地球科学进展 ›› 2019, Vol. 34 ›› Issue (2): 202 -209. doi: 10.11867/j.issn.1001-8166.2019.02.0202

上一篇    下一篇

陆架边缘海沉积物有机碳矿化及其对海洋碳循环的影响
张咏华,吴自军 *( )   
  1. 1. 同济大学海洋地质国家重点实验室,上海 200092
  • 收稿日期:2018-10-30 修回日期:2018-12-11 出版日期:2019-02-10
  • 通讯作者: 吴自军 E-mail:wuzj@tongji.edu.cn
  • 基金资助:
    国家自然科学基金面上项目“南海北部湾沉积物有机质成岩矿化过程及其对孔隙水溶解无机碳(DIC)的贡献”(编号:41676061);上海市自然科学基金项目“长江口及其邻近海域不同盐度环境下沉积物硫酸盐还原及铁硫矿物的形成”(编号:16ZR1438200)资助.

Sedimentary Organic Carbon Mineralization and Its Contribution to the Marine Carbon Cycle in the Marginal Seas

Yonghua Zhang,Zijun Wu *( )   

  1. 1. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
  • Received:2018-10-30 Revised:2018-12-11 Online:2019-02-10 Published:2019-03-26
  • Contact: Zijun Wu E-mail:wuzj@tongji.edu.cn
  • About author:Zhang Yonghua(1994-), female, Zhangjiakou City, Hebei Province, Master student. Research areas include marine biogeochemistry. E-mail:1632943@tongji.edu.cn|Wu Zijun(1973-), male, Anqing City, Anhui Province, Professor. Research areas include marine environmental and biogeochemistry. E-mail: wuzj@tongji.edu.cn
  • Supported by:
    Project supported by the National Natural Science Foundation of China “Organic matter diagenetic mineralization process and its contribution to pore water Dissolved Inorganic Carbon (DIC) in the sediments of Beibu Gulf, South China Sea”(No.41676061);The Shanghai Natural Science Foundation Project “Sulphate reduction and formation of iron and sulfur minerals under different salinity environments in the sediments of the Changjiang Estuary and its adjacent seas”(No. 16ZR1438200);Project supported by the National Natural Science Foundation of China “Organic matter diagenetic mineralization process and its contribution to pore water Dissolved Inorganic Carbon (DIC) in the sediments of Beibu Gulf, South China Sea” (No.41676061); The Shanghai Natural Science Foundation Project “Sulphate reduction and formation of iron and sulfur minerals under different salinity environments in the sediments of the Changjiang Estuary and its adjacent seas” (No. 16ZR1438200).

边缘海沉积物是海洋重要的碳储库,其内部的碳循环主要是由有机质矿化分解过程来驱动的。有机碳进入边缘海沉积物后,矿化分解为溶解无机碳(DIC)进入沉积物孔隙水并扩散到上层水柱,参与海洋系统碳循环;同时还有部分DIC与钙镁等离子结合形成自生碳酸盐,保存于沉积物碳库。从生物地球化学角度探讨有机质埋藏机制和效率,在此基础上重点综述沉积物硫酸盐还原、产甲烷和甲烷厌氧氧化过程的耦合机制,以及有机质矿化对自生碳酸盐形成的影响等方面的研究进展,以期加深对陆架边缘海沉积物在全球碳循环收支平衡中的作用及其气候环境效应的认识。

Continental margin sediments are important ocean carbon repository, and the internal carbon cycle is mainly driven by the mineralization processes of sedimentary organic matter. Most organic carbon is transformed to Dissolved Inorganic Carbon (DIC) by mineralization processes after being delivered to continental margin sediments, and DIC from pore water diffuses into the upper water column and participates in the ocean carbon cycle. At the same time, some DIC combines ions such as Ca2+ and Mg2+ and precipitates as authigenic carbonate minerals so that carbon is stored in the deposits. Based on the biogeochemical study of the mechanism and efficiency of organic matter burial, we discussed the interaction among sulfate reduction, methanogenesis and anaerobic oxidation of methane, and the effect of organic mineralization on the formation of authigenic carbonate. By reviewing the above-mentioned aspects, we can obtain a better understanding of the role of continental margin sediments in the global carbon cycling budgets as well as its climate and environmental effects.

