地球科学进展 ›› 2018, Vol. 33 ›› Issue (1): 52 -65. doi: 10.11867/j.issn.1001-8166.2018.01.0052

综述与评述 上一篇    下一篇

浊流及其相关的深水底形研究进展
王大伟 1( ), 白宏新 1, 2, 吴时国 1, 2, 3   
  1. 1.中国科学院深海科学与工程研究所,海南省海底资源与探测技术重点实验室,海南 三亚 572000
    2.中国科学院大学,北京 100049
    3.青岛海洋科学与技术国家实验室,山东 青岛 266237
  • 收稿日期:2017-09-30 修回日期:2017-12-25 出版日期:2018-01-10
  • 基金资助:
    国家自然科学基金项目“琼东南盆地深水重力流沉积旋回演化规律与形成机理”(编号:41576049)和“南海珠江口外海底峡谷内底形沉积结构与形成机理”(编号:41666002)资助

The Research Progress of Turbidity Currents and Related Deep-water Bedforms

Dawei Wang 1( ), Hongxin Bai 1, 2, Shiguo Wu 1, 2, 3   

  1. 1.Laboratory of Marine Geophysics and Georesource, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
    2.University of Chinese Academy of Sciences, Beijing 100049,China
    3.Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
  • Received:2017-09-30 Revised:2017-12-25 Online:2018-01-10 Published:2018-03-06
  • About author:

    First author:Wang Dawei(1976-), male, Suihua City, Heilongjiang Province, Associate professor. Research areas include marine geophysics, submarine geohazard.E-mail:wangdawei@idsse.ac.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Evolution and mechanism of deep-water gravity flow sediment cycles in the Qiongdongnan Basin, South China Sea” (No.41576049) and “Sedimentary architecture and mechanism of bedforms within submarine canyon out of the Pear River Estuary, South China Sea” (No.41666002)

从19世纪发现海底浊流现象开始,这一重要的深水沉积过程就引起了地学界的广泛关注。研究发现深水浊流成因的周期阶坎等超临界流底形广泛分布于海底,且与鲍马定义的浊积岩序列有着密切联系。由于浊流事件的不可预测、破坏力强,直接观测设备和技术也比较匮乏,造成对浊流事件进行直接海底观测的工作较少。总结了国内外浊流及其相关底形的研究成果,对浊流分类、底形的形成与演化进行了讨论,列举了国内外几个典型深水区浊流及其相关超临界流底形的研究案例,包括实验、数值模拟和深水底形研究,详细介绍了周期阶坎这一主要的超临界流底形,讨论了周期阶坎的形成与演化过程及其与鲍马序列的对应关系。最后,对浊流及其相关的超临界流底形研究进行了展望。

Since turbidity current was reported in the 19th century, its flow dynamics, depositional processes and products have drawn much attention of geoscience community. In the last decades, with the help of rapid development of geophysical technology in deep-water areas, superficial bedforms formed by turbidity currents like cyclic steps have been widely documented on the seafloor, and they have been interpreted to be closely related to turbidite facies defined by the Bouma sequence. However, there is still a lack of direct observation on turbidity currents due to difficulties in the design and deployment of flow-measuring instruments under the sea. Such difficulties also result in much uncertainties in the explanations for the formation of bedforms and related flow processes. This paper summarized and discussed current research status of turbidity-currents classification, the formation and evolution of bedforms. Examples of supercritical-bedform studies using various methods such as experiments, numerical simulation, bathymetric data and seismic data, were shown in this paper. As one of main supercritical flow bedforms, cyclic steps were described in detail in this paper, including its formation, evolution and relationship with Bouma sequence. The variations in initial bed morphology and hydrodynamic parameters are responsible for the changes in the shapes of bedforms. Turbidites formed under different hydrodynamic conditions correspond to different units of Bouma sequence. Not all turbidity events can form a complete Bouma sequence. Therefore, traditional Bouma sequence cannot be applied to all turbidite studies. A more complete turbidite facies model must be established through studies from modern deep-sea sediments, outcrops, physical and numerical simulations. Additionally, turbidity currents and related supercritical bedforms are receiving more and more attention. They are important components of understanding the dynamic evolution of deep-water continental slope. The study of cyclic steps and other bedforms related to turbidity currents not only helps to characterize flow dynamics, but also provides a theoretical basis for the research of turbidite reservoirs. Finally, we proposed future research directions of turbidity currents and their related supercritical bedforms.

