Please wait a minute...
img img
高级检索
地球科学进展  2018, Vol. 33 Issue (1): 52-65    DOI: 10.11867/j.issn.1001-8166.2018.01.0052
综述与评述     
浊流及其相关的深水底形研究进展
王大伟1(), 白宏新1,2, 吴时国1,2,3
1.中国科学院深海科学与工程研究所,海南省海底资源与探测技术重点实验室,海南 三亚 572000
2.中国科学院大学,北京 100049
3.青岛海洋科学与技术国家实验室,山东 青岛 266237
The Research Progress of Turbidity Currents and Related Deep-water Bedforms
Dawei Wang1(), Hongxin Bai1,2, Shiguo Wu1,2,3
1.Laboratory of Marine Geophysics and Georesource, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
2.University of Chinese Academy of Sciences, Beijing 100049,China
3.Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
 全文: PDF(11161 KB)   HTML
摘要:

从19世纪发现海底浊流现象开始,这一重要的深水沉积过程就引起了地学界的广泛关注。研究发现深水浊流成因的周期阶坎等超临界流底形广泛分布于海底,且与鲍马定义的浊积岩序列有着密切联系。由于浊流事件的不可预测、破坏力强,直接观测设备和技术也比较匮乏,造成对浊流事件进行直接海底观测的工作较少。总结了国内外浊流及其相关底形的研究成果,对浊流分类、底形的形成与演化进行了讨论,列举了国内外几个典型深水区浊流及其相关超临界流底形的研究案例,包括实验、数值模拟和深水底形研究,详细介绍了周期阶坎这一主要的超临界流底形,讨论了周期阶坎的形成与演化过程及其与鲍马序列的对应关系。最后,对浊流及其相关的超临界流底形研究进行了展望。

关键词: 深水浊流底形周期阶坎鲍马序列    
Abstract:

Since turbidity current was reported in the 19th century, its flow dynamics, depositional processes and products have drawn much attention of geoscience community. In the last decades, with the help of rapid development of geophysical technology in deep-water areas, superficial bedforms formed by turbidity currents like cyclic steps have been widely documented on the seafloor, and they have been interpreted to be closely related to turbidite facies defined by the Bouma sequence. However, there is still a lack of direct observation on turbidity currents due to difficulties in the design and deployment of flow-measuring instruments under the sea. Such difficulties also result in much uncertainties in the explanations for the formation of bedforms and related flow processes. This paper summarized and discussed current research status of turbidity-currents classification, the formation and evolution of bedforms. Examples of supercritical-bedform studies using various methods such as experiments, numerical simulation, bathymetric data and seismic data, were shown in this paper. As one of main supercritical flow bedforms, cyclic steps were described in detail in this paper, including its formation, evolution and relationship with Bouma sequence. The variations in initial bed morphology and hydrodynamic parameters are responsible for the changes in the shapes of bedforms. Turbidites formed under different hydrodynamic conditions correspond to different units of Bouma sequence. Not all turbidity events can form a complete Bouma sequence. Therefore, traditional Bouma sequence cannot be applied to all turbidite studies. A more complete turbidite facies model must be established through studies from modern deep-sea sediments, outcrops, physical and numerical simulations. Additionally, turbidity currents and related supercritical bedforms are receiving more and more attention. They are important components of understanding the dynamic evolution of deep-water continental slope. The study of cyclic steps and other bedforms related to turbidity currents not only helps to characterize flow dynamics, but also provides a theoretical basis for the research of turbidite reservoirs. Finally, we proposed future research directions of turbidity currents and their related supercritical bedforms.

Key words: Deep-water    Turbidity currents    Bedform    Cyclic steps    Bouma sequence.
