics and surface water quality in the Liu Xi River watershed[J]. Acta Ecologica Sinica, 2015, 35(2): 246-253.
16 吉冬青, 文雅, 魏建兵, 等. 流溪河流域景观空间特征与河流水质的关联分析[J]. 生态学报, 2015, 35(2): 246-253.
17 LI Zhuheng, LIU Miao, LI Chunlin, et al. Non-point source pollution simulation under land use change scenarios in Hun-Taizi River watershed[J]. Chinese Journal of Applied Ecology, 2016, 27(9): 2 891-2 898.
17 李铸衡, 刘淼, 李春林, 等. 土地利用变化情景下浑河—太子河流域的非点源污染模拟[J]. 应用生态学报, 2016, 27(9): 2 891-2 898.
18 QIU J X, TURNER M G. Importance of landscape heterogeneity in sustaining hydrologic ecosystem services in an agricultural watershed[J]. Ecosphere, 2015, 6: 1-19.
19 XIE Y J, YU X J, NG N C, et al. Exploring the dynamic correlation of landscape composition and habitat fragmentation with surface water quality in the Shenzhen River and deep bay cross-border watershed, China[J]. Ecological Indicators, 2018, 90: 231-246.
20 SHEN Zhenyao, HOU Xiaoshu, LI Wen, et al. Relating landscape characteristics to non-point source pollution in a typical urbanized watershed in the municipality of Beijing[J]. Landscape and Urban Planning, 2014, 123: 96-107.
21 WU Jianhong, LU Jun. Landscape patterns regulate non-point source nutrient pollution in an agricultural watershed[J]. Science of the Total Environment, 2019, 669: 377-388.
22 LIU Wenzhi, ZHANG Quanfa, LIU Guihua. Influences of watershed landscape composition and configuration on lake-water quality in the Yangtze River Basin of China[J]. Hydrological Processes, 2012, 26: 570-578.
23 LEE S W, HWANG S J, LEE S B, et al. Landscape ecological approach to the relationships of land use patterns in watersheds to water quality characteristics[J]. Landscape and Urban Planning, 2009, 92: 80-89.
24 OUYANG W, SKIDMORE A K, TOXOPEUS A G, et al. Long-term vegetation landscape pattern with non-point source nutrient pollution in upper stream of Yellow River Basin[J]. Journal of Hydrology, 2010, 389: 373-380.
25 CLéMENT F, RUIZ J, RODRíGUEZ M A, et al. Landscape diversity and forest edge density regulate stream water quality in agricultural catchments[J]. Ecological Indicators, 2017, 72: 627-639.
26 XIA Pei, SONG Shixiong, LIU Zhifeng, et al. Research progress of evaluation on the impacts of urban landscape dynamics on water-related ecosystem services in inland river basin, China[J]. Acta Ecologica Sinica, 2020, 40(17):5 884-5 893.
26 夏沛, 宋世雄, 刘志锋,等. 中国内陆河流域城市景观过程对涉水生态系统服务的影响评价研究进展[J]. 生态学报, 2020, 40(17): 5 884-5 893.
27 DAI Xiaoyan, ZHOU Yuanqing, MA Weichun, et al. Influence of spatial variation in land-use patterns and topography on water quality of the rivers inflowing to Fuxian Lake, a large deep lake in the plateau of southwestern China[J]. Ecological Engineering, 2017, 99: 417-428.
28 CUI Lijuan, LI Wei, GAO Changjun, et al. Identifying the influence factors at multiple scales on river water chemistry in the Tiaoxi Basin, China[J]. Ecological Indicators, 2018, 92: 228-238.
29 ZHAO Jun, LIN Liqing, YANG Kai, et al. Influences of land use on water quality in a reticular river network area: A case study in Shanghai, China[J]. Landscape and Urban Planning, 2015, 137: 20-29.
30 GRIFFITHS J A, CHAN F K S, ZHU F F, et al. Reach-scale variation surface water quality in a reticular canal system in the lower Yangtze River Delta region, China[J]. Journal of Environmental Management, 2017, 196: 80-90.
31 SHEN Zhenyao, HOU Xiaoshu, LI Wen, et al. Impact of landscape pattern at multiple spatial scales on water quality: A case study in a typical urbanised watershed in China[J]. Ecological Indicators, 2015, 48: 417-427.
