地球科学进展 ›› 2018, Vol. 33 ›› Issue (1): 42 -51. doi: 10.11867/j.issn.1001-8166.2018.01.0042

综述与评述 上一篇    下一篇

大河影响下的边缘海反风化作用
赵彬 1, 2( ), 姚鹏 1, 3, *( ), 杨作升 4, 于志刚 1, 3   
  1. 1.中国海洋大学海洋化学理论与工程技术教育部重点实验室, 山东 青岛 266100
    2.中国海洋大学化学化工学院, 山东 青岛 266100
    3.青岛海洋科学与技术国家实验室海洋生态与环境科学功能实验室, 山东 青岛 266071
    4.中国海洋大学海洋地球科学学院, 山东 青岛 266100
  • 收稿日期:2017-07-18 修回日期:2017-12-13 出版日期:2018-01-10
  • 通讯作者: 姚鹏 E-mail:zhaobin1988@hotmail.com;yaopeng@ouc.edu.cn
  • 基金资助:
    国家自然科学基金面上项目“长江口—东海内陆架沉积有机碳的再矿化作用研究”(编号:41676063);国家自然科学基金重点国际(地区)合作研究项目“长江口及邻近海域沉积有机碳的保存机制研究”(编号:41620104001)资助

Reverse Weathering in River-dominated Marginal Seas

Bin Zhao 1, 2( ), Peng Yao 1, 3, *( ), Zuosheng Yang 4, Zhigang Yu 1, 3   

  1. 1.Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
    2.College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
    3.Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071,China
    4.College of Marine Geosciences, Ocean University of China, Qingdao 266100, China
  • Received:2017-07-18 Revised:2017-12-13 Online:2018-01-10 Published:2018-03-06
  • Contact: Peng Yao E-mail:zhaobin1988@hotmail.com;yaopeng@ouc.edu.cn
  • About author:

    First author:Zhao Bin(1988-), male, Qingdao City, Shandong Province, Ph.D student. Research areas include oceanography and biogeochemistry.E-mail:zhaobin1988@hotmail.com

  • Supported by:
    *Project supported by the National Natural Science Foundation of China “Remineralization of sedimentary organic carbon in the Changjiang Estuary-East China Sea inner shelf” (No.41676063);The Major International Joint Research Project of National Science Foundation of China “Preservation mechanisms of sedimentary organic carbon in the Changjiang Estuary and adjacent shelf”(No.41620104001)

在河口与边缘海区域,大量陆源风化产物的输入和强烈的有机物再矿化作用加速了自生硅酸盐矿物和碳酸盐矿物的生成,这一过程与陆地风化作用相反,被称为反风化作用(Reverse weathering)。反风化作用所导致的自生矿物形成通常在短时间内完成,被认为是平衡大气二氧化碳含量,控制海洋中元素平衡的重要过程。反风化作用的研究方法主要分为直接观察法和化学检测法,前者主要用于自生矿物的结构和元素组成的分析,后者则用于自生铝硅酸盐矿物等定量的研究。反风化作用对海洋环境中碳、硅、常量离子(F-,Li+,Na+,K+,Ca2+和Mg2+等)和金属元素(Fe,Mn和Al等)等的循环具有重要影响,并促使它们在海洋沉积物中长久埋藏。富含金属氧化物的风化产物的输入,大量易降解有机物和生物硅的沉降,强烈的再矿化作用和次氧/厌氧的成岩条件使得河口与边缘海区域成为反风化作用发生的主要场所。

In estuarine regions and marginal seas, reverse weathering refers to the formation of authigenic aluminosilicate and carbonate minerals promoted by large inputs of terrestrial weathering products and intense remineralization of Sedimentary Organic Carbon (SOC), which is opposite to land weathering process. Compared with the process in open ocean, the formation of authigenic aluminosilicate and carbonate minerals caused by reverse weathering in estuarine regions and marginal seas is rather rapid, playing an important role in the maintenance of ocean acidity and elements cycles. At present, there are two research methods regarding the reverse weathering process, i.e., direct observation and chemical detection. The first method is used to study the structure and chemical composition of authigenic minerals and the second is mainly used to do quantified studies of authigenic minerals. The reverse weathering is very important to the cycles of Si, C, major ions (F-, Li+, Na+, K+, Ca2+ and Mg2+), and alkali metal cations (Fe, Mn and Al) in marine environments, which promotes the burial of these elements in marine sediments. Due to large inputs of weathering products rich in Fe, Mn and Al oxides, precipitation of labile OC and biogenic silica, intense remineralization process and suboxic/anoxic conditions, estuarine and marginal seas are suitable sites for reverse weathering studies. The reverse weathering studies in sub-tropical and temperate estuaries should be emphasized in the future.