中图分类号: 

图1 以雷诺数和维德尼科夫数为依据的超临界流底形概念上的细分图 [ 25 ]
Fig.1 Conceptual subdivision of supercritical-flow phenomena on the basis of Reynolds number and Vedernikov number [ 25 ]
图1 以雷诺数和维德尼科夫数为依据的超临界流底形概念上的细分图 [ 25 ]
Fig.1 Conceptual subdivision of supercritical-flow phenomena on the basis of Reynolds number and Vedernikov number [ 25 ]
图2 不对称周期阶坎和密度弗劳德数( Fr d)变化示意图(从左至右) [ 15 ]
Fig.2 Schematic drawing of a series of asymmetrical cyclic steps (downstream from left to right) and hypothetical densimetric Froude number ( Fr d) variability [ 15 ]
图2 不对称周期阶坎和密度弗劳德数( Fr d)变化示意图(从左至右) [ 15 ]
Fig.2 Schematic drawing of a series of asymmetrical cyclic steps (downstream from left to right) and hypothetical densimetric Froude number ( Fr d) variability [ 15 ]
图3 水道—朵体过渡带超临界浊流内水跃过程及其沉积形成的底形(据参考文献[14,39~41]修改)
(a)小体积、富砂流体,上面是流动过程,下面是沉积物;(b)大体积、砂泥混合流体,上面是流动过程,下面是沉积物,C-C’和D-D’是(c)和(d)示意图的位置(据参考文献[39]修改);(c)水道—朵体过渡带平面图(据参考文献[40]修改);(d)周期阶坎沉积的浊积岩相
Fig.3 Processes and deposits of supercritical turbidity currents undergoing an internal hydraulic jump at the channel-lobe transition zone(modified after references [14,39~41])
(a) Relatively small-volume, sandrich current. Above: Process, Below: Resulting deposit. (b) Large-volume, mixed sand and mudcurrent. Above:Process;Below: Resulting deposit. The regions of C-C’ and D-D’ are schematically illustrated inparts (c) and (d) (modified after reference [39]).(c)Map view of channel-lobe transition zone(modified after reference [40]). (d) Turbidite facies produced by deposition on a single cyclic step
图3 水道—朵体过渡带超临界浊流内水跃过程及其沉积形成的底形(据参考文献[14,39~41]修改)
(a)小体积、富砂流体,上面是流动过程,下面是沉积物;(b)大体积、砂泥混合流体,上面是流动过程,下面是沉积物,C-C’和D-D’是(c)和(d)示意图的位置(据参考文献[39]修改);(c)水道—朵体过渡带平面图(据参考文献[40]修改);(d)周期阶坎沉积的浊积岩相
Fig.3 Processes and deposits of supercritical turbidity currents undergoing an internal hydraulic jump at the channel-lobe transition zone(modified after references [14,39~41])
(a) Relatively small-volume, sandrich current. Above: Process, Below: Resulting deposit. (b) Large-volume, mixed sand and mudcurrent. Above:Process;Below: Resulting deposit. The regions of C-C’ and D-D’ are schematically illustrated inparts (c) and (d) (modified after reference [39]).(c)Map view of channel-lobe transition zone(modified after reference [40]). (d) Turbidite facies produced by deposition on a single cyclic step
图4 超临界流底形水槽实验 [ 35 ]
(a)Utrecht University的Eurotank水槽实验室可循环水槽示意图,长12 m,宽0.48 m,高0.6 m;(b)水槽中正在流动的流体形成了周期阶坎底形,水槽下方灰色的是再循环管道;(c)从水槽头部向下游看到的周期阶坎底形形成环境
Fig.4 Flume experiment of supercritical bedforms [ 35 ]
(a) Re-circulating flume, 12 m long, 0.48 m wide and 0.6 m long in the Eurotank Flume Laboratory at Utrecht University. (b) Flume in action with flow directed to the left and development of cyclic steps, notice gray recirculating pipe underneath the main tank.
(c) Downstream view from the flume head during cyclic-step conditions
图4 超临界流底形水槽实验 [ 35 ]
(a)Utrecht University的Eurotank水槽实验室可循环水槽示意图,长12 m,宽0.48 m,高0.6 m;(b)水槽中正在流动的流体形成了周期阶坎底形,水槽下方灰色的是再循环管道;(c)从水槽头部向下游看到的周期阶坎底形形成环境
Fig.4 Flume experiment of supercritical bedforms [ 35 ]
(a) Re-circulating flume, 12 m long, 0.48 m wide and 0.6 m long in the Eurotank Flume Laboratory at Utrecht University. (b) Flume in action with flow directed to the left and development of cyclic steps, notice gray recirculating pipe underneath the main tank.