收稿日期: 2017-09-30 出版日期: 2018-03-06
ZTFLH:  P736.21  
基金资助: 国家自然科学基金项目“琼东南盆地深水重力流沉积旋回演化规律与形成机理”(编号:41576049)和“南海珠江口外海底峡谷内底形沉积结构与形成机理”(编号:41666002)资助
作者简介:

作者简介:王大伟(1976-),男,黑龙江绥化人,副研究员,主要从事地震沉积学、深水油气和海洋地质灾害研究.E-mail:wangdawei@idsse.ac.cn

服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王大伟
白宏新
吴时国

引用本文:

王大伟, 白宏新, 吴时国. 浊流及其相关的深水底形研究进展[J]. 地球科学进展, 2018, 33(1): 52-65.

Dawei Wang, Hongxin Bai, Shiguo Wu. The Research Progress of Turbidity Currents and Related Deep-water Bedforms. Advances in Earth Science, 2018, 33(1): 52-65.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2018.01.0052        http://www.adearth.ac.cn/CN/Y2018/V33/I1/52

图1  以雷诺数和维德尼科夫数为依据的超临界流底形概念上的细分图[25]
图2  不对称周期阶坎和密度弗劳德数(Frd)变化示意图(从左至右)[15]
图3  水道—朵体过渡带超临界浊流内水跃过程及其沉积形成的底形(据参考文献[14,39~41]修改) (a)小体积、富砂流体,上面是流动过程,下面是沉积物;(b)大体积、砂泥混合流体,上面是流动过程,下面是沉积物,C-C’和D-D’是(c)和(d)示意图的位置(据参考文献[39]修改);(c)水道—朵体过渡带平面图(据参考文献[40]修改);(d)周期阶坎沉积的浊积岩相
图4  超临界流底形水槽实验[35] (a)Utrecht University的Eurotank水槽实验室可循环水槽示意图,长12 m,宽0.48 m,高0.6 m;(b)水槽中正在流动的流体形成了周期阶坎底形,水槽下方灰色的是再循环管道;(c)从水槽头部向下游看到的周期阶坎底形形成环境
图5  单向超临界流流动过程及其底形结构和演化的4个阶段示意图[35] (a) 稳定的逆行沙丘; (b)不稳定逆行沙丘; (c)流槽和冲坑; (d)周期阶坎底形
图6  周期阶坎演化的控制因素[37] (a)基础方案:颗粒大小80 μm,抗侵蚀能力p=0.04; p的范围为0~1,分别对应固结岩床到未固结松散沉积物;(c)~(h)的条件除了选中的控制因素外,其他和(a)基本一致;底形演化(绿线)沿初始陆坡(红线)变化;(b)基础方案弗劳德数向下游的变化情况;(c)初始陆坡的影响(S0从1.3%增加到2.5%);(d)河床孔隙度的影响(λ从0.5增加到0.7);(e)悬浮沉积物浓度的影响(C0从0.01增加至0.03);(f)沉积物提供的影响(抗侵蚀能力p从0.04增加至0.06);(g)坡折带位置的影响(在模拟域内从6 km增加至15 km);(h)流体弗劳德数的影响(流体深度从20 m增加至100 m)
图7  周期阶坎波列分布图(a)典型峡谷1水深及周期阶坎波列分布图;(b)典型峡谷2水深及波列分布图[16]
图8  单相和双相悬浮流三维底形稳定性图[43]
图9  试验中观察到的单相悬浮流流动过程(a)和野外观察到的浊积岩(b)[43] 浊积岩包括:递变层理段Ta(2)、平行层理段Tb(1和3)、爬升波状交错层理段(4)和被牵引毯沉积覆盖的波状层理段(5)
图10  高浓度浊流(类型一和类型二)和低浓度浊流(类型三和类型四)流体动力学和大尺度构造特征,流动方向从左向右[40]
图11  周期阶坎底形上的沉积相[40]
[1] Milne J. Sub-oceanic changes (continued)[J]. Geographical Journal,1897,10(3):259-285.
doi: 10.2307/1774771
[2] Heezen B C, Ewing W M.Turbidity currents and submarine slumps, and the 1929 Grand Banks earthquake[J]. American Journal of Science,1952,250(12):849-873.