中图分类号: 

图1 硅酸盐和碳酸盐风化和反风化作用反应机理 [ 4 , 18 ]
图中碳酸盐矿物以CaCO 3为例
Fig.1 The mechanisms of reverse weathering and weathering of silicate and carbonate minerals [ 4 , 18 ]
Taking CaCO 3 as an example for carbonate minerals in the figure
图2 生物硅向自生铝硅酸盐矿物转化不同阶段的示意图 (据参考文献[26]修改)
Fig.2 Interpretive schematic diagram that different stages of biogenic silica alteration process (modified after reference[26])
图3 长江口泥质区沉积物时间序列厌氧培养过程中间隙水溶质的变化(据参考文献[11]修改)
Fig.3 The change of pore-water solutes with time in sediments of anoxic incubation experiments(modified after reference[11])
表1 不同河口活性硅的埋藏通量和生物硅早期成岩指数
Table 1 The burial fluxes and diagenetic alteration ratios of reactive silica in different estuarine regions
图4 大河影响下的边缘海反风化作用示意图
Fig.4 Interpretive schematic diagram of reverse weathering in RiOMars
[1] Berner R A.Early Diagenesis: A Theoretical Approach[M]. New Jersey: Princeton University Press, 1980.
[2] Church T M.Marine chemistry in the coastal environment: Principles, perspective and prospectus[J].Aquatic Geochemistry, 2016, 22(4):1-15.
doi: 10.1007/s10498-015-9272-0     URL    
[3] Martin J B.Carbonate minerals in the global carbon cycle[J].Chemical Geology, 2017, 449:58-72.
doi: 10.1016/j.chemgeo.2016.11.029     URL    
[4] Liu Zaihua, Dreybrodt W, Liu Huan.Atmospheric CO2, sink: Silicate weathering or carbonate weathering?[J].Quaternary Sciences, 2011, 31(3):426-430.
[刘再华, Dreybrodt W, 刘洹. 大气CO2汇:硅酸盐风化还是碳酸盐风化的贡献?[J]. 第四纪研究, 2011, 31(3): 426-430.]
doi: 10.3969/j.issn.1001-7410.2011.03.04    
[5] Liu Z H, Dreybrodt W, Wang H J.A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J].Earth Science Reviews,2010, 99(3/4):162-172.
doi: 10.1016/j.earscirev.2010.03.001     URL    
[6] Michalopoulos P, Aller R C.Rapid clay mineral formation of Amazon delta sediments: Reverse weathering and oceanic elemental cycles[J]. Science, 1995, 270(5 236): 614-617.
doi: 10.1016/j.jcms.2014.02.004     URL    
[7] Michalopoulos P, Aller R C.Early diagenesis of biogenic silica in the Amazon delta: Alteration, authigenic clay formation, and storage[J].Geochimica et Cosmochimica Acta, 2004, 68(5): 1 061-1 085.
doi: 10.1016/j.gca.2003.07.018     URL    
[8] Higgins J A, Schrag D P.Constraining magnesium cycling in marine sediments using magnesium isotopes[J].Geochimica et Cosmochimica Acta, 2010, 74(17): 5 039-5 053.
doi: 10.1016/j.gca.2010.05.019     URL    
[9] Yao Peng, Yu Zhigang, Guo Zhigang.Research progress in transport, burial and remineralization of organic carbon at large river dominated ocean margins[J].Marine Geology and Quaternary Geology, 2013, 33(1): 153-160.
[姚鹏, 于志刚, 郭志刚. 大河影响下的边缘海沉积有机碳输运与埋藏及再矿化研究进展[J].海洋地质与第四纪地质, 2013,33(1): 153-160.]
[10] Yao Peng,Guo Zhigang,Yu Zhigang.Research process in transport, burial and remineralization of organic carbon at large river dominated ocean margins[J]. Acta Oceanologica Sinica,2014,36(2):23-32.
[姚鹏,郭志刚,于志刚.大河影响下的陆架边缘海沉积有机碳的再矿化作用[J].海洋学报,2014,36(2):23-32.]
doi: 10.3969/j.issn.0253-4193.2014.02.003     URL    
[11] Yao P, Zhao B, Bianchi T S,et al.Remineralization of sedimentary organic carbon in mud deposits of the Changjiang Estuary and adjacent shelf: Implications for carbon preservation and authigenic mineral formation[J]. Continental Shelf Research, 2014, 91: 1-11.
doi: 10.1016/j.csr.2014.08.010     URL    
[12] Zhao B, Yao P, Bianchi T S, et al.Early diagenesis and authigenic mineral formation in mobile muds of the Changjiang Estuary and adjacent shelf[J].Journal of Marine Systems, 2017, 172: 64-74.