中图分类号: 

1 FalkowskiP, ScholesR J, BoyleE, et al. The global carbon cycle: A test of our knowledge of earth as a system[J]. Science, 2000, 290(5 490):291-296.
2 HayesJ M, WaldbauerJ R. The carbon cycle and associated redox processes through time[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361(1 470):931-950.
3 Maier-ReimerE, HasselmannK. Transport and storage of CO2 in the ocean—An Inorganic Ocean-Circulation Carbon Cycle Model[J]. Climate Dynamics, 1987, 2(2):63-90.
4 SarmientoJ L,HughesT M C,StoufferR J, et al. Simulated response of the ocean carbon cycle to anthropogenic climate warming[J]. Nature, 1998, 393(6 682):245-249.
5 WalshJ J. Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen[J]. Nature, 1991, 350(6 313):53-55.
6 BurdigeD J. Preservation of organic matter in marine sediments:?Controls, mechanisms, and an imbalance in sediment organic carbon budgets?[J]. Chemical Reviews, 2007,38(20):467-485.
7 JoosF. Global warming and marine carbon cycle feedbacks on future atmospheric CO2[J]. Science, 1999, 284(5 413):464-467.
8 DaiMinhan, ZhaiWeidong, LuZhongming, et al. A review and prospect of carbon cycle in China[J]. Advances in Earth Science,2004, 19(1):120-130.
戴民汉,翟惟东,鲁中明,等.中国区域碳循环研究进展与展望[J]. 地球科学进展, 2004, 19(1):120-130.
9 SongJinming. Carbon sources and sinks in oceans[J]. Marine Environmental Science, 2003, 22(2):75-80.
宋金明.海洋碳的源与汇[J].海洋环境科学, 2003, 22(2):75-80.
10 HedgesJ I, KeilR G. Sedimentary organic matter preservation: An assessment and speculative synthesis[J]. Marine Chemistry, 1995, 49(2/3):123-126.
11 ArndtS, J?rgensenB B, LaroweD E, et al. Quantifying the degradation of organic matter in marine sediments: A review and synthesis[J]. Earth-Science Reviews, 2013, 123(4):53-86.
12 OrtegaT, PonceR, ForjaJ, et al. Benthic fluxes of dissolved inorganic carbon in the Tinto-Odiel system (SW of Spain)[J]. Continental Shelf Research, 2008, 28(3):458-469.
13 ZhaoBin,YaoPeng,BianchiT S,et al. Early diagenesis and authigenic mineral formation in mobile muds of the Changjiang Estuary and adjacent shelf[J]. Journal of Marine Systems, 2017, 172:64-74.
14 ZonneveldK A F, VersteeghG J M, KastenS, et al. Selective preservation of organic matter in marine environments: Processes and impact on the sedimentary record[J]. Biogeosciences, 2010, 7(2):483-511.
15 TegelaarE W, LeeuwJ W D, DerenneS, et al. A reappraisal of kerogen formation[J]. Geochimica et Cosmochimica Acta, 1989, 53(11):3 103-3 106.
16 LeeuwJ W D, LargeauC. A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal, and petroleum formation[J]. Organic Geochemistry Principles & Applications, 1993, 11:23-72.
17 AbelsonP H. Organic matter in the Earth's crust[J]. Annual Review of Earth & Planetary Sciences, 2003, 6(1):325-351.
18 MayerL M. Surface area control of organic carbon accumulation in continental shelf sediments[J]. Geochimica et Cosmochimica Acta, 1994, 58(4):1 271-1 284.
19 LalondeK, MucciA, OuelletA, et al. Preservation of organic matter in sediments promoted by iron[J]. Nature, 2012, 483(7 388):198-200.
20 BlairN E, LeitholdE L, FordS T, et al. The persistence of memory: The fate of ancient sedimentary organic carbon in a modern sedimentary system[J]. Geochimica et Cosmochimica Acta, 2003, 67(1):63-73.
21 BurdigeD J. Burial of terrestrial organic matter in marine sediments: A re-assessment[J]. Global Biogeochemical Cycles, 2005, 19(4). DOI:10.1029/2004GB002368.
doi: 10.1029/2004GB002368.    