(c) Downstream view from the flume head during cyclic-step conditions
图5 单向超临界流流动过程及其底形结构和演化的4个阶段示意图 [ 35 ]
(a) 稳定的逆行沙丘; (b)不稳定逆行沙丘; (c)流槽和冲坑; (d)周期阶坎底形
Fig.5 Representative overview of four stages in unidirectional supercritical flows [ 35 ]
(a) Antidunes. (b)Unstable antidunes. (c)Chutes-and-pools. (d)Cyclic steps
图5 单向超临界流流动过程及其底形结构和演化的4个阶段示意图 [ 35 ]
(a) 稳定的逆行沙丘; (b)不稳定逆行沙丘; (c)流槽和冲坑; (d)周期阶坎底形
Fig.5 Representative overview of four stages in unidirectional supercritical flows [ 35 ]
(a) Antidunes. (b)Unstable antidunes. (c)Chutes-and-pools. (d)Cyclic steps
图6 周期阶坎演化的控制因素 [37]
(a)基础方案:颗粒大小80 μm,抗侵蚀能力 p=0.04; p的范围为0~1,分别对应固结岩床到未固结松散沉积物;(c)~(h)的条件除了选中的控制因素外,其他和(a)基本一致;底形演化(绿线)沿初始陆坡(红线)变化;(b)基础方案弗劳德数向下游的变化情况;(c)初始陆坡的影响( S 0从1.3%增加到2.5%);(d)河床孔隙度的影响( λ从0.5增加到0.7);(e)悬浮沉积物浓度的影响( C 0从0.01增加至0.03);(f)沉积物提供的影响(抗侵蚀能力 p从0.04增加至0.06);(g)坡折带位置的影响(在模拟域内从6 km增加至15 km);(h)流体弗劳德数的影响(流体深度从20 m增加至100 m)
Fig.6 Controlson the evolution of cyclic steps [ 37 ]
(a) Base case in which grain size was set equal to 80 μm and the entrainment limiter p was set equal to 0.04. The entrainment limiter p ranges from 0 for consolidated bedrock to 1 for unconsolidated, loose sediment. Parts (c)~(h) pertain to the same conditions as part (a), except for the value of one selected control parameter. Bed elevation (green lines) change along a hypothetical initial slope (red line) in response to a sequence of overriding turbidity currents.(b) Downstream variation in the Froude number for the base case in part A.(c) Effect of the initial slope ( S 0 increased from 1.3% to 2.5%).(d) Effect of bed porosity ( λ increased from 0.5 to 0.7).(e) Effect of the inflow concentration of suspended sediment ( C 0 increased from 0.01 to 0.03).(f) Effect of the sediment availability (entrainment limiter p increased from 0.04 to 0.06).(g) Effect of the slope-break location (increased from 6 to 15 km within the model domain). (h) Effect of the inflow Froude number (inflow depth increased from 20 to 100 m)
图6 周期阶坎演化的控制因素 [37]
(a)基础方案:颗粒大小80 μm,抗侵蚀能力 p=0.04; p的范围为0~1,分别对应固结岩床到未固结松散沉积物;(c)~(h)的条件除了选中的控制因素外,其他和(a)基本一致;底形演化(绿线)沿初始陆坡(红线)变化;(b)基础方案弗劳德数向下游的变化情况;(c)初始陆坡的影响( S 0从1.3%增加到2.5%);(d)河床孔隙度的影响( λ从0.5增加到0.7);(e)悬浮沉积物浓度的影响( C 0从0.01增加至0.03);(f)沉积物提供的影响(抗侵蚀能力 p从0.04增加至0.06);(g)坡折带位置的影响(在模拟域内从6 km增加至15 km);(h)流体弗劳德数的影响(流体深度从20 m增加至100 m)
Fig.6 Controlson the evolution of cyclic steps [ 37 ]
(a) Base case in which grain size was set equal to 80 μm and the entrainment limiter p was set equal to 0.04. The entrainment limiter p ranges from 0 for consolidated bedrock to 1 for unconsolidated, loose sediment. Parts (c)~(h) pertain to the same conditions as part (a), except for the value of one selected control parameter. Bed elevation (green lines) change along a hypothetical initial slope (red line) in response to a sequence of overriding turbidity currents.(b) Downstream variation in the Froude number for the base case in part A.(c) Effect of the initial slope ( S 0 increased from 1.3% to 2.5%).(d) Effect of bed porosity ( λ increased from 0.5 to 0.7).(e) Effect of the inflow concentration of suspended sediment ( C 0 increased from 0.01 to 0.03).(f) Effect of the sediment availability (entrainment limiter p increased from 0.04 to 0.06).(g) Effect of the slope-break location (increased from 6 to 15 km within the model domain). (h) Effect of the inflow Froude number (inflow depth increased from 20 to 100 m)
图7 周期阶坎波列分布图
(a)典型峡谷1水深及周期阶坎波列分布图;(b)典型峡谷2水深及波列分布图 [ 16 ]
Fig.7 Distribution diagrams of cyclic steps
(a)Bathymetric image and cyclic steps along typical canyon 1. (b)Bathymetric image and cyclic steps along typical canyon 2 [ 16 ]
图7 周期阶坎波列分布图
(a)典型峡谷1水深及周期阶坎波列分布图;(b)典型峡谷2水深及波列分布图 [ 16 ]
Fig.7 Distribution diagrams of cyclic steps
(a)Bathymetric image and cyclic steps along typical canyon 1. (b)Bathymetric image and cyclic steps along typical canyon 2 [ 16 ]
图8 单相和双相悬浮流三维底形稳定性图 [ 43 ]