doi: 10.1016/j.jmarsys.2017.03.001     URL    
[13] Milliman J D.Production and accumulation of calcium carbonate in the ocean: Budget of a non-steady state[J].Global Biogeochemical Cycles, 1993, 7(4): 927-957.
doi: 10.1029/93GB02524     URL    
[14] Aller R C, Hannides A, Heilbrun C, et al.Coupling of early diagenetic processes and sedimentary dynamics in tropical shelf environments: The Gulf of Papua deltaic complex[J].Continental Shelf Research, 2004, 24(19): 2 455-2 486.
doi: 10.1016/j.csr.2004.07.018     URL    
[15] Aller R C, Heilbrun C, Panzeca C, et al.Coupling between sedimentary dynamics, early diagenetic processes, and biogeochemical cycling in the Amazon-Guianas mobile mud belt: Coastal French Guiana[J].Marine Geology, 2004, 208(2/4): 331-360.
doi: 10.1016/j.margeo.2004.04.027     URL    
[16] Zhu M X, Chen K K, Yang G P, et al.Sulfur and iron diagenesis in temperate unsteady sediments of the East China Sea inner shelf and a comparison with tropical Mobile Mud Belts (MMBs)[J].Journal of Geophysical Research: Biogeosciences, 2016, 121(11): 2 811-2 828.
doi: 10.1002/2016JG003391     URL    
[17] Mackenzie F T, Garrels R M.Chemical mass balance between rivers and oceans[J].American Journal of Science, 1966, 264(7): 507-525.
doi: 10.2475/ajs.264.7.507     URL    
[18] Mackenzie F T, Kump L R.Reverse weathering, clay mineral formation, and oceanic element cycles[J].Science, 1995, 270(5 236): 586-587.
doi: 10.1126/science.270.5236.586     URL    
[19] Rude P D, Aller R C.Fluorine uptake by amazon continental shelf sediment and its impact on the global fluorine cycle[J].Continental Shelf Research, 1994, 14(7/8): 883-907.
doi: 10.1016/0278-4343(94)90078-7     URL    
[20] Rahman S, Aller R C, Cochran J K.Cosmogenic 32Si as a tracer of biogenic silica burial and diagenesis: Major deltaic sinks in the silica cycle[J].Geophysical Research Letters, 2016, 43(13):7 124-7 132.
doi: 10.1002/2016GL069929     URL    
[21] Mackin J E, Aller R C.Dissolved Al in sediments and waters of the East China Sea: Implications for authigenic mineral formation[J]. Geochimica et Cosmochimica Acta, 1984, 48(2): 281-297.
doi: 10.1016/0016-7037(84)90251-5     URL    
[22] Presti M, Michalopoulos P.Estimating the contribution of the authigenic mineral component to the long-term reactive silica accumulation on the western shelf of the Mississippi River Delta[J].Continental Shelf Research, 2008, 28(6):823-838.
doi: 10.1016/j.csr.2007.12.015     URL    
[23] Aller J Y, Aller R C, Kemp P F, et al.Madrid Fluidized muds: A novel setting for the generation of biosphere diversity through geologic time[J]. Geobiology, 2010, 8: 169-178.
doi: 10.1111/j.1472-4669.2010.00234.x     URL     pmid: 20345890
[24] Zhang Qianzhu, Tao Zhen, Gao Quanzhou, et al.A review of the biogeochemical cycles of dissolved silicon in rivers[J].Advances in Earth Science, 2015, 30(1): 50-59.
[张乾柱, 陶贞, 高全洲, 等. 河流溶解硅的生物地球化学循环研究综述[J].地球科学进展, 2015, 30(1): 50-59.]
doi: 10.11867/j.issn.1001-8166.2015.01.0050     URL    
[25] Mackin J E, Aller R C.The effects of clay mineral reactions on dissolved Al distributions in sediments and waters of the Amazon continental shelf[J]. Continental Shelf Research, 1986, 6(1/2): 245-262.
doi: 10.1016/0278-4343(86)90063-4     URL    
