Please wait a minute...
img img
高级检索
地球科学进展  2020, Vol. 35 Issue (9): 890-901    DOI: 10.11867/j.issn.1001-8166.2020.072
综述与评述     
海底周期阶坎研究进展与挑战
王大伟1,2,3(),孙悦1,2,司少文1,2,吴时国1,2,3,4
1.中国科学院深海科学与工程研究所,海南 三亚 572000
2.中国科学院大学,北京 100049
3.南方海洋科学与工程广东省实验室(珠海),广东 珠海 519080
4.青岛海洋科学 与技术国家实验室,山东 青岛 266237
Research Progress and Challenges of Submarine Cyclic Steps
Dawei Wang1,2,3(),Yue Sun1,2,Shaowen Si1,2,Shiguo Wu1,2,3,4
1.Institute of Deep-sea Science and Engineering,Chinese Academy of Sciences,Sanya Hainan 572000,China
2.University of Chinese Academy of Sciences,Beijing 100049,China
3.Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai),Zhuhai Guangdong 519080,China
4.Qingdao National Laboratory for Marine Science and Technology,Qingdao Shandong 266237,China
 全文: PDF(8391 KB)   RICH HTML
摘要:

超临界流形成的周期阶坎是一种常见的底形,普遍存在于河口三角洲体系、深水峡谷—水道体系和碳酸盐台地等沉积体系中。从沉积环境、底形形态、沉积结构、形成机理和数值模拟等方面介绍了周期阶坎的研究进展,探讨了船测和AUV多波束、船测和AUV浅剖、人工地震、野外露头、数值模拟研究中揭示的周期阶坎分辨率问题,给出了周期阶坎研究的突破方向。利用探地雷达、人工地震、钻井和测井结合的方法,准确确定野外露头的中泓线位置;在水深大于500 m的区域,将AUV和船测多波束、AUV和船测浅地层剖面、人工地震等数据结合,通过载人潜水器获取原位数据,完善周期阶坎的三维精细结构;开发立体化三维数值模拟,建立一套适用于真实周期阶坎形态的动力学模拟方程。

关键词: 周期阶坎浊流超临界流沉积结构尺度差异    
Abstract:

Cyclic steps structure derived from the supercritical flows is one of the common bedforms, which is commonly found in sedimentary systems such as delta systems, deep-water canyon-channel systems, and carbonate platforms. In this paper, the research progresses of cyclic steps were introduced from the aspects of sedimentary environment, the features of bedforms, sedimentary structure, formation mechanism, and numerical simulation. The Research scale differences associated with the survey techniques or study methods, such as the ship survey and AUV-based multi-beams, sub-bottom profiles, multichannel seismic, the field outcrop, and numerical simulation were discussed. Finally, the breakthrough directions of the cyclic steps research were given. The combining method of ground penetrating radar, multichannel seismic, drilling and well logging were used to accurately detect the location of field outcrop thalweg. Within the area with water depth greater than 500 meters, the blending of multi-data for the cyclic steps research involved the AUV-based and the ship multi-beams, sub-bottom profiles, and multichannel seismic data. With the in situ samples and observation data obtained by human occupied vehicles, three-dimensional numerical simulation was developed to establish a set of dynamic simulation equations suitable for the real cyclic steps. Therefore, the high resolution three dimensional mode of the deep-water cyclic steps could be obtained more accurately.

Key words: Cyclic steps    Turbidity currents    Supercritical flows    Sedimentary structure    Scale difference
收稿日期: 2020-08-02 出版日期: 2020-10-28
ZTFLH:  P736.2  
基金资助: 国家自然科学基金项目“南海珠江口外海底峡谷内底形沉积结构与形成机理”(41666002);中国科学院前沿科学研究重点计划项目“深水海底峡谷—水道地貌特征及形成机理”(QYZDB-SSW-SYS025)
通信作者: 王大伟     E-mail: wangdawei@idsse.ac.cn
作者简介: 王大伟(1976-),男,黑龙江绥化人,研究员,主要从事地震沉积学、深水油气、海洋地质灾害和人工智能识别研究. E-mail:wangdawei@idsse.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王大伟
孙悦
司少文
吴时国

引用本文:

王大伟,孙悦,司少文,吴时国. 海底周期阶坎研究进展与挑战[J]. 地球科学进展, 2020, 35(9): 890-901.