Fig.8 Three dimensional bed-form stability diagram for 1 and 2-phase suspension flows [ 43 ]
图8 单相和双相悬浮流三维底形稳定性图 [ 43 ]
Fig.8 Three dimensional bed-form stability diagram for 1 and 2-phase suspension flows [ 43 ]
图9 试验中观察到的单相悬浮流流动过程(a)和野外观察到的浊积岩(b) [ 43 ]
浊积岩包括:递变层理段Ta(2)、平行层理段Tb(1和3)、爬升波状交错层理段(4)和被牵引毯沉积覆盖的波状层理段(5)
Fig.9 The flow process of 1-phase suspension flow observed in experiment (a) and the outcrop of turbidite bed (b) [ 43 ]
The flow process of 1-phase suspension flow observed in experiment (a) and the outcrop of turbidite bed (b). The turbidite bed including: Graded Ta unit (2), plane bed laminated Tb units (1 and 3), climbing ripples cross sets (4), the ripples are covered by traction carpet deposits (5)
图9 试验中观察到的单相悬浮流流动过程(a)和野外观察到的浊积岩(b) [ 43 ]
浊积岩包括:递变层理段Ta(2)、平行层理段Tb(1和3)、爬升波状交错层理段(4)和被牵引毯沉积覆盖的波状层理段(5)
Fig.9 The flow process of 1-phase suspension flow observed in experiment (a) and the outcrop of turbidite bed (b) [ 43 ]
The flow process of 1-phase suspension flow observed in experiment (a) and the outcrop of turbidite bed (b). The turbidite bed including: Graded Ta unit (2), plane bed laminated Tb units (1 and 3), climbing ripples cross sets (4), the ripples are covered by traction carpet deposits (5)
图10 高浓度浊流(类型一和类型二)和低浓度浊流(类型三和类型四)流体动力学和大尺度构造特征,流动方向从左向右 [ 40 ]
Fig.10 Summary of flow dynamic and large-scale architrcture for high-concentration and low-concentration turbidity currents, flow is from left to right[ 40 ]
图10 高浓度浊流(类型一和类型二)和低浓度浊流(类型三和类型四)流体动力学和大尺度构造特征,流动方向从左向右 [ 40 ]
Fig.10 Summary of flow dynamic and large-scale architrcture for high-concentration and low-concentration turbidity currents, flow is from left to right[ 40 ]
图11 周期阶坎底形上的沉积相 [ 40 ]
Fig.11 Facies produced by deposition on cyclic step [ 40 ]
图11 周期阶坎底形上的沉积相 [ 40 ]
Fig.11 Facies produced by deposition on cyclic step [ 40 ]
[1] Milne J. Sub-oceanic changes (continued)[J]. Geographical Journal,1897,10(3):259-285.
doi: 10.2307/1774771     URL    
[2] Heezen B C, Ewing W M.Turbidity currents and submarine slumps, and the 1929 Grand Banks earthquake[J]. American Journal of Science,1952,250(12):849-873.
doi: 10.2475/ajs.250.12.849     URL    
[3] Pettijohn F J.Turbidity currents and graywackes—A discussion[J]. Journal of Geology,1950,58(2):169-171.
doi: 10.1086/625720     URL    
[4] Ericson D B, Ewing M, Heezen B C.Turbidity currents and sediments in North Atlantic[J]. AAPG Bulletin,1952,36(3):489-511.
doi: 10.3406/geo.1951.13171     URL    
[5] Kuenen P H, Migliorini C I.Turbidity currents as a cause of graded bedding[J]. Journal of Geology,1950,58(2):91-127.
doi: 10.1086/625710     URL    
[6] Kuenen P H.Turbidity currents as the cause of glacial varves[J].Journal of Geology,1951,59(5):507-508.
doi: 10.1086/625895     URL    
[7] Parker G, Garcia M, Fukushima Y, et al.Experiments on turbidity currents over an erodible bed[J]. Journal of Hydraulic Research,1987,25(1):123-147.
doi: 10.1080/00221688709499292     URL    
[8] Huang H, Imran J, Pirmez C.Numerical modeling of poorly sorted depositional turbidity currents[J]. Journal of Geophysical Research: Oceans(1978-2012), 2007,112(C1):141-143.
doi: 10.1029/2006JC003778     URL    
[9] Talling P J, Masson D G, Sumner E J, et al.Subaqueous sediment density flows: Depositional processes and deposit types[J]. Sedimentology,2012,59(7):1 937-2 003.
doi: 10.1111/j.1365-3091.2012.01353.x     URL    
[10] George D.1. Submarine valleys on the Pacific Coast of the United States. 2. Standard geodetic data. 3. Early Spanish voyages of discovery on the coast of California[J]. Journal of Medical Microbiology,1982,15(2):163-172.
doi: 10.1099/00222615-15-2-163     URL     pmid: 7143427
[11] Smith W S.The submarine valleys of the California coast[J]. Science,1902,15(382):670.
doi: 10.1126/science.15.382.670     URL     pmid: 17841657
[12] Xu Jingping.Accomplishments and challenges in measuring turbidity currents in submarine canyons[J]. Advances in Earth Science,2013,28(5):552-558.