[26] Michalopoulos P, Aller R C, Reeder R J.Conversion of diatoms to clays during early diagenesis in tropical, continental shelf muds[J].Geology, 2000, 28(12): 1 095-1 098.
doi: 10.1130/0091-7613(2000)282.0.CO;2     URL    
[27] Wang C H, Xu L Z, Jin J C.An initial study of relationship between sulfate reduction and carbonate mineralization[C]∥Proceedings of the International Symposium on Sedimentation on the Continental Shelf, With Special Reference, 1983:795-806.
[28] Yang Kehong, Chu Fengyou, Ye Liming, et al.Implication of methane seeps from sedimentary geochemical proxies(Sr/Ca & Mg/Ca)in the Northern South China Sea[J].Journal of Jilin University, 2014, 44(2):469-479.
[杨克红,初凤友,叶黎明,等.南海北部甲烷渗漏的沉积地球化学指标(Sr/Ca 和 Mg/Ca)识别[J].吉林大学学报,2014, 44(2):469-479.]
doi: 10.13278/j.cnki.jjuese.201402106     URL    
[29] Boudreau B P.Diagenetic Models and Their Implementation: Modelling Transport and Reactions in Aquatic Sediments[M]. Berlin: Springer, 1997.
[30] Hover V C, Walter L M, Peacor D R.K uptake by modern estuarine sediments during early marine diagenesis, Mississippi Delta Plain, Louisiana, U.S.A.Journal of Sedimentary Research, 2002, 72(6): 775-792.
doi: 10.1306/032502720775     URL    
[31] Zhou Peng, Li Dongmei, Liu Guangshan,et al.Study on a cosmic-ray-produced silicon-32 as a tracer for ocean processes[J]. Journal of Isotopes, 2015,28(1): 7-19.
[周鹏, 李冬梅, 刘广山, 等.应用宇生放射性同位素硅-32示踪海洋过程的研究[J].同位素, 2015, 28(1): 7-19.]
doi: 10.7538/tws.2015.28.01.0007    
[32] Rahman S, Aller R C, Cochran J K.The missing silica sink: Revisiting the marine sedimentary Si cycle using cosmogenic 32Si[J]. Global Biogeochemical Cycles, 2017,31: 1 559-1 578.
doi: 10.1002/2017GB005746     URL    
[33] Tong H, Feng D, Cheng H, et al.Authigenic carbonates from seeps on the northern continental slope of the South China Sea: New insights into fluid sources and geochronology[J]. Marine and Petroleum Geology, 2013, 43(946): 260-271.
doi: 10.1016/j.marpetgeo.2013.01.011     URL    
[34] Chen Duofu, Chen Xianpei, Chen Guangqian.Geology and geoche mistry of cold seepage and venting-related carbonates[J].Acta Sedimentologica Sinica, 2002, 20(1): 34-40.
[陈多福, 陈先沛, 陈光谦. 冷泉流体沉积碳酸盐岩的地质地球化学特征[J]. 沉积学报, 2002, 20(1): 34-40.]
[35] Demaster D J, Pope R H.Nutrient dynamics in Amazon shelf waters: Results from AMASSEDS[J].Continental Shelf Research, 1996, 16(3): 263-289.
doi: 10.1016/0278-4343(95)00008-O     URL    
[36] Ristvet B L.Reverse Weathering Reactions Within Recent Nearshore Marine Sediments, Kaneohoe Bay, Oahu[D]. New Mexico: Kirtland Air Force Base,Test Directorate Field Command, 1978:314.
[37] Wang C, Zhu H, Wang P, et al.Early diagenetic alterations of biogenic and reactive silica in the surface sediment of the Yangtze Estuary[J].Continental Shelf Research, 2015, 99:1-11.
doi: 10.1016/j.csr.2015.03.003     URL    
[38] Turner R E, Rabalais N N, Alexander R B, et al.Characterization of nutrient, organic carbon, and sediment loads and concentrations from the Mississippi River into the northern Gulf of Mexico[J]. Estuaries and Coasts, 2007, 30(5): 773-790.
doi: 10.1007/BF02841333     URL    
[39] Chen Y, Shi M L, Zhao Y G.The Ecological and Environmental Atlas of the Three Gorges of the Changjiang[M]. Beijing:Science Press,1989.
[40] Rude P D, Aller R C.Early diagenetic alteration of lateritic particle coatings in Amazon continental shelf sediment[J].Journal of Sedimentary Petrology, 1989, 59(5): 704-716.