22 McKeeB A, AllerR C, AllisonM A, et al. Transport and transformation of dissolved and particulate materials on continental margins influenced by major rivers: Benthic boundary layer and seabed processes[J]. Continental Shelf Research, 2004, 24(7/8):899-926.
23 LeitholdE L, BlairN E, WegmannK W. Source-to-sink sedimentary systems and global carbon burial: A river runs through it[J]. Earth-Science Reviews, 2016, 153:30-42.
24 JiaoNianzhi. Carbon sequestration and storage in the ocean — The important role of micro-organisms in them[J]. Science in China (Series D), 2012, 42(10):1 473-1 486.
焦念志.海洋固碳与储碳——并论微型生物在其中的重要作用[J]. 中国科学:D辑, 2012, 42(10):1 473-1 486.
25 FroelichP N, KlinkhammerG P, BenderM L, et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis[J]. Geochimica et Cosmochimica Acta, 1979, 43(7):1 075-1 090.
26 ThamdrupB, CanfieldD E. Pathways of carbon oxidation in continental margin sediments off central Chile[J]. Limnology & Oceanography, 1996, 41(8):1 629-1 650.
27 ZhuMaoxu, ShiXiaoning, YangGuipeng, et al. Relative contributions of various early diagenetic pathways to mineralization of organic matter in marine sediments: An overview[J]. Advances in Earth Science, 2011, 26(4):355-364.
朱茂旭, 史晓宁, 杨桂朋,等. 海洋沉积物中有机质早期成岩矿化路径及其相对贡献[J].地球科学进展, 2011, 26(4):355-364.
28 YaoP, ZhaoB, BianchiT S, et al. Remineralization of sedimentary organic carbon in mud deposits of the Changjiang Estuary and adjacent shelf: Implications for carbon preservation and authigenic mineral formation[J]. Continental Shelf Research, 2014, 91:1-11.
29 BianchiT S, AllisonM A. Large-river delta-front estuaries as natural \"recorders\" of global environmental change[J]. Proceedings of the National Academy of Sciences, 2009, 106(20):8 085-8 092.
30 ZhaoB, YaoP, BianchiT S, et al. The remineralization of sedimentary organic carbon in different sedimentary regimes of the Yellow and East China Seas[J]. Chemical Geology, 2018, 495: 104-117.
31 BorowskiW S, PaullC K, UsslerW I. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate[J]. Geology, 1996, 24(7):655-658.
32 Pei-ChuanChuang, YangT F, HongW L, et al. Estimation of methane flux offshore SW Taiwan and the influence of tectonics on gas hydrate accumulation[J]. Geofluids, 2010, 10(4):497-510.
33 FengDong, ChenDuofu, SuZheng, et al. Anaerobic oxidation of methane[J].Marine Geology & Quaternary Geology,2006, 26(3):125-131.
冯东, 陈多福, 苏正,等.海底甲烷缺氧氧化与冷泉碳酸盐岩沉淀动力学研究进展[J].海洋地质与第四纪地质, 2006, 26(3):125-131.
34 MeisterP, LiuB, FerdelmanT G, et al. Erratum to ‘Control of sulphate and methane distributions in marine sediments by organic matter reactivity’ [Geochimica et Cosmochimica 104 (2013) 183-193][J]. Geochimica et Cosmochimica Acta, 2013, 104(3):225-226.
35 YoshinagaM Y, HollerT, GoldhammerT, et al. Carbon isotope equilibration during sulphate-limited anaerobic oxidation of methane[J]. Nature Geoscience, 2014, 7(3):190-194.
36 ReeburghW S. Methane consumption in Cariaco Trench waters and sediments[J]. Earth & Planetary Science Letters, 1976, 28(3):337-344.
37 AntlerG, TurchynA V, HerutB, et al. Sulfur and oxygen isotope tracing of sulfate driven anaerobic methane oxidation in estuarine sediments[J]. Estuarine Coastal & Shelf Science, 2014, 142(4):4-11.
38 WuZijun, RenDezhang, ZhouHuaiyang. Anaerobic Oxidation of Methane (AOM) and its influence on inorganic sulfur cycle in marine sediments[J]. Advances in Earth Science,2013,28(7):765-773.
吴自军,任德章,周怀阳.海洋沉积物甲烷厌氧氧化作用(AOM)及其对无机硫循环的影响[J].地球科学进展, 2013, 28(7):765-773.