32 Yang OU, WANG Xiaoyan, GENG Runzhe. The influences of different landscape characteristics on water quality in the upper watershed of Miyun Reservoir[J]. Acta Scientiae Circumstantiae, 2012, 32(5): 1 219-1 226.
32 欧洋, 王晓燕, 耿润哲. 密云水库上游流域不同尺度景观特征对水质的影响[J]. 环境科学学报, 2012, 32(5): 1 219-1 226.
33 TU Jun, XIA Zongguo. Examining spatially varying relationships between land use and water quality using geographically weighted regression I: Model design and evaluation[J]. Science of the Total Environment, 2008, 407: 358-378.
34 LIU Yongqiang, LONG Hualou, LI Tingting, et al. Land use transitions and their effects on water environment in Huang-Huai-Hai Plain, China[J]. Land Use Policy, 2015, 47: 293-301.
35 HAO Fanghua, ZHANG Xuan, WANG Xiao, et al. Assessing the relationship between landscape patterns and nonpoint-source pollution in the Danjiang Kou Reservoir Basin in China[J]. Journal of the American Water Resources Association, 2012, 48: 1 162-1 177.
36 LIU Zhenhuan, LI You, PENG Jian. The landscape components threshold of stream water quality: A review[J]. Acta Ecologica Sinica, 2010, 30(21): 5 983-5 993.
36 刘珍环, 李猷, 彭建. 河流水质的景观组分阈值研究进展[J]. 生态学报, 2010, 30(21): 5 983-5 993.
37 LIU Zhenhuan, LI Zhengguo, YANG Peng, et al. The degradation threshold of water quality associated with urban landscape component[J]. Acta Ecologica Sinica, 2013, 33(2): 586-594.
37 刘珍环, 李正国, 杨鹏, 等. 城市景观组分影响水质退化的阈值研究[J]. 生态学报, 2013, 33(2): 586-594.
38 SUN Ranhao, CHEN Liding, WANG Wei, et al. Correlating landscape pattern with total nitrogen concentration using a location-weighted sink-source landscape index in the Haihe River Basin[J]. China Environmental Science, 2012, 33(6): 1 784-1 788.
38 孙然好, 陈利顶, 王伟,等. 基于“源”“汇”景观格局指数的海河流域总氮流失评价[J]. 环境科学, 2012, 33(6): 1 784-1 788.
39 LI Min, TANG Jianfeng, CHEN Liding, et al. Relationship between source-sink landscape pattern and antibiotics in surface water in Peri-urban Watershed[J]. Environmental Science, 2020,41(5):2 264-2 271.
39 李敏, 唐剑锋, 陈利顶, 等.城郊流域源汇景观格局与水体抗生素的关系[J].环境科学,2020,41(5):2 264-2 271.
40 LIU Jin, SHEN Zhenyao, CHEN Lei. Assessing how spatial variations of land use pattern affect water quality across a typical urbanized watershed in Beijing, China[J]. Landscape and Urban Planning, 2018, 176: 51-63.
41 HWANG S A, HWANG S J, PARK S R, et al. Examining the relationships between watershed urban land use and stream water quality using linear and generalized additive models[J]. Water, 2016, 8(4): 155.
42 WAN Rongrong, CAI Shanshan, LI Hengpeng, et al. Inferring land use and land cover impact on stream water quality using a Bayesian hierarchical modeling approach in the Xitiaoxi River Watershed, China[J]. Journal of Environmental Management, 2014, 133: 1-11.
43 CHEN Liding, FU Bojie, ZHAO Wenwu. Source-sink landscape theory and its ecological significance[J]. Acta Ecologica Sinica, 2006, 26(5): 1 444-1 449.
43 陈利顶, 傅伯杰, 赵文武. “源”“汇”景观理论及其生态学意义[J]. 生态学报, 2006, 26(5): 1 444-1 449.
44 MA Libang, BO Jie, LI Xiaoyang, et al. Identifying key landscape pattern indices influencing the ecological security of inland river basin: The middle and lower reaches of Shule River Basin as an example[J]. Science of the Total Environment, 2019, 674: 424-438.
45 XIAO Sun, JOHN C C, FENG Li, et al. Urban expansion simulation and the spatio-temporal changes of ecosystem services, a case study in Atlanta Metropolitan area, USA[J]. Science of the Total Environment, 2018, 622/623:974-987.