doi: 10.2475/ajs.250.12.849
[3] Pettijohn F J.Turbidity currents and graywackes—A discussion[J]. Journal of Geology,1950,58(2):169-171.
doi: 10.1086/625720
[4] Ericson D B, Ewing M, Heezen B C.Turbidity currents and sediments in North Atlantic[J]. AAPG Bulletin,1952,36(3):489-511.
doi: 10.3406/geo.1951.13171
[5] Kuenen P H, Migliorini C I.Turbidity currents as a cause of graded bedding[J]. Journal of Geology,1950,58(2):91-127.
doi: 10.1086/625710
[6] Kuenen P H.Turbidity currents as the cause of glacial varves[J].Journal of Geology,1951,59(5):507-508.
doi: 10.1086/625895
[7] Parker G, Garcia M, Fukushima Y, et al.Experiments on turbidity currents over an erodible bed[J]. Journal of Hydraulic Research,1987,25(1):123-147.
doi: 10.1080/00221688709499292
[8] Huang H, Imran J, Pirmez C.Numerical modeling of poorly sorted depositional turbidity currents[J]. Journal of Geophysical Research: Oceans(1978-2012), 2007,112(C1):141-143.
doi: 10.1029/2006JC003778
[9] Talling P J, Masson D G, Sumner E J, et al.Subaqueous sediment density flows: Depositional processes and deposit types[J]. Sedimentology,2012,59(7):1 937-2 003.
doi: 10.1111/j.1365-3091.2012.01353.x
[10] George D.1. Submarine valleys on the Pacific Coast of the United States. 2. Standard geodetic data. 3. Early Spanish voyages of discovery on the coast of California[J]. Journal of Medical Microbiology,1982,15(2):163-172.
doi: 10.1099/00222615-15-2-163 pmid: 7143427
[11] Smith W S.The submarine valleys of the California coast[J]. Science,1902,15(382):670.
doi: 10.1126/science.15.382.670 pmid: 17841657
[12] Xu Jingping.Accomplishments and challenges in measuring turbidity currents in submarine canyons[J]. Advances in Earth Science,2013,28(5):552-558.[徐景平. 科学与技术并进——近20年来海底峡谷浊流观测的成就和挑战[J]. 地球科学进展, 2013,28(5):552-558.]
doi: 10.11867/j.issn.1001-8166.2013.05.0552
[13] Normark W R, Hess G R, Stow D A V, et al. Sediment waves on the monterey fan levee: A preliminary physical interpretation[J]. Marine Geology,1980,37(1):1-18.
doi: 10.1016/0025-3227(80)90009-2
[14] Wynn R B, Masson D G, Stow D A V, et al. Turbidity current sediment waves on the submarine slopes of the western Canary Islands[J]. Marine Geology,2000,163(1/4):185-198.
doi: 10.1016/S0025-3227(99)00101-2
[15] Cartigny M J B, Postma G, van den Berg J H, et al. A comparative study of sediment waves and cyclic steps based on geometries, internal structures and numerical modeling[J]. Marine Geology,2011,280(1/4):40-56.
doi: 10.1016/j.margeo.2010.11.006
[16] Zhong G, Cartigny M J B, Kuang Z, et al. Cyclic steps along the South Taiwan Shoal and West Penghu submarine canyons on the northeastern continental slope of the South China Sea[J]. Geological Society of America Bulletin,2015,127(5/6):804-824.
doi: 10.1130/B31003.1
[17] Xu J P, Noble M A.Currents in Monterey submarine canyon[J]. Journal of Geophysical Research Oceans,2009,114:3 004.DOI:10.1029/2008JC004992.
doi: 10.1029/2008JC004992
[18] Xu J P.Normalized velocity profiles of field-measured turbidity currents[J]. Geology,2010,38(6):563-566.
doi: 10.1130/G30582.1
[19] Xu Jingping.Turbidity current research in the past century: An overview[J]. Periodical of Ocean University of China,2014,(10):98-105.[徐景平. 海底浊流研究百年回顾[J]. 中国海洋大学学报, 2014,(10):98-105.]
