[1] |
Berner R A.Early Diagenesis: A Theoretical Approach[M]. New Jersey: Princeton University Press, 1980.
|
[2] |
Church T M.Marine chemistry in the coastal environment: Principles, perspective and prospectus[J].Aquatic Geochemistry, 2016, 22(4):1-15.
doi: 10.1007/s10498-015-9272-0
URL
|
[3] |
Martin J B.Carbonate minerals in the global carbon cycle[J].Chemical Geology, 2017, 449:58-72.
doi: 10.1016/j.chemgeo.2016.11.029
URL
|
[4] |
Liu Zaihua, Dreybrodt W, Liu Huan.Atmospheric CO2, sink: Silicate weathering or carbonate weathering?[J].Quaternary Sciences, 2011, 31(3):426-430.
|
|
[刘再华, Dreybrodt W, 刘洹. 大气CO2汇:硅酸盐风化还是碳酸盐风化的贡献?[J]. 第四纪研究, 2011, 31(3): 426-430.]
doi: 10.3969/j.issn.1001-7410.2011.03.04
|
[5] |
Liu Z H, Dreybrodt W, Wang H J.A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J].Earth Science Reviews,2010, 99(3/4):162-172.
doi: 10.1016/j.earscirev.2010.03.001
URL
|
[6] |
Michalopoulos P, Aller R C.Rapid clay mineral formation of Amazon delta sediments: Reverse weathering and oceanic elemental cycles[J]. Science, 1995, 270(5 236): 614-617.
doi: 10.1016/j.jcms.2014.02.004
URL
|
[7] |
Michalopoulos P, Aller R C.Early diagenesis of biogenic silica in the Amazon delta: Alteration, authigenic clay formation, and storage[J].Geochimica et Cosmochimica Acta, 2004, 68(5): 1 061-1 085.
doi: 10.1016/j.gca.2003.07.018
URL
|
[8] |
Higgins J A, Schrag D P.Constraining magnesium cycling in marine sediments using magnesium isotopes[J].Geochimica et Cosmochimica Acta, 2010, 74(17): 5 039-5 053.
doi: 10.1016/j.gca.2010.05.019
URL
|
[9] |
Yao Peng, Yu Zhigang, Guo Zhigang.Research progress in transport, burial and remineralization of organic carbon at large river dominated ocean margins[J].Marine Geology and Quaternary Geology, 2013, 33(1): 153-160.
|
|
[姚鹏, 于志刚, 郭志刚. 大河影响下的边缘海沉积有机碳输运与埋藏及再矿化研究进展[J].海洋地质与第四纪地质, 2013,33(1): 153-160.]
|
[10] |
Yao Peng,Guo Zhigang,Yu Zhigang.Research process in transport, burial and remineralization of organic carbon at large river dominated ocean margins[J]. Acta Oceanologica Sinica,2014,36(2):23-32.
|
|
[姚鹏,郭志刚,于志刚.大河影响下的陆架边缘海沉积有机碳的再矿化作用[J].海洋学报,2014,36(2):23-32.]
doi: 10.3969/j.issn.0253-4193.2014.02.003
URL
|
[11] |
Yao P, Zhao B, Bianchi T S,et al.Remineralization of sedimentary organic carbon in mud deposits of the Changjiang Estuary and adjacent shelf: Implications for carbon preservation and authigenic mineral formation[J]. Continental Shelf Research, 2014, 91: 1-11.
doi: 10.1016/j.csr.2014.08.010
URL
|
[12] |
Zhao B, Yao P, Bianchi T S, et al.Early diagenesis and authigenic mineral formation in mobile muds of the Changjiang Estuary and adjacent shelf[J].Journal of Marine Systems, 2017, 172: 64-74.
doi: 10.1016/j.jmarsys.2017.03.001
URL
|
[13] |
Milliman J D.Production and accumulation of calcium carbonate in the ocean: Budget of a non-steady state[J].Global Biogeochemical Cycles, 1993, 7(4): 927-957.