Dawei Wang,Yue Sun,Shaowen Si,Shiguo Wu. Research Progress and Challenges of Submarine Cyclic Steps. Advances in Earth Science, 2020, 35(9): 890-901.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2020.072        http://www.adearth.ac.cn/CN/Y2020/V35/I9/890

图1  周期阶坎示意图[2]
图2  逆行沙丘和周期阶坎对比(据参考文献[35]修改)
沉积环境尺度大小形成机理结构特征沉积物组成实例
河口三角洲

波长:30~300 m

波高:1~8 m

多数由羽状流触发的浊流多为新月形,阶坎较为连续,数量较多砂质、泥质沉积物加拿大斯阔米什三角洲[37]
海底峡谷水道

小型:整体长度小于10 km,波长20~100 m,波高0.5~5.0 m;

中型:整体长度10~50 km,波长200~1 100 m,波高20~50 m;

大型:整体长度大于50 km,波长300~7 200 m,波高5~220 m

海底峡谷—水道内壁垮塌、驻波、内波等触发的浊流以新月形为主,上游尺度较小、对称性较差,下游尺度较大、对称性较好近端粗粒砂岩,远端细粒砂岩、黏土南海东北陆坡西澎湖峡谷[12],非洲Rio Muni盆地[11]
碳酸盐台地

波长:96~117 m

波高:3.5~4.3 m

台地顶部沉积物向深海盆地搬运形成的线性倾泻密度流不仅沿流动方向纵向排列,横向上也成线性排列碳酸盐岩墨西哥湾巴哈马台地[13,14,38]
表1  不同沉积环境下的周期阶坎
图3  不同环境下的周期阶坎(据参考文献[12,13,41,42]修改)(a)加拿大斯阔米什三角洲;(b) 美国西海岸圣马特奥水道;(c)中国南海东北陆坡西澎湖峡谷;(d)墨西哥湾巴哈马碳酸盐台地
图4  周期阶坎岩相分布(据参考文献[50]修改)
图5  周期阶坎粒度分布(据参考文献[18]修改)
图6  沿圣马特奥水道浊流形态动力学模拟结果[41](a)底形和浊流自由液面沿着水道中泓线的变化; (b)密度弗洛德数的变化
图7  FLOW-3D初始模型图和效果图[23]
研究区域水深/m探测设备及相关参数周期阶坎特征(波长L,波高H
作业方式人工地震多波束浅地层剖面
大巴哈马台地西南斜坡[13,14]600~800船测震源:mini GI枪;垂向分辨率:1.5~2.5 m网格尺寸:7.5 m探测深度:海底以下0~50 m,垂向分辨率:1 m

L:96~117 m

H:3.5~4.3 m

美国San Metro水道[41]200~800AUV搭载,距离海底50 m-垂向分辨率:0.3 m,水平分辨率:1.5 m探测深度:海底以下0~30 m,垂向分辨率:0.1 m

L:300~1 100 m

H:20~50 m

非洲Rio Muni盆地[49]1 660~2 080船测主频:50 Hz,垂向分辨率:10 m--

L:506~1 374 m

H:10~41 m

南海西澎湖峡谷[11]2 145~2 950船测主频:30~45 Hz,垂向分辨率:11~17 m垂向分辨率:优于水深0.5%-

L:1 347~4 730 m

H:17~146 m

加拿大东部海域[47]4 000~5 000船测、深拖深拖,电火花震源主频:1.5 kHz,垂向分辨率:1.5 m;船测,震源:GI枪,垂向分辨率:4~10 m船测,网格尺寸:60 m船测,探测深度:海底以下0~5 m,垂向分辨率:1 m