[20] Middleton G V, Hampton M A.Sediment gravity flows: Mechanics of flow and deposition[M]∥Middleton G V, Bouma A H,eds. Turbidites and Deep-Sedimentation.Los Angels, California: SEPM Pacific Section,1973:1-38.
[21] Lowe D R.Sediment gravity flows: II. Depositional models with special reference to the deposits of high-density turbidity currents[J]. Journal of Sedimentary Research,1982,52(6):343-361.
doi: 10.1306/212F7F31-2B24-11D7-8648000102C1865D
[22] Lowe D R.Sediment gravity flows: Their classification and some problems of application to natural flows[J].Journal of Sedimentary Petrology,1982,52(1):279-297.
doi: 10.2110/pec.79.27.0075
[23] Mulder T, Syvitski J P M, Migeon S, et al. Marine hyperpycnal flows: Initiation, behavior and related deposits. A review[J]. Marine & Petroleum Geology,2003,20(6/7/8):861-882.
[24] Shanmugam G.Ten turbidite myths[J]. Earth-Science Reviews,2002,58(3/4):311-341.
doi: 10.1016/S0012-8252(02)00065-X
[25] Cartigny M J B, Ventra D, Postma G, et al. Morphodynamics and sedimentary structures of bedforms under supercritical-flow conditions: New insights from flume experiments[J]. Sedimentology, 2012:712-748. DOI:10.1111/sed.12076.
doi: 10.1111/sed.12076
[26] Hager W H, Wanoschek R.Hydraulic jump in triangular channel[J]. Journal of Hydraulic Research,1987,25(5):549-564.
doi: 10.1080/00221688709499255
[27] Fildani A, Normark W R, Kostic S, et al.Channel formation by flow stripping: Large-scale scour features along the Monterey East Channel and their relation to sediment waves[J]. Sedimentology,2006,53(6):1 265-1 287.
doi: 10.1111/j.1365-3091.2006.00812.x
[28] Symons W O, Sumner E J, Talling P J, et al.Large-scale sediment waves and scours on the modern seafloor and their implications for the prevalence of supercritical flows[J]. Marine Geology,2016,371:130-148. DOI:10.1016/j.margeo.2015.11.009.
doi: 10.1016/j.margeo.2015.11.009
[29] Macdonald H A, Wynn R B, Huvenne V A I, et al. New insights into the morphology, fill, and remarkable longevity (>0.2 m.y.) of modern deep-water erosional scours along the northeast Atlantic margin[J]. Geosphere,2011,7(4):845-867.
doi: 10.1130/GES00611.1
[30] Kostic S.Modeling of submarine cyclic steps: Controls on their formation, migration, and architecture[J]. Geosphere,2011,7(2):294-304.
doi: 10.1130/GES00601.1
[31] Kostic S.Upper flow regime bedforms on levees and continental slopes: Turbidity current flow dynamics in response to fine-grained sediment waves[J]. Geosphere,2014,10(6):1 094-1 103.
doi: 10.1130/GES01015.1
[32] Hamilton P B, Strom K B, Hoyal D C J D. Hydraulic and sediment transport properties of autogenic avulsion cycles on submarine fans with supercritical distributaries[J]. Journal of Geophysical Research Earth Surface,2015,120(7):1 369-1 389.
doi: 10.1002/2014JF003414
[33] Postma G, Hoyal D C, Abreu V, et al.Morphodynamics of Supercritical Turbidity Currents in the Channel-Lobe Transition Zone: Submarine Mass Movements and Their Consequences, 2016[C].Springer International Publishing, 2016:469-478. DOI:10.1007/978-3-319-20979-1_47.