doi: 10.1029/93GB02524
URL
|
[14] |
Aller R C, Hannides A, Heilbrun C, et al.Coupling of early diagenetic processes and sedimentary dynamics in tropical shelf environments: The Gulf of Papua deltaic complex[J].Continental Shelf Research, 2004, 24(19): 2 455-2 486.
doi: 10.1016/j.csr.2004.07.018
URL
|
[15] |
Aller R C, Heilbrun C, Panzeca C, et al.Coupling between sedimentary dynamics, early diagenetic processes, and biogeochemical cycling in the Amazon-Guianas mobile mud belt: Coastal French Guiana[J].Marine Geology, 2004, 208(2/4): 331-360.
doi: 10.1016/j.margeo.2004.04.027
URL
|
[16] |
Zhu M X, Chen K K, Yang G P, et al.Sulfur and iron diagenesis in temperate unsteady sediments of the East China Sea inner shelf and a comparison with tropical Mobile Mud Belts (MMBs)[J].Journal of Geophysical Research: Biogeosciences, 2016, 121(11): 2 811-2 828.
doi: 10.1002/2016JG003391
URL
|
[17] |
Mackenzie F T, Garrels R M.Chemical mass balance between rivers and oceans[J].American Journal of Science, 1966, 264(7): 507-525.
doi: 10.2475/ajs.264.7.507
URL
|
[18] |
Mackenzie F T, Kump L R.Reverse weathering, clay mineral formation, and oceanic element cycles[J].Science, 1995, 270(5 236): 586-587.
doi: 10.1126/science.270.5236.586
URL
|
[19] |
Rude P D, Aller R C.Fluorine uptake by amazon continental shelf sediment and its impact on the global fluorine cycle[J].Continental Shelf Research, 1994, 14(7/8): 883-907.
doi: 10.1016/0278-4343(94)90078-7
URL
|
[20] |
Rahman S, Aller R C, Cochran J K.Cosmogenic 32Si as a tracer of biogenic silica burial and diagenesis: Major deltaic sinks in the silica cycle[J].Geophysical Research Letters, 2016, 43(13):7 124-7 132.
doi: 10.1002/2016GL069929
URL
|
[21] |
Mackin J E, Aller R C.Dissolved Al in sediments and waters of the East China Sea: Implications for authigenic mineral formation[J]. Geochimica et Cosmochimica Acta, 1984, 48(2): 281-297.
doi: 10.1016/0016-7037(84)90251-5
URL
|
[22] |
Presti M, Michalopoulos P.Estimating the contribution of the authigenic mineral component to the long-term reactive silica accumulation on the western shelf of the Mississippi River Delta[J].Continental Shelf Research, 2008, 28(6):823-838.
doi: 10.1016/j.csr.2007.12.015
URL
|
[23] |
Aller J Y, Aller R C, Kemp P F, et al.Madrid Fluidized muds: A novel setting for the generation of biosphere diversity through geologic time[J]. Geobiology, 2010, 8: 169-178.
doi: 10.1111/j.1472-4669.2010.00234.x
URL
pmid: 20345890
|
[24] |
Zhang Qianzhu, Tao Zhen, Gao Quanzhou, et al.A review of the biogeochemical cycles of dissolved silicon in rivers[J].Advances in Earth Science, 2015, 30(1): 50-59.
|
|
[张乾柱, 陶贞, 高全洲, 等. 河流溶解硅的生物地球化学循环研究综述[J].地球科学进展, 2015, 30(1): 50-59.]
doi: 10.11867/j.issn.1001-8166.2015.01.0050
URL
|
[25] |
Mackin J E, Aller R C.The effects of clay mineral reactions on dissolved Al distributions in sediments and waters of the Amazon continental shelf[J]. Continental Shelf Research, 1986, 6(1/2): 245-262.
doi: 10.1016/0278-4343(86)90063-4
URL
|
[26] |
Michalopoulos P, Aller R C, Reeder R J.Conversion of diatoms to clays during early diagenesis in tropical, continental shelf muds[J].Geology, 2000, 28(12): 1 095-1 098.