L:600~4 000 m

H:10~50 m

表2  对比不同探测设备之间的差异性
图8  周期阶坎野外露头剖面线和中泓线示意图
模拟方法优缺点
数值模拟平均四方程[22]模拟自由液面与底形的作用关系,但是,无法反馈流体内部的动态变化和实际底形的精细特征
FLOW-3D模拟流体和底形的相互作用,揭示泥沙浓度、流速、湍流动能、弗洛德数、剪切力等参数的动态变化,但是,尚未在实际周期阶坎模拟方面取得突破
表3  对比不同模拟方法之间的差异性
1 Wang Dawei, Bai Hongxin, Wu Shiguo. The research progress of turbidity currents and related deep-water bedforms[J]. Advances in Earth Science, 2018, 33(1): 52-65.
1 王大伟, 白宏新,吴时国. 浊流及其相关的深水底形研究进展[J]. 地球科学进展, 2018, 33(1): 52-65.
2 Slootman A, Cartigny M J B. Cyclic steps: Review and aggradation-based classification[J]. Earth-Science Reviews, 2019. DOI:10.1016/j.earscirev.2019.102949.
doi: 10.1016/j.earscirev.2019.102949
3 Clare M A, Cartigny M J B, North L J, et al. Quantification of near-bed dense layers and implications for seafloor structures: New insights into the most hazardous aspects of turbidity currents[C]//Offshore Technology Conference, 2015.
4 Andrieux O, Cooper C K, Wood J. Turbidity current measurements in the Congo Canyon[C]//Offshore Technology Conference, 2013.
5 Cooper C, Wood J, Imran J, et al. Designing for turbidity currents in the Congo Canyon[C]//Offshore Technology Conference, 2016.
6 Postma G, Kleverlaan K, Cartigny M J B. Recognition of cyclic steps in sandy and gravelly turbidite sequences, and consequences for the Bouma facies model[J]. Sedimentology, 2014, 61(7): 2 268-2 290.
7 Ventra D, Cartigny M J B, Bijkerk J F, et al. Supercritical-flow structures on a Late Carboniferous delta front: Sedimentologic and paleoclimatic significance[J]. Geology, 2015, 43(8): 731-734.
8 Covault J A, Kostic S, Paull C K, et al. Cyclic steps and related supercritical bedforms: Building blocks of deep-water depositional systems, western North America[J]. Marine Geology, 2017, 393: 4-20.
9 Lang J, Brandes C, Winsemann J. Erosion and deposition by supercritical density flows during channel avulsion and backfilling: Field examples from coarse-grained deepwater channel-levée complexes (Sandino Forearc Basin, southern Central America) [J]. Sedimentary Geology, 2017, 349: 79-102.
10 Lamb M P, Parsons J D, Mullenbach B L, et al. Evidence for superelevation, channel incision, and formation of cyclic steps by turbidity currents in Eel Canyon, California[J]. Geological Society of America Bulletin, 2008, 120(3/4): 463-475.
11 Li S, Li Wei, Alves Tiago M, et al. Large-scale scours formed by supercritical turbidity currents along the full length of a submarine canyon, northeast South China Sea[C]//AGU Fall Meeting, 2019: 424.
12 Zhong Guangfa, Cartigny M J B, Kuang Zenggui, et al. Cyclic steps along the South Taiwan Shoal and West Penghu submarine canyons on the northeastern continental slope of the South China Sea[J]. Geological Society of America Bulletin, 2015, 127(5/6): 804-824.
13 Betzler C, Lindhorst S, Eberli G P, et al. Periplatform drift: The combined result of contour current and off-bank transport along carbonate platforms[J]. Geology, 2014, 42(10): 871-874.
14 Wunsch M, Betzler C, Lindhorst S, et al. Sedimentary dynamics along carbonate slopes (Bahamas archipelago) [J]. Sedimentology, 2017, 64(3): 631-657.
15 Lang J, Winsemann J. Lateral and vertical facies relationships of bedforms deposited by aggrading supercritical flows: From cyclic steps to humpback dunes[J]. Sedimentary Geology, 2013, 296: 36-54.