[34] Cantero M I, Cantelli A, Pirmez C, et al.Emplacement of massive turbidites linked to extinction of turbulence in turbidity currents[J]. Nature Geoscience, 2011,5(1):42-45.
doi: 10.1038/ngeo1320
[35] Cartigny M J B, Ventra D, Postma G, et al. Morphodynamics and sedimentary structures of bedforms under supercritical-flow conditions: New insights from flume experiments[J]. Sedimentology, 2014,61(3):712-748.
doi: 10.1111/sed.12076
[36] Covault J A, Kostic S, Paull C K, et al.Submarine channel initiation, filling and maintenance from sea-floor geomorphology and morphodynamic modelling of cyclic steps[J]. Sedimentology,2014,61(4):1 031-1 054.
doi: 10.1111/sed.12084
[37] Covault J A, Kostic S, Paull C K, et al.Cyclic steps and related supercritical bedforms: Building blocks of deep-water depositional systems, western North America[J]. Marine Geology,2016.DOI: 10.1016/j.margeo.2016.12.009.
doi: 10.1016/j.margeo.2016.12.009
[38] Mutti E, Normark W R.An Integrated Approach to the Study of Turbidite Systems[M]. New York: Springer,1991:75-106. DOI:10.1007/978-1-4684-8276-8_4.
[39] Wynn R B, Kenyon N H, Masson D G, et al.Characterization and recognition of deep-water channel—Lobe transition zones[J]. Aapg Bulletin,2002,86(8):1 441-1 462.
doi: 10.1306/61EEDCC4-173E-11D7-8645000102C1865D
[40] Postma G, Cartigny M J B. Supercritical and subcritical turbidity currents and their deposits—A synthesis[J]. Geology,2014,42(11):987-990.
doi: 10.1130/G35957.1
[41] Wynn R B, Stow D A V. Classification and characterisation of deep-water sediment waves[J]. Marine Geology,2002,192(1/3):7-22.
doi: 10.1016/S0025-3227(02)00547-9
[42] Mutti E, Normark W R.Comparing Examples of Modern and Ancient Turbidite Systems: Problems and Concepts[M]. Netherlands:Springer, 1987:1-38.
[43] Postma G, Cartigny M, Kleverlaan K.Structureless, coarse-tail graded Bouma Ta formed by internal hydraulic jump of the turbidity current?[J]. Sedimentary Geology,2009,219(1/4):1-6.
doi: 10.1016/j.sedgeo.2009.05.018
[44] Postma G, Kleverlaan K, Cartigny M J B. Recognition of cyclic steps in sandy and gravelly turbidite sequences, and consequences for the Bouma facies model[J]. Sedimentology,2015,61(7):2 268-2 290.
doi: 10.1111/sed.12135
[45] Bouma A H.Sedimentology of Some Flysch Deposits: A Graphic Approach to Facies Interpretation[M].New York:Elsevier, 1962:168.
[46] Migeon S, Savoye B, Faugeres J C.Quaternary development of migrating sediment waves in the Var deep-sea fan: Distribution, growth pattern, and implication for levee evolution[J]. Sedimentary Geology,2000,133(3/4):265-293.
doi: 10.1016/S0037-0738(00)00043-9
[47] Normark W R, Piper D J W, Posamentier H, et al. Variability in form and growth of sediment waves on turbidite channel levees[J]. Marine Geology,2002,192(1):23-58.
doi: 10.1016/S0025-3227(02)00548-0
[48] Pemberton E A L, Hubbard S M, Fildani A, et al. The stratigraphic expression of decreasing confinement along a deep-water sediment routing system: Outcrop example from southern Chile[J]. Geosphere,2016,12:S1231-S1233. DOI:10.1130/GES01233.1.
doi: 10.1130/GES01233.1
[49] Barton M D, Craig P A, Prather B E, et al.Facies architecture of channel-levee deposits, Lago Nordenskjold and Laguna Mellizas Sur, Cerro Toro Formation, Chile[J]. AAPG Studies in Geology,2007,56:157-161.