doi: 10.1306/212F9052-2B24-11D7-8648000102C1865D     URL    
[41] Li J F, He Q, Xiang W H, et al.Fluid mud transportation at water wedge in the Changjiang Estuary[J].Science in China (Serisei B),2001, 44: 47-56.
doi: 10.1007/BF02884808     URL    
[42] Bales R C.The Global Water Cycle: Geochemistry and Environment[M]. New Jersey: Prentice-Hall, 1989.
[43] Bianchi T S, Allison M A.Large-river delta-front estuaries as natural “recorders” of global environmental change[J].Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(20): 8 085-8 092.
doi: 10.1073/pnas.0812878106     URL     pmid: 19435849
[44] McKee B A, Aller R C, Allison M A, et al. Transport and transformation of dissolved and particulate materials on continental margins influenced by major rivers: Benthic boundary layer and seabed processes[J].Continental Shelf Research, 2004, 24(7): 899-926.
doi: 10.1016/j.csr.2004.02.009     URL    
[45] Zhao Bin, Yao Peng, Yu Zhigang.The effect of organic carbon-iron oxide association on the preservation of sedimentary organic carbon in marine environments[J].Advances in Earth Science, 2016, 31(11):1 151-1 158.
[赵彬, 姚鹏, 于志刚. 有机碳—氧化铁结合对海洋环境中沉积有机碳保存的影响[J].地球科学进展, 2016, 31(11):1 151-1 158.]
doi: 10.11867/j.issn.1001-8166.2016.11.1151     URL    
[46] Zhou M J, Shen Z L, Yu R C.Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang (Yangtze) River[J].Continental Shelf Research, 2008, 28(12):1 483-1 489.
doi: 10.1016/j.csr.2007.02.009     URL    
[47] Liu J P, Li A C, Xu K H, et al.Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea[J].Continental Shelf Research, 2006, 26(17/18): 2 141-2 156.
doi: 10.1016/j.csr.2006.07.013     URL    
[48] Zhang Guijia, Li Congxian.Formation and distribution of green grains in the Yangtse River[J].Oil and Gas Geology,1989,10(2):145-153.
[张桂甲,李丛先.长江口地区自生绿色颗粒的形成和分布[J].石油与天然气地质,1989,10(2):145-153.]
[49] Deng B, Zhang J, Wu Y.Recent sediment accumulation and carbon burial in the East China Sea[J].Global Biogeochemical Cycles, 2006, 20(3): 466-480.
doi: 10.1029/2005GB002559     URL    
[50] Li D J, Zhang J, Huang D J, et al.Oxygen depletion off the Changjiang (Yangtze River) Estuary[J]. Science in China (Series D), 2002, 45(12): 1 137-1 146.
doi: 10.1360/02yd9110     URL    
[51] Zhu J R, Zhu Z, Lin J, et al.Distribution of hypoxia and pycnocline off the Changjiang Estuary, China[J]. Journal of Marine Systems, 2015, 154:28-40.
doi: 10.1016/j.jmarsys.2015.05.002     URL    
[52] Wang X, Ma H, Li R, et al.Seasonal fluxes and source variation of organic carbon transported by two major Chinese Rivers: The Yellow River and Changjiang (Yangtze) River[J]. Global Biogeochemical Cycles, 2012, 26(2):2 025.
doi: 10.1029/2011GB004130     URL    
[1] 张晓辉,彭亚兰,黄根华. 南海碳源汇的区域与季节变化特征及控制因素研究进展[J]. 地球科学进展, 2020, 35(6): 581-593.
[2] 张咏华,吴自军. 陆架边缘海沉积物有机碳矿化及其对海洋碳循环的影响[J]. 地球科学进展, 2019, 34(2): 202-209.
[3] 石学法,鄢全树. 西太平洋典型边缘海盆的岩浆活动[J]. 地球科学进展, 2013, 28(7): 737-750.
[4] 范代读,王扬扬,吴伊婧. 长江沉积物源示踪研究进展[J]. 地球科学进展, 2012, 27(5): 515-528.
[5] 丁玲,邢磊,赵美训. 生物标志物重建浮游植物生产力及群落结构研究进展[J]. 地球科学进展, 2010, 25(9): 981-989.
[6] 吴德星,兰健. 中国东部陆架边缘海海洋物理环境演变及其环境效应[J]. 地球科学进展, 2006, 21(7): 667-672.
[7] 朱介寿;曹家敏;蔡学林;严忠琼. 欧亚大陆及西太平洋边缘海岩石圈结构[J]. 地球科学进展, 2004, 19(3): 387-392.
[8] 戴民汉;翟惟东;鲁中明;蔡平河;蔡卫君;洪华生. 中国区域碳循环研究进展与展望[J]. 地球科学进展, 2004, 19(1): 120-130.
[9] 周祖翼,丁晓,廖宗廷,金性春. 边缘海盆地的形成机制及其对中国东南地质研究的启示[J]. 地球科学进展, 1997, 12(1): 7-14.
[10] 夏戡原. 海洋构造地球物理当前动态、前景及我们的发展方向[J]. 地球科学进展, 1992, 7(2): 1-.
阅读次数
全文


摘要