39 DevolA H, AndersonJ J, KuivilaK, et al. A model for coupled sulfate reduction and methane oxidation in the sediments of Saanich Inlet[J]. Geochimica et Cosmochimica Acta, 1984, 48(5):993-1 004.
40 EggerM,RiedingerN,Mogollón JoséM, et al. Global diffusive fluxes of methane in marine sediments[J]. Nature Geoscience, 2018. DOI:10.1038/s41561-018-0122-8.
doi: 10.1038/s41561-018-0122-8.    
41 BeuligaF,R?yH,McglynnS E, et al. Cryptic CH4 cycling in the sulfate-methane transition of marine sediments apparently mediated by ANME-1 archaea[J]. The ISME Journal, 2018. DOI:10.1038/s41396-018-0273-z.
doi: 10.1038/s41396-018-0273-z.    
42 FluryS,R?yH,DaleA W, et al. Controls on subsurface methane fluxes and shallow gas formation in Baltic Sea sediment (Aarhus Bay, Denmark)[J]. Geochimica et Cosmochimica Acta, 2016, 188:297-309.
43 KomadaT, BurdigeD J, LiH L, et al. Organic matter cycling across the sulfate-methane transition zone of the Santa Barbara Basin, California Borderland[J]. Geochimica et Cosmochimica Acta, 2016, 176:259-278.
44 WhiticarM J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane[J]. Chemical Geology, 1999, 161(1/3):291-314.
45 BeuligF,R?yH,GlombitzaC, et al. Control on rate and pathway of anaerobic organic carbon degradation in the seabed[J]. Proceedings of the National Academy of Sciences, 2018,115(2):367-372.
46 BorowskiW S, PaullC K, IiiW U. Carbon cycling within the upper methanogenic zone of continental rise sediments: An example from the methane-rich sediments overlying the Blake Ridge gas hydrate deposits[J]. Marine Chemistry, 1997, 57(3/4):299-311.
47 Pei-ChuanChuang, Frank YangT, WallmannK, et al. Carbon isotope exchange during Anaerobic Oxidation of Methane (AOM) in sediments of the northeastern South China Sea[J]. Geochimica et Cosmochimica Acta,2019,246(1):138-155.
48 KimS, ChoiK, ChungJ. Reduction in carbon dioxide and production of methane by biological reaction in the electronics industry[J]. International Journal of Hydrogen Energy, 2013, 38(8):3 488-3 496.
49 HongW L, TorresM E, KimJ H, et al. Carbon cycling within the sulfate-methane-transition-zone in marine sediments from the Ulleung Basin[J]. Biogeochemistry, 2013, 115(1/3):129-148.
50 DaleA W, BrüchertV, AlperinM, et al. An integrated sulfur isotope model for Namibian shelf sediments[J]. Geochimica et Cosmochimica Acta, 2009, 73(7):1 924-1 944.
51 HollerT, WegenerG, NiemannH, et al. Carbon and sulfur back flux during anaerobic microbial oxidation of methane and coupled sulfate reduction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(52):E1 484-E1 490.
52 MichalopoulosP, AllerR C. Rapid clay mineral formation in amazon delta sediments: Reverse weathering and oceanic elemental cycles[J]. Science, 1995, 270(5 236):614-617.
53 MichalopoulosP, AllerR C. Early diagenesis of biogenic silica in the Amazon delta: Alteration, authigenic clay formation, and storage[J]. Geochimica et Cosmochimica Acta, 2004, 68(5):1 061-1 085.
54 YaoP, ZhaoB, BianchiT S, et al. Remineralization of sedimentary organic carbon in mud deposits of the Changjiang Estuary and adjacent shelf: Implications for carbon preservation and authigenic mineral formation[J]. Continental Shelf Research, 2014, 91:1-11.
55 ZhaoB, YaoP, YangZ, et al. Reverse Weathering in River-dominated Marginal Seas[J]. Advances in Earth Science, 2018, 33(1): 42-51.
56 AllerR C, HannidesA, HeilbrunC, et al. Coupling of early diagenetic processes and sedimentary dynamics in tropical shelf environments: The Gulf of Papua deltaic complex[J]. Continental Shelf Research, 2004, 24(19):2 455-2 486.