[50] Campion K M, Dixon B T, Scott E D.Sediment waves and depositional implications for fine-grained rocks in the Cerro Toro Formation (upper Cretaceous), Silla Syncline, Chile[J]. Marine & Petroleum Geology,2011,28(3):761-784.
doi: 10.1016/j.marpetgeo.2010.07.002
[51] Lowe D R.Suspended-load fallout rate as an independent variable in the analysis of current structures[J]. Sedimentology,2010,35(5):765-776.
doi: 10.1111/j.1365-3091.1988.tb01250.x
[52] Sumner E J, Amy L A, Talling P J.Deposit structure and processes of sand deposition from decelerating sediment suspensions[J]. Journal of Sedimentary Research,2008,78(7/8):529-547.
doi: 10.2110/jsr.2008.062
[53] Zoltn S, Lowe D R.Textural trends in turbidites and slurry beds from the Oligocene flysch of the East Carpathians, Romania[J]. Sedimentology,2004,51(5):945-972.
doi: 10.1111/j.1365-3091.2004.00653.x
[54] Amy L A, Talling P J.Anatomy of turbidites and linked debrites based on long distance (120 km×30 km) bed correlation, Marnoso Arenacea Formation, Northern Apennines, Italy[J]. Sedimentology,2010,53(1):161-212.
doi: 10.1111/j.1365-3091.2005.00756.x
[55] Lucchi F R, Valmori E.Basin-wide turbidites in a Miocene, over-supplied deep-sea plain: A geometrical analysis[J]. Sedimentology,2010,27(3):241-270.
doi: 10.1111/j.1365-3091.1980.tb01177.x
[56] Sly P D, Cahill P, Willet K, et al.Reconstruction of turbidity currents in Amazon Channel[J]. Marine & Petroleum Geology,2003,20(6/8):823-849.
doi: 10.1016/j.marpetgeo.2003.03.005 pmid: 2539580
[57] Kostic S, Parker G.The response of turbidity currents to a canyon-fan transition: Internal hydraulic jumps and depositional signatures[J]. Journal of Hydraulic Research, 2006,44(5):631-653.
doi: 10.1080/00221686.2006.9521713
[58] Wang P.The South China Sea[J]. Developments in Paleoenvironmental Research, 2009,30:165-178.
[59] Fox P J, Heezen B C, Harian A M.Abyssal anti-dunes[J]. Nature, 1968,220(5 166):470-472.
doi: 10.1038/220470a0
[60] Damuth J E.Migrating sediment waves created by turbidity currents in the northern South China Basin[J]. Geology,1979,7(11):520-523.
doi: 10.1130/0091-7613(1979)7<520:MSWCBT>2.0.CO;2
[61] Ding Weiwei, Li Jiabao, Han Xiqiu, et al.Geomorphology,grain-size charicteristics,matter source and forming mechanism of sediment waves on the ocean bottom of the northeast South China Sea[J]. Acta Oceanologica Sinica, 2010,32(2):96-105.[丁巍伟, 李家彪, 韩喜球,等. 南海东北部海底沉积物波的形态、粒度特征及物源、成因分析[J]. 海洋学报, 2010, 32(2):96-105.]
[62] Gong C, Wang Y, Peng X, et al.Sediment waves on the South China Sea slope off southwestern Taiwan: Implications for the intrusion of the Northern Pacific deep water into the South China Sea[J]. Marine & Petroleum Geology, 2012,32(1):95-109.
doi: 10.1016/j.marpetgeo.2011.12.005
[63] Jiang T, Xie X, Wang Z, et al.Seismic features and origin of sediment waves in the Qiongdongnan Basin, northern South China Sea[J]. Marine Geophysical Research,2013,34(3/4):281-294.
doi: 10.1007/s11001-013-9198-0
[64] Kuang Z, Zhong G, Wang L, et al.Channel-related sediment waves on the eastern slope offshore Dongsha Islands,northern South China Sea[J]. Journal of Asian Earth Sciences, 2014,79(2):540-551.