doi: 10.1130/0091-7613(2000)282.0.CO;2
URL
|
[27] |
Wang C H, Xu L Z, Jin J C.An initial study of relationship between sulfate reduction and carbonate mineralization[C]∥Proceedings of the International Symposium on Sedimentation on the Continental Shelf, With Special Reference, 1983:795-806.
|
[28] |
Yang Kehong, Chu Fengyou, Ye Liming, et al.Implication of methane seeps from sedimentary geochemical proxies(Sr/Ca & Mg/Ca)in the Northern South China Sea[J].Journal of Jilin University, 2014, 44(2):469-479.
|
|
[杨克红,初凤友,叶黎明,等.南海北部甲烷渗漏的沉积地球化学指标(Sr/Ca 和 Mg/Ca)识别[J].吉林大学学报,2014, 44(2):469-479.]
doi: 10.13278/j.cnki.jjuese.201402106
URL
|
[29] |
Boudreau B P.Diagenetic Models and Their Implementation: Modelling Transport and Reactions in Aquatic Sediments[M]. Berlin: Springer, 1997.
|
[30] |
Hover V C, Walter L M, Peacor D R.K uptake by modern estuarine sediments during early marine diagenesis, Mississippi Delta Plain, Louisiana, U.S.A.Journal of Sedimentary Research, 2002, 72(6): 775-792.
doi: 10.1306/032502720775
URL
|
[31] |
Zhou Peng, Li Dongmei, Liu Guangshan,et al.Study on a cosmic-ray-produced silicon-32 as a tracer for ocean processes[J]. Journal of Isotopes, 2015,28(1): 7-19.
|
|
[周鹏, 李冬梅, 刘广山, 等.应用宇生放射性同位素硅-32示踪海洋过程的研究[J].同位素, 2015, 28(1): 7-19.]
doi: 10.7538/tws.2015.28.01.0007
|
[32] |
Rahman S, Aller R C, Cochran J K.The missing silica sink: Revisiting the marine sedimentary Si cycle using cosmogenic 32Si[J]. Global Biogeochemical Cycles, 2017,31: 1 559-1 578.
doi: 10.1002/2017GB005746
URL
|
[33] |
Tong H, Feng D, Cheng H, et al.Authigenic carbonates from seeps on the northern continental slope of the South China Sea: New insights into fluid sources and geochronology[J]. Marine and Petroleum Geology, 2013, 43(946): 260-271.
doi: 10.1016/j.marpetgeo.2013.01.011
URL
|
[34] |
Chen Duofu, Chen Xianpei, Chen Guangqian.Geology and geoche mistry of cold seepage and venting-related carbonates[J].Acta Sedimentologica Sinica, 2002, 20(1): 34-40.
|
|
[陈多福, 陈先沛, 陈光谦. 冷泉流体沉积碳酸盐岩的地质地球化学特征[J]. 沉积学报, 2002, 20(1): 34-40.]
|
[35] |
Demaster D J, Pope R H.Nutrient dynamics in Amazon shelf waters: Results from AMASSEDS[J].Continental Shelf Research, 1996, 16(3): 263-289.
doi: 10.1016/0278-4343(95)00008-O
URL
|
[36] |
Ristvet B L.Reverse Weathering Reactions Within Recent Nearshore Marine Sediments, Kaneohoe Bay, Oahu[D]. New Mexico: Kirtland Air Force Base,Test Directorate Field Command, 1978:314.
|
[37] |
Wang C, Zhu H, Wang P, et al.Early diagenetic alterations of biogenic and reactive silica in the surface sediment of the Yangtze Estuary[J].Continental Shelf Research, 2015, 99:1-11.
doi: 10.1016/j.csr.2015.03.003
URL
|
[38] |
Turner R E, Rabalais N N, Alexander R B, et al.Characterization of nutrient, organic carbon, and sediment loads and concentrations from the Mississippi River into the northern Gulf of Mexico[J]. Estuaries and Coasts, 2007, 30(5): 773-790.