[徐景平. 科学与技术并进——近20年来海底峡谷浊流观测的成就和挑战[J]. 地球科学进展, 2013,28(5):552-558.]
doi: 10.11867/j.issn.1001-8166.2013.05.0552     URL    
[13] Normark W R, Hess G R, Stow D A V, et al. Sediment waves on the monterey fan levee: A preliminary physical interpretation[J]. Marine Geology,1980,37(1):1-18.
doi: 10.1016/0025-3227(80)90009-2     URL    
[14] Wynn R B, Masson D G, Stow D A V, et al. Turbidity current sediment waves on the submarine slopes of the western Canary Islands[J]. Marine Geology,2000,163(1/4):185-198.
doi: 10.1016/S0025-3227(99)00101-2     URL    
[15] Cartigny M J B, Postma G, van den Berg J H, et al. A comparative study of sediment waves and cyclic steps based on geometries, internal structures and numerical modeling[J]. Marine Geology,2011,280(1/4):40-56.
doi: 10.1016/j.margeo.2010.11.006     URL    
[16] Zhong G, Cartigny M J B, Kuang Z, et al. Cyclic steps along the South Taiwan Shoal and West Penghu submarine canyons on the northeastern continental slope of the South China Sea[J]. Geological Society of America Bulletin,2015,127(5/6):804-824.
doi: 10.1130/B31003.1     URL    
[17] Xu J P, Noble M A.Currents in Monterey submarine canyon[J]. Journal of Geophysical Research Oceans,2009,114:3 004.DOI:10.1029/2008JC004992.
doi: 10.1029/2008JC004992     URL    
[18] Xu J P.Normalized velocity profiles of field-measured turbidity currents[J]. Geology,2010,38(6):563-566.
doi: 10.1130/G30582.1     URL    
[19] Xu Jingping.Turbidity current research in the past century: An overview[J]. Periodical of Ocean University of China,2014,(10):98-105.
[徐景平. 海底浊流研究百年回顾[J]. 中国海洋大学学报, 2014,(10):98-105.]
[20] Middleton G V, Hampton M A.Sediment gravity flows: Mechanics of flow and deposition[M]∥Middleton G V, Bouma A H,eds. Turbidites and Deep-Sedimentation.Los Angels, California: SEPM Pacific Section,1973:1-38.
[21] Lowe D R.Sediment gravity flows: II. Depositional models with special reference to the deposits of high-density turbidity currents[J]. Journal of Sedimentary Research,1982,52(6):343-361.
doi: 10.1306/212F7F31-2B24-11D7-8648000102C1865D     URL    
[22] Lowe D R.Sediment gravity flows: Their classification and some problems of application to natural flows[J].Journal of Sedimentary Petrology,1982,52(1):279-297.
doi: 10.2110/pec.79.27.0075     URL    
[23] Mulder T, Syvitski J P M, Migeon S, et al. Marine hyperpycnal flows: Initiation, behavior and related deposits. A review[J]. Marine & Petroleum Geology,2003,20(6/7/8):861-882.
[24] Shanmugam G.Ten turbidite myths[J]. Earth-Science Reviews,2002,58(3/4):311-341.
doi: 10.1016/S0012-8252(02)00065-X     URL    
[25] Cartigny M J B, Ventra D, Postma G, et al. Morphodynamics and sedimentary structures of bedforms under supercritical-flow conditions: New insights from flume experiments[J]. Sedimentology, 2012:712-748. DOI:10.1111/sed.12076.
doi: 10.1111/sed.12076     URL    
[26] Hager W H, Wanoschek R.Hydraulic jump in triangular channel[J]. Journal of Hydraulic Research,1987,25(5):549-564.
doi: 10.1080/00221688709499255     URL    
[27] Fildani A, Normark W R, Kostic S, et al.Channel formation by flow stripping: Large-scale scour features along the Monterey East Channel and their relation to sediment waves[J]. Sedimentology,2006,53(6):1 265-1 287.
doi: 10.1111/j.1365-3091.2006.00812.x     URL    
[28] Symons W O, Sumner E J, Talling P J, et al.Large-scale sediment waves and scours on the modern seafloor and their implications for the prevalence of supercritical flows[J]. Marine Geology,2016,371:130-148. DOI:10.1016/j.margeo.2015.11.009.