57 WuZ, LiuB, EscherP, et al. Carbon diagenesis in different sedimentary environments of the subtropical Beibu Gulf, South China Sea[J]. Journal of Marine Systems, 2018, 186: 68-84.
58 SunXiaole, TurchynA V. Significant contribution of authigenic carbonate to marine carbon burial[J]. Nature Geoscience, 2014, 7(3):201-204.
59 SchragD P, HigginsJ A, MacdonaldF A, et al. Authigenic Carbonate and the History of the Global Carbon Cycle[J]. Science, 2013, 339(6 119):540-543.
60 AllerR C, BlairN E, XiaQ, et al. Remineralization rates, recycling, and storage of carbon in Amazon shelf sediments[J]. Continental Shelf Research, 1996, 16(5/6):753-786.
61 CastanierS, Ga?le LeM, PerthuisotJ, et al. Bacterial roles in the precipitation of carbonate minerals[M]// Microbial Sediments. Berlin Heidelberg:Springer, 2000.
62 BraissantO, DechoA W, DuprazC, et al. Exopolymeric substances of sulfate-reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals[J]. Geobiology, 2007,5(4): 401-411.
63 KrauseS, LiebetrauV, L?scherC R, et al. Marine ammonification and carbonic anhydrase activity induce rapid calcium carbonate precipitation[J]. Geochimica et Cosmochimica Acta, 2018, 243:116-132.
64 MitnickE H, LammersL N, ZhangS, et al. Authigenic carbonate formation rates in marine sediments and implications for the marine δ13C record[J]. Earth and Planetary Science Letters, 2018,495:135-145.
65 ArcherD E, MorfordJ L, EmersonS R. A model of suboxic sedimentary diagenesis suitable for automatic tuning and gridded global domains[J]. Global Biogeochemical Cycles, 2002, 16(1):17-1-17-21.
66 RidgwellA. Application of sediment core modelling to interpreting the glacial-interglacial record of Southern Ocean silica cycling[J]. Climate of the Past, 2007, 3(3):387-396.
67 ShafferG, Malsk?r OlsenS, Pepke PedersenJ O. Presentation, calibration and validation of the low-order, DCESS Earth System Model (Version 1)[J]. Geoscientific Model Development Discussions, 2008, 1(1):1-4.
68 PalastangaV, SlompC P, HeinzeC. Long‐term controls on ocean phosphorus and oxygen in a global biogeochemical model[J]. Global Biogeochemical Cycles, 2011, 25(3). DOI: 10.1029/2010GB003827.
doi: 10.1029/2010GB003827.    
69 ChenC T A. Shelf-vs. dissolution-generated alkalinity above the chemical lysocline[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2002, 49(24/25):5 365-5 375.
70 ThomasH, SchiettecatteL S, SuykensK, et al. Enhanced ocean carbon storage from anaerobic alkalinity generation in coastal sediments[J]. Applied Catalysis A General, 2009, 363(1):221-229.
71 HuXinping, CaiWeijun. An assessment of ocean margin anaerobic processes on oceanic alkalinity budget[J]. Global Biogeochemical Cycles, 2011, 25(3). DOI: 10.1029/2010GB003859.
doi: 10.1029/2010GB003859.    
72 KruminsV, GehlenM, ArndtS, et al. Dissolved inorganic carbon and alkalinity fluxes from coastal marine sediments: Model estimates for different shelf environments and sensitivity to global change[J]. Biogeosciences, 2013, 10(1):371-398.
73 AnderssonA J, MackenzieF T, LermanA. Coastal ocean and carbonate systems in the high CO2 world of the Anthropocene[J]. American Journal of Science, 2005, 305(9):875-918.
74 MorseJ W, MackenzieF T. Geochemistry of sedimentary carbonates[J]. Developments in Sedimentology, 1990, 48. DOI: 10.1016/S0070-4571(08)70330-3.
doi: 10.1016/S0070-4571(08)70330-3.    
[1] 于晓果;李家彪. 天然气水合物分解及其生态环境效应研究进展[J]. 地球科学进展, 2004, 19(6): 947-954.
阅读次数
全文


摘要