doi: 10.1016/j.jseaes.2012.09.025
[65] Wang Hairong, Wang Yingmin, Qiu Yan,et al.Development and its tectonic activity’s origin of turbidity current sediment wave in Manila Trench, the South China Sea[J]. Acta Sedimentologica Sinica,2008,26(1):39-45.[王海荣, 王英民, 邱燕,等. 南海东北部台湾浅滩陆坡的浊流沉积物波的发育及其成因的构造控制[J]. 沉积学报, 2008, 26(1):39-45.]
[66] Zhong Guangfa, Li Qianyu, Hao Hujun, et al.Current status of deep-water sediment wave studies and the South China Sea perspectives[J].Advances in Earth Science,2007,22(9):907-913.[钟广法, 李前裕, 郝沪军,等. 深水沉积物波及其在南海研究之现状[J]. 地球科学进展, 2007, 22(9):907-913.]
doi: 10.3321/j.issn:1001-8166.2007.09.004
[67] Migeon S, Savoye B, Zanella E, et al.Detailed seismic-reflection and sedimentary study of turbidite sediment waves on the Var Sedimentary Ridge (SE France): Significance for sediment transport and deposition and for the mechanisms of sediment-wave construction[J]. Marine & Petroleum Geology, 2001,18(2):179-208.
[1] 兰晨, 陈敬安, 曾艳, 郭建阳, 张润宇, 王敬富, 杨海全, 计永雪. 深水湖泊增氧理论与技术研究进展[J]. 地球科学进展, 2015, 30(10): 1172-1181.
[2] 徐景平. 科学与技术并进——近20年来海底峡谷浊流观测的成就和挑战[J]. 地球科学进展, 2013, 28(5): 552-558.
[3] 高红灿,郑荣才,魏钦廉,陈发亮,陈 君,朱登锋,刘 云. 碎屑流与浊流的流体性质及沉积特征研究进展[J]. 地球科学进展, 2012, 27(8): 815-827.
[4] 李相博,付金华,陈启林,刘显阳,刘化清,郭彦如,完颜容,廖建波,魏立花,黄军平. 砂质碎屑流概念及其在鄂尔多斯盆地延长组深水沉积研究中的应用[J]. 地球科学进展, 2011, 26(3): 286-294.
[5] 李云,郑荣才,朱国金,胡晓庆. 沉积物重力流研究进展综述[J]. 地球科学进展, 2011, 26(2): 157-165.
[6] 吴时国,孙运宝,孙启良,董冬冬,袁圣强,马玉波. 深水盆地中大型侵入砂岩的地震识别及其成因机制探讨[J]. 地球科学进展, 2008, 23(6): 562-569.
[7] 钟广法,李前裕,郝沪军,王嘹亮. 深水沉积物波及其在南海研究之现状[J]. 地球科学进展, 2007, 22(9): 907-913.
[8] 周蒂,孙珍,陈汉宗. 世界著名深水油气盆地的构造特征及对我国南海北部深水油气勘探的启示[J]. 地球科学进展, 2007, 22(6): 561-572.
[9] 何家雄,施小斌,夏斌,刘海龄,阎贫,姚永坚,张树林. 南海北部边缘盆地油气勘探现状与深水油气资源前景[J]. 地球科学进展, 2007, 22(3): 261-270.
[10] 庞雄,陈长民,吴梦霜,何敏,吴湘杰. 珠江深水扇系统沉积和周边重要地质事件[J]. 地球科学进展, 2006, 21(8): 793-799.
[11] 何幼斌,罗顺社,高振中. 深水牵引流沉积研究进展与展望[J]. 地球科学进展, 1997, 12(3): 247-252.
[12] 李建明. 沉降速率作为独立变量的水流构造三维稳定域图[J]. 地球科学进展, 1990, 5(1): 28-31.