46 DíDAC J C, DAVID G, VERENA H G, et al. Impact and mitigation of global change on freshwater-related ecosystem services in Southern Europe[J]. Science of the Total Environment, 2019, 651(1): 895-908.
47 ZHANG Da, HUANG Qingxu, HE Chunyang, et al. Planning urban landscape to maintain key ecosystem services in a rapidly urbanizing area: A scenario analysis in the Beijing-Tianjin-Hebei urban agglomeration, China[J]. Ecological Indicators, 2019, 96(1): 559-571.
48 HUANG Li, ZHOU Mi. International ecosystem service research dynamics and regional differences: A bibliometric analysis based on Web of Science data[J]. Resources Science, 2020, 42(4): 607-620.
48 黄利, 周密. 国际生态系统服务研究动态与地域差异评价[J]. 资源科学, 2020, 42(4): 607-620.
49 FAN Xiaoshan, HE Ping. Research progress, existing problems and future direction on river ecosystem service[J]. Advances in Earth Science, 2018, 33(8): 852-864.
49 范小杉,何萍.河流生态系统服务研究进展[J]. 地球科学进展, 2018, 33(8): 852-864.
[1] 王大伟,孙悦,司少文,吴时国. 海底周期阶坎研究进展与挑战[J]. 地球科学进展, 2020, 35(9): 890-901.
[2] 张永垂, 王宁, 周林, 刘科峰, 汪浩笛. 海洋中尺度涡旋表面特征和三维结构研究进展[J]. 地球科学进展, 2020, 35(6): 568-580.
[3] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[4] 郝志新,吴茂炜,张学珍,刘洋,郑景云. 过去千年中国年代和百年尺度冷暖阶段的干湿格局变化研究[J]. 地球科学进展, 2020, 35(1): 18-25.
[5] 康文敏,蔡芫镔,郑慧祯. 福州城市地表温度时空变化与贡献度研究[J]. 地球科学进展, 2020, 35(1): 88-100.
[6] 孙义博,苏德,全占军,商豪律,耿冰,林兴稳,荆平平,包扬,赵艳华,杨巍. 无人机涡动相关通量观测技术研究综述[J]. 地球科学进展, 2019, 34(8): 842-854.
[7] 谢鑫昌,杨云川,田忆,廖丽萍,韦钧培,周津羽,陈立华. 广西降水非均匀性多尺度特征与综合评价[J]. 地球科学进展, 2019, 34(11): 1152-1164.
[8] 王萌,张艳伟,刘志飞,吴家望. 南海北部中尺度涡的时空分布特征:基于卫星高度计资料的统计分析[J]. 地球科学进展, 2019, 34(10): 1069-1080.
[9] 黄强,陈子燊,唐常源,李绍峰. 珠江流域重大干旱事件时空发展过程反演研究[J]. 地球科学进展, 2019, 34(10): 1050-1059.
[10] 易雪, 李得勤, 赵春雨, 沈历都, 敖雪, 刘鸣彦. 分析Nudging对辽宁地区降尺度的影响[J]. 地球科学进展, 2018, 33(5): 517-531.
[11] 栾海军, 田庆久, 章欣欣, 聂芹, 朱晓玲. 定量遥感地表参数尺度转换研究趋势探讨[J]. 地球科学进展, 2018, 33(5): 483-492.
[12] 李爱农, 边金虎, 尹高飞, 靳华安, 赵伟, 张正健, 南希, 雷光斌. 山地典型生态参量遥感反演建模及其时空表征能力研究[J]. 地球科学进展, 2018, 33(2): 141-151.
[13] 张春来, 宋长青, 王振亭, 邹学勇, 王雪松. 土壤风蚀过程研究回顾与展望[J]. 地球科学进展, 2018, 33(1): 27-41.
[14] 晋锐, 李新, 马明国, 葛咏, 刘绍民, 肖青, 闻建光, 赵凯, 辛晓平, 冉有华, 柳钦火, 张仁华. 陆地定量遥感产品的真实性检验关键技术与试验验证[J]. 地球科学进展, 2017, 32(6): 630-642.
[15] 方迎波, 占文凤, 黄帆, 高伦, 全金玲, 邹照旭. 长三角城市群表面城市热岛日内逐时变化规律[J]. 地球科学进展, 2017, 32(2): 187-198.