16 Dietrich P, Ghienne J F, Normandeau A, et al. Upslope-migrating bedforms in a proglacial sandur delta: Cyclic steps from river-derived underflows?[J]. Journal of Sedimentary Research, 2016, 86(1): 112-122.
17 Lang J, Sievers J, Loewer M, et al. 3D architecture of cyclic-step and antidune deposits in glacigenic subaqueous fan and delta settings: Integrating outcrop and ground-penetrating radar data[J]. Sedimentary Geology, 2017, 362: 83-100.
18 Gong Chenglin, Chen Liuqin, West L. Asymmetrical, inversely graded, upstream-migrating cyclic steps in marine settings: Late Miocene-early Pliocene Fish Creek-Vallecito Basin, southern California[J]. Sedimentary Geology, 2017, 360: 35-46.
19 Postma G, Hoyal D C, Abreu V, et al. Morphodynamics of supercritical turbidity currents in the channel-lobe transition zone[C]//Submarine Mass Movements and Their Consequences, 2016, 41: 469-478.
20 Taki K, Parker G. Transportational cyclic steps created by flow over an erodible bed. Part 1. Experiments[J]. Journal of Hydraulic Research, 2005, 43(5): 488-501.
21 Cartigny M J B, Ventra D, Postma G, et al. Morphodynamics and sedimentary structures of bedforms under supercritical-flow conditions: New insights from flume experiments[J]. Sedimentology, 2014, 61(3): 712-748.
22 Kostic S. Modeling of submarine cyclic steps: Controls on their formation, migration, and architecture[J]. Geosphere, 2011, 7(2): 294-304.
23 Vellinga A J, Cartigny M J B, Eggenhuise J T, et al. Morphodynamics and depositional signature of low-aggradation cyclic steps: New insights from a depth-resolved numerical model[J]. Sedimentology, 2018, 65(2): 540-560.
24 Kostic S, Parker G. The response of turbidity currents to a canyon-fan transition: Internal hydraulic jumps and depositional signatures[J]. Journal of Hydraulic Research, 2006, 44(5): 631-653.
25 Sun T, Parker G. Transportational cyclic steps created by flow over an erodible bed. Part 2. Theory and numerical simulation[J]. Journal of Hydraulic Research, 2005, 43(5): 502-514.
26 Parker G, Izumi N. Purely erosional cyclic and solitary steps created by flow over a cohesive bed[J]. Journal of Fluid Mechanics, 2000, 419: 203-238.
27 Xu Xiaoyong, Fuliang Lü, Wang Dawei, et al. Cyclic steps and significance to deep water sedimentation[J]. Marine Origin Petroleum Geology, 2018, 23(4): 1-14.
27 许小勇, 吕福亮, 王大伟,等. 周期性阶坎的特征及其对深水沉积研究的意义[J]. 海相油气地质, 2018, 23(4): 1-14.
28 Piper D J, Normark W R. Processes that initiate turbidity currents and their influence on turbidites: A marine geology perspective[J]. Journal of Sedimentary Research, 2009, 79(6): 347-362.
29 Talling P J, Paull C K, Piper D J. How are subaqueous sediment density flows triggered, what is their internal structure and how does it evolve? Direct observations from monitoring of active flows[J]. Earth-Science Reviews, 2013, 125: 244-287.
30 Talling P J, Allin J, Armitage D A, et al. Key future directions for research on turbidity currents and their deposits[J]. Journal of Sedimentary Research, 2015, 85(2): 153-169.
31 Allen J. Sedimentary Structures, Their Character and Physical Basis[M]. New York: Elsevier, 2011.
32 Guy H P, Simons D B, Richardson E V. Summary of alluvial channel data from flume experiments, 1956-61[C]//U.S. Geological Survey Professional Paper, 1966, 462(1): 11-196.
