地球科学进展 ›› 2019, Vol. 34 ›› Issue (2): 191 -201. doi: 10.11867/j.issn.1001-8166.2019.02.0191

上一篇    下一篇

60年来我国主要粮食作物适宜生长区的时空分布
宁晓菊 1, 2,张丽君 2,秦耀辰 2,刘凯 1   
  1. 1. 河南财经政法大学城乡协调河南省协同创新中心,河南 郑州 475000
    2. 河南大学环境与规划学院,河南 开封 475004
  • 收稿日期:2018-10-25 修回日期:2019-01-03 出版日期:2019-02-10
  • 基金资助:
    国家重点研发计划项目“碳排放和减碳的社会经济代价研究”(编号:2016YFA0602500);国家自然科学基金面上项目“地理学本体论问题理论研究”(编号:41771445)资助.

Temporal-spatial Distribution of Suitable Areas for Major Food Crops in China Over 60 Years

Xiaoju Ning 1, 2,Lijun Zhang 2,Yaochen Qin 2,Kai Liu 1   

  1. 1. Collaborative Innovation Center on the Coordinated Development of Urban and Rural in Henan Province, Henan University of Economics and Law, Zhengzhou 475000,China
    2. College of Environment and Planning, Henan University, Henan Kaifeng 475004,China
  • Received:2018-10-25 Revised:2019-01-03 Online:2019-02-10 Published:2019-03-26
  • About author:Ning Xiaoju(1987-), female, Shangqiu County, Henan Province, Lecturer. Research areas include climate change and agricultural adaptation