doi: 10.1016/j.margeo.2015.11.009     URL    
[29] Macdonald H A, Wynn R B, Huvenne V A I, et al. New insights into the morphology, fill, and remarkable longevity (>0.2 m.y.) of modern deep-water erosional scours along the northeast Atlantic margin[J]. Geosphere,2011,7(4):845-867.
doi: 10.1130/GES00611.1     URL    
[30] Kostic S.Modeling of submarine cyclic steps: Controls on their formation, migration, and architecture[J]. Geosphere,2011,7(2):294-304.
doi: 10.1130/GES00601.1     URL    
[31] Kostic S.Upper flow regime bedforms on levees and continental slopes: Turbidity current flow dynamics in response to fine-grained sediment waves[J]. Geosphere,2014,10(6):1 094-1 103.
doi: 10.1130/GES01015.1     URL    
[32] Hamilton P B, Strom K B, Hoyal D C J D. Hydraulic and sediment transport properties of autogenic avulsion cycles on submarine fans with supercritical distributaries[J]. Journal of Geophysical Research Earth Surface,2015,120(7):1 369-1 389.
doi: 10.1002/2014JF003414     URL    
[33] Postma G, Hoyal D C, Abreu V, et al.Morphodynamics of Supercritical Turbidity Currents in the Channel-Lobe Transition Zone: Submarine Mass Movements and Their Consequences, 2016[C].Springer International Publishing, 2016:469-478. DOI:10.1007/978-3-319-20979-1_47.
[34] Cantero M I, Cantelli A, Pirmez C, et al.Emplacement of massive turbidites linked to extinction of turbulence in turbidity currents[J]. Nature Geoscience, 2011,5(1):42-45.
doi: 10.1038/ngeo1320     URL    
[35] Cartigny M J B, Ventra D, Postma G, et al. Morphodynamics and sedimentary structures of bedforms under supercritical-flow conditions: New insights from flume experiments[J]. Sedimentology, 2014,61(3):712-748.
doi: 10.1111/sed.12076     URL    
[36] Covault J A, Kostic S, Paull C K, et al.Submarine channel initiation, filling and maintenance from sea-floor geomorphology and morphodynamic modelling of cyclic steps[J]. Sedimentology,2014,61(4):1 031-1 054.
doi: 10.1111/sed.12084     URL    
[37] Covault J A, Kostic S, Paull C K, et al.Cyclic steps and related supercritical bedforms: Building blocks of deep-water depositional systems, western North America[J]. Marine Geology,2016.DOI: 10.1016/j.margeo.2016.12.009.
doi: 10.1016/j.margeo.2016.12.009     URL    
[38] Mutti E, Normark W R.An Integrated Approach to the Study of Turbidite Systems[M]. New York: Springer,1991:75-106. DOI:10.1007/978-1-4684-8276-8_4.
[39] Wynn R B, Kenyon N H, Masson D G, et al.Characterization and recognition of deep-water channel—Lobe transition zones[J]. Aapg Bulletin,2002,86(8):1 441-1 462.
doi: 10.1306/61EEDCC4-173E-11D7-8645000102C1865D     URL    
[40] Postma G, Cartigny M J B. Supercritical and subcritical turbidity currents and their deposits—A synthesis[J]. Geology,2014,42(11):987-990.
doi: 10.1130/G35957.1     URL    
[41] Wynn R B, Stow D A V. Classification and characterisation of deep-water sediment waves[J]. Marine Geology,2002,192(1/3):7-22.
doi: 10.1016/S0025-3227(02)00547-9     URL    
[42] Mutti E, Normark W R.Comparing Examples of Modern and Ancient Turbidite Systems: Problems and Concepts[M]. Netherlands:Springer, 1987:1-38.
[43] Postma G, Cartigny M, Kleverlaan K.Structureless, coarse-tail graded Bouma Ta formed by internal hydraulic jump of the turbidity current?[J]. Sedimentary Geology,2009,219(1/4):1-6.
doi: 10.1016/j.sedgeo.2009.05.018     URL    
[44] Postma G, Kleverlaan K, Cartigny M J B. Recognition of cyclic steps in sandy and gravelly turbidite sequences, and consequences for the Bouma facies model[J]. Sedimentology,2015,61(7):2 268-2 290.
doi: 10.1111/sed.12135     URL    
[45] Bouma A H.Sedimentology of Some Flysch Deposits: A Graphic Approach to Facies Interpretation[M].New York:Elsevier, 1962:168.