33 Carling P A, Shvidchenko A B. A consideration of the dune: Antidune transition in fine gravel[J]. Sedimentology, 2002, 49(6): 1 269-1 282.
34 Alexander J, Bridge J S, Cheel R J, et al. Bedforms and associated sedimentary structures formed under supercritical water flows over aggrading sand beds[J]. Sedimentology, 2001, 48(1): 133-152.
35 Slootman A, De Boer P L, Cartigny M J B , et al. Evolution of a carbonate delta generated by gateway‐funnelling of episodic currents[J]. Sedimentology, 2019, 66(4): 1 302-1 340.
36 Kostic S, Smith I B. Water on Mars: Do submarine cyclic steps exist on the red planet?[J]. Progress in Earth and Planetary Science, 2018, 5(1): 76.
37 Clarke J H. First wide-angle view of channelized turbidity currents links migrating cyclic steps to flow characteristics[J]. Nature Communications, 2016, 7. DOI:10.1038/ncomms11896.
doi: 10.1038/ncomms11896
38 Schnyder J S D, Eberli G P, Betzler C, et al. Morphometric analysis of plunge pools and sediment wave fields along western Great Bahama Bank[J]. Marine Geology, 2018, 397: 15-28.
39 Smith D P, Ruiz G, Kvitek R,et al. Semiannual patterns of erosion and deposition in upper Monterey Canyon from serial multibeam bathymetry[J]. GSA Bulletin, 2005, 117(9/10): 1 123-1 133.
40 Paull C K, Ussler W, Caress D W, et al. Origins of large crescent-shaped bedforms within the axial channel of Monterey Canyon, offshore California[J]. Geology, 2010, 6(6): 755-774.
41 Covault J A, Kostic S, Paull C K, et al. Submarine channel initiation, filling and maintenance from sea-floor geomorphology and morphodynamic modelling of cyclic steps[J]. Sedimentology, 2014, 61(4): 1 031-1 054.
42 Clarke J H, Brucker S, Muggah J, et al. Temporal progression and spatial extent of mass wasting events on the Squamish prodelta slope, in Landslides and engineered slopes: Protecting society through improved understanding[M]//Landslides and Engineered Slopes: Protecting Society through Improved Understanding. London: CRC Press, 2012.
43 Cartigny M J B, Postma G, Van den Berg J H, et al. A comparative study of sediment waves and cyclic steps based on geometries, internal structures and numerical modeling[J]. Marine Geology, 2011, 280(1/4): 40-56.
44 Symons W O, Sumner E J, Talling P J, et al. Large-scale sediment waves and scours on the modern seafloor and their implications for the prevalence of supercritical flows[J]. Marine Geology, 2016, 371: 130-148.
45 Maier K L, Fildani A, Paull C K, et al. Deep‐sea channel evolution and stratigraphic architecture from inception to abandonment from high‐resolution autonomous underwater vehicle surveys offshore central California[J]. Sedimentology, 2013, 60(4): 935-960.
46 Spinewine B, Sequeiros O E, Garcia M H, et al. Experiments on wegde-shaped deep sea sedimentary deposits in minibasins and/or on channels levees emplaced by turbidity currents. Part II. Morphodynamic evolution of the wedge and of the associated bedforms[J]. Journal of Sedimentary Research, 2009, 79(7/8): 608-628.
47 Normandeau A, Campbell D C, Cartigny M J B. The influence of turbidity currents and contour currents on the distribution of deep‐water sediment waves offshore eastern Canada[J]. Sedimentology, 2019. DOI:10.1111/sed.12557.