doi: 10.1007/BF02841333
URL
|
[39] |
Chen Y, Shi M L, Zhao Y G.The Ecological and Environmental Atlas of the Three Gorges of the Changjiang[M]. Beijing:Science Press,1989.
|
[40] |
Rude P D, Aller R C.Early diagenetic alteration of lateritic particle coatings in Amazon continental shelf sediment[J].Journal of Sedimentary Petrology, 1989, 59(5): 704-716.
doi: 10.1306/212F9052-2B24-11D7-8648000102C1865D
URL
|
[41] |
Li J F, He Q, Xiang W H, et al.Fluid mud transportation at water wedge in the Changjiang Estuary[J].Science in China (Serisei B),2001, 44: 47-56.
doi: 10.1007/BF02884808
URL
|
[42] |
Bales R C.The Global Water Cycle: Geochemistry and Environment[M]. New Jersey: Prentice-Hall, 1989.
|
[43] |
Bianchi T S, Allison M A.Large-river delta-front estuaries as natural “recorders” of global environmental change[J].Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(20): 8 085-8 092.
doi: 10.1073/pnas.0812878106
URL
pmid: 19435849
|
[44] |
McKee B A, Aller R C, Allison M A, et al. Transport and transformation of dissolved and particulate materials on continental margins influenced by major rivers: Benthic boundary layer and seabed processes[J].Continental Shelf Research, 2004, 24(7): 899-926.
doi: 10.1016/j.csr.2004.02.009
URL
|
[45] |
Zhao Bin, Yao Peng, Yu Zhigang.The effect of organic carbon-iron oxide association on the preservation of sedimentary organic carbon in marine environments[J].Advances in Earth Science, 2016, 31(11):1 151-1 158.
|
|
[赵彬, 姚鹏, 于志刚. 有机碳—氧化铁结合对海洋环境中沉积有机碳保存的影响[J].地球科学进展, 2016, 31(11):1 151-1 158.]
doi: 10.11867/j.issn.1001-8166.2016.11.1151
URL
|
[46] |
Zhou M J, Shen Z L, Yu R C.Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang (Yangtze) River[J].Continental Shelf Research, 2008, 28(12):1 483-1 489.
doi: 10.1016/j.csr.2007.02.009
URL
|
[47] |
Liu J P, Li A C, Xu K H, et al.Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea[J].Continental Shelf Research, 2006, 26(17/18): 2 141-2 156.
doi: 10.1016/j.csr.2006.07.013
URL
|
[48] |
Zhang Guijia, Li Congxian.Formation and distribution of green grains in the Yangtse River[J].Oil and Gas Geology,1989,10(2):145-153.
|
|
[张桂甲,李丛先.长江口地区自生绿色颗粒的形成和分布[J].石油与天然气地质,1989,10(2):145-153.]
|
[49] |
Deng B, Zhang J, Wu Y.Recent sediment accumulation and carbon burial in the East China Sea[J].Global Biogeochemical Cycles, 2006, 20(3): 466-480.
doi: 10.1029/2005GB002559
URL
|
[50] |
Li D J, Zhang J, Huang D J, et al.Oxygen depletion off the Changjiang (Yangtze River) Estuary[J]. Science in China (Series D), 2002, 45(12): 1 137-1 146.
doi: 10.1360/02yd9110
URL
|
[51] |
Zhu J R, Zhu Z, Lin J, et al.Distribution of hypoxia and pycnocline off the Changjiang Estuary, China[J]. Journal of Marine Systems, 2015, 154:28-40.
doi: 10.1016/j.jmarsys.2015.05.002
URL
|
[52] |
Wang X, Ma H, Li R, et al.Seasonal fluxes and source variation of organic carbon transported by two major Chinese Rivers: The Yellow River and Changjiang (Yangtze) River[J]. Global Biogeochemical Cycles, 2012, 26(2):2 025.
doi: 10.1029/2011GB004130
URL
|