[46] Migeon S, Savoye B, Faugeres J C.Quaternary development of migrating sediment waves in the Var deep-sea fan: Distribution, growth pattern, and implication for levee evolution[J]. Sedimentary Geology,2000,133(3/4):265-293.
doi: 10.1016/S0037-0738(00)00043-9     URL    
[47] Normark W R, Piper D J W, Posamentier H, et al. Variability in form and growth of sediment waves on turbidite channel levees[J]. Marine Geology,2002,192(1):23-58.
doi: 10.1016/S0025-3227(02)00548-0     URL    
[48] Pemberton E A L, Hubbard S M, Fildani A, et al. The stratigraphic expression of decreasing confinement along a deep-water sediment routing system: Outcrop example from southern Chile[J]. Geosphere,2016,12:S1231-S1233. DOI:10.1130/GES01233.1.
doi: 10.1130/GES01233.1     URL    
[49] Barton M D, Craig P A, Prather B E, et al.Facies architecture of channel-levee deposits, Lago Nordenskjold and Laguna Mellizas Sur, Cerro Toro Formation, Chile[J]. AAPG Studies in Geology,2007,56:157-161.
URL    
[50] Campion K M, Dixon B T, Scott E D.Sediment waves and depositional implications for fine-grained rocks in the Cerro Toro Formation (upper Cretaceous), Silla Syncline, Chile[J]. Marine & Petroleum Geology,2011,28(3):761-784.
doi: 10.1016/j.marpetgeo.2010.07.002     URL    
[51] Lowe D R.Suspended-load fallout rate as an independent variable in the analysis of current structures[J]. Sedimentology,2010,35(5):765-776.
doi: 10.1111/j.1365-3091.1988.tb01250.x     URL    
[52] Sumner E J, Amy L A, Talling P J.Deposit structure and processes of sand deposition from decelerating sediment suspensions[J]. Journal of Sedimentary Research,2008,78(7/8):529-547.
doi: 10.2110/jsr.2008.062     URL    
[53] Zoltn S, Lowe D R.Textural trends in turbidites and slurry beds from the Oligocene flysch of the East Carpathians, Romania[J]. Sedimentology,2004,51(5):945-972.
doi: 10.1111/j.1365-3091.2004.00653.x     URL    
[54] Amy L A, Talling P J.Anatomy of turbidites and linked debrites based on long distance (120 km×30 km) bed correlation, Marnoso Arenacea Formation, Northern Apennines, Italy[J]. Sedimentology,2010,53(1):161-212.
doi: 10.1111/j.1365-3091.2005.00756.x     URL    
[55] Lucchi F R, Valmori E.Basin-wide turbidites in a Miocene, over-supplied deep-sea plain: A geometrical analysis[J]. Sedimentology,2010,27(3):241-270.
doi: 10.1111/j.1365-3091.1980.tb01177.x     URL    
[56] Sly P D, Cahill P, Willet K, et al.Reconstruction of turbidity currents in Amazon Channel[J]. Marine & Petroleum Geology,2003,20(6/8):823-849.
doi: 10.1016/j.marpetgeo.2003.03.005     URL     pmid: 2539580
[57] Kostic S, Parker G.The response of turbidity currents to a canyon-fan transition: Internal hydraulic jumps and depositional signatures[J]. Journal of Hydraulic Research, 2006,44(5):631-653.
doi: 10.1080/00221686.2006.9521713     URL    
[58] Wang P.The South China Sea[J]. Developments in Paleoenvironmental Research, 2009,30:165-178.
[59] Fox P J, Heezen B C, Harian A M.Abyssal anti-dunes[J]. Nature, 1968,220(5 166):470-472.
doi: 10.1038/220470a0     URL    
[60] Damuth J E.Migrating sediment waves created by turbidity currents in the northern South China Basin[J]. Geology,1979,7(11):520-523.
doi: 10.1130/0091-7613(1979)7<520:MSWCBT>2.0.CO;2     URL    
[61] Ding Weiwei, Li Jiabao, Han Xiqiu, et al.Geomorphology,grain-size charicteristics,matter source and forming mechanism of sediment waves on the ocean bottom of the northeast South China Sea[J]. Acta Oceanologica Sinica, 2010,32(2):96-105.
[丁巍伟, 李家彪, 韩喜球,等. 南海东北部海底沉积物波的形态、粒度特征及物源、成因分析[J]. 海洋学报, 2010, 32(2):96-105.]
URL    
[62] Gong C, Wang Y, Peng X, et al.Sediment waves on the South China Sea slope off southwestern Taiwan: Implications for the intrusion of the Northern Pacific deep water into the South China Sea[J]. Marine & Petroleum Geology, 2012,32(1):95-109.
doi: 10.1016/j.marpetgeo.2011.12.005     URL    
[63] Jiang T, Xie X, Wang Z, et al.Seismic features and origin of sediment waves in the Qiongdongnan Basin, northern South China Sea[J]. Marine Geophysical Research,2013,34(3/4):281-294.
doi: 10.1007/s11001-013-9198-0     URL    
[64] Kuang Z, Zhong G, Wang L, et al.Channel-related sediment waves on the eastern slope offshore Dongsha Islands,northern South China Sea[J]. Journal of Asian Earth Sciences, 2014,79(2):540-551.
doi: 10.1016/j.jseaes.2012.09.025     URL    
[65] Wang Hairong, Wang Yingmin, Qiu Yan,et al.Development and its tectonic activity’s origin of turbidity current sediment wave in Manila Trench, the South China Sea[J]. Acta Sedimentologica Sinica,2008,26(1):39-45.