doi: 10.1111/sed.12557
48 Kostic S, Sequeiros O, Spinewine B, et al. Cyclic steps: A phenomenon of supercritical shallow flow from the high mountains to the bottom of the ocean[J]. Journal of Hydro-environment Research, 2010, 3(4): 167-172.
49 Li L, Gong C. Gradual transition from net erosional to net depositional cyclic steps along the submarine distributary channel thalweg in the rio muni basin: A joint 3‐D seismic and numerical approach[J]. Journal of Geophysical Research: Earth Surface, 2018, 123(9): 2 087-2 106.
50 Postma G, Cartigny M J B. Supercritical and subcritical turbidity currents and their deposits—A synthesis[J]. Geology, 2014, 42(11): 987-990.
51 Fisher R V. Flow transformations in sediment gravity flows[J]. Geology, 1983, 11(5): 273-274.
52 Postma G, Nemec W, Kleinspehn K L. Large floating clasts in turbidites: A mechanism for their emplacement[J]. Sedimentary Geology, 1988, 58(1): 47-61.
53 Kostic S, Casalbore D, Chiocci F, et al. Role of upper-flow-regime bedforms emplaced by sediment gravity flows in the evolution of deltas[J]. Journal of Marine Science and Engineering, 2019, 7(1): 5.
54 Izumi N, Yokokawa M, Parker G. Incisional cyclic steps of permanent form in mixed bedrock-alluvial rivers[J]. Journal of Geophysical Research: Earth Surface, 2017, 122(1): 30-152.
55 Mutti E, Normark W R. Comparing examples of modern and ancient turbidite systems: Problems and concepts[M]//Marine Clastic Sedimentology. Dordrecht: Springer, 1987: 1-38.
56 Paull C, Normark W R, Ussler W, et al. Large wave-shaped bedforms in the axial channel of Monterey Submarine Canyon: Monterey Bay, California[C]//AGU Fall Meeting Abstracts. 2007.
57 Clarke D. The effect of fine scale seabed morphology and texture on fidelity of Swath bathymetric sounding data[J]. Sea Technol, 1998, 39: 87-90.
58 Paull C, Ussler W, Greene H G, et al. Caught in the act: The 20 December 2001 gravity flow event in Monterey Canyon[J]. Geo-Marine Letters, 2002, 22(4): 227-232.
59 Inman D L, Nordstrom C E, Flick R E. Currents in submarine canyons: An air-sea-land interaction[J]. Annual Review of Fluid Mechanics, 1976, 8(1): 275-310.
60 Konsoer K, Zinger J, Parker G. Bankfull hydraulic geometry of submarine channels created by turbidity currents: Relations between bankfull channel characteristics and formative flow discharge[J]. Journal of Geophysical Research: Earth Surface, 2013, 118(1): 216-228.
[1] 秦磊,毛金昕,倪凤玲,徐少华,李小刚,蔡长娥,尚文亮,刘家恺. 浅谈深水块体搬运复合体的结构、成因分类以及识别方法[J]. 地球科学进展, 2020, 35(6): 632-642.
[2] 傅焓埔, 刘群, 胡修棉. 水下沉积物重力流与海底扇相模式研究进展[J]. 地球科学进展, 2020, 35(2): 124-136.
[3] 李向东,陈海燕,陈洪达. 鄂尔多斯盆地西缘桌子山地区上奥陶统拉什仲组深水复合流沉积[J]. 地球科学进展, 2019, 34(12): 1301-1315.
[4] 王大伟, 白宏新, 吴时国. 浊流及其相关的深水底形研究进展[J]. 地球科学进展, 2018, 33(1): 52-65.
[5] 徐景平. 科学与技术并进——近20年来海底峡谷浊流观测的成就和挑战[J]. 地球科学进展, 2013, 28(5): 552-558.
[6] 高红灿,郑荣才,魏钦廉,陈发亮,陈 君,朱登锋,刘 云. 碎屑流与浊流的流体性质及沉积特征研究进展[J]. 地球科学进展, 2012, 27(8): 815-827.
[7] 李云,郑荣才,朱国金,胡晓庆. 沉积物重力流研究进展综述[J]. 地球科学进展, 2011, 26(2): 157-165.
[8] 钟广法,李前裕,郝沪军,王嘹亮. 深水沉积物波及其在南海研究之现状[J]. 地球科学进展, 2007, 22(9): 907-913.
[9] 孙 樯,谢鸿森,郭 捷,苏根利,丁东业. 地球深部流体与油气生成及运移浅析[J]. 地球科学进展, 2000, 15(3): 283-288.
[10] 王岳军;张琴华;郑海飞. 实验地球化学研究进展[J]. 地球科学进展, 1996, 11(1): 30-34.
[11] 李建明. 沉降速率作为独立变量的水流构造三维稳定域图[J]. 地球科学进展, 1990, 5(1): 28-31.