[王海荣, 王英民, 邱燕,等. 南海东北部台湾浅滩陆坡的浊流沉积物波的发育及其成因的构造控制[J]. 沉积学报, 2008, 26(1):39-45.]
[66] Zhong Guangfa, Li Qianyu, Hao Hujun, et al.Current status of deep-water sediment wave studies and the South China Sea perspectives[J].Advances in Earth Science,2007,22(9):907-913.
[钟广法, 李前裕, 郝沪军,等. 深水沉积物波及其在南海研究之现状[J]. 地球科学进展, 2007, 22(9):907-913.]
doi: 10.3321/j.issn:1001-8166.2007.09.004     URL    
[67] Migeon S, Savoye B, Zanella E, et al.Detailed seismic-reflection and sedimentary study of turbidite sediment waves on the Var Sedimentary Ridge (SE France): Significance for sediment transport and deposition and for the mechanisms of sediment-wave construction[J]. Marine & Petroleum Geology, 2001,18(2):179-208.
[1] 王大伟,孙悦,司少文,吴时国. 海底周期阶坎研究进展与挑战[J]. 地球科学进展, 2020, 35(9): 890-901.
[2] 秦磊,毛金昕,倪凤玲,徐少华,李小刚,蔡长娥,尚文亮,刘家恺. 浅谈深水块体搬运复合体的结构、成因分类以及识别方法[J]. 地球科学进展, 2020, 35(6): 632-642.
[3] 傅焓埔, 刘群, 胡修棉. 水下沉积物重力流与海底扇相模式研究进展[J]. 地球科学进展, 2020, 35(2): 124-136.
[4] 罗中原,李江涛,贾国东. 深水珊瑚的食物及其地球化学意义[J]. 地球科学进展, 2019, 34(12): 1234-1242.
[5] 李向东,陈海燕,陈洪达. 鄂尔多斯盆地西缘桌子山地区上奥陶统拉什仲组深水复合流沉积[J]. 地球科学进展, 2019, 34(12): 1301-1315.
[6] 兰晨, 陈敬安, 曾艳, 郭建阳, 张润宇, 王敬富, 杨海全, 计永雪. 深水湖泊增氧理论与技术研究进展[J]. 地球科学进展, 2015, 30(10): 1172-1181.
[7] 徐景平. 科学与技术并进——近20年来海底峡谷浊流观测的成就和挑战[J]. 地球科学进展, 2013, 28(5): 552-558.
[8] 高红灿,郑荣才,魏钦廉,陈发亮,陈 君,朱登锋,刘 云. 碎屑流与浊流的流体性质及沉积特征研究进展[J]. 地球科学进展, 2012, 27(8): 815-827.
[9] 李相博,付金华,陈启林,刘显阳,刘化清,郭彦如,完颜容,廖建波,魏立花,黄军平. 砂质碎屑流概念及其在鄂尔多斯盆地延长组深水沉积研究中的应用[J]. 地球科学进展, 2011, 26(3): 286-294.
[10] 李云,郑荣才,朱国金,胡晓庆. 沉积物重力流研究进展综述[J]. 地球科学进展, 2011, 26(2): 157-165.
[11] 吴时国,孙运宝,孙启良,董冬冬,袁圣强,马玉波. 深水盆地中大型侵入砂岩的地震识别及其成因机制探讨[J]. 地球科学进展, 2008, 23(6): 562-569.
[12] 钟广法,李前裕,郝沪军,王嘹亮. 深水沉积物波及其在南海研究之现状[J]. 地球科学进展, 2007, 22(9): 907-913.
[13] 周蒂,孙珍,陈汉宗. 世界著名深水油气盆地的构造特征及对我国南海北部深水油气勘探的启示[J]. 地球科学进展, 2007, 22(6): 561-572.
[14] 何家雄,施小斌,夏斌,刘海龄,阎贫,姚永坚,张树林. 南海北部边缘盆地油气勘探现状与深水油气资源前景[J]. 地球科学进展, 2007, 22(3): 261-270.
[15] 庞雄,陈长民,吴梦霜,何敏,吴湘杰. 珠江深水扇系统沉积和周边重要地质事件[J]. 地球科学进展, 2006, 21(8): 793-799.
阅读次数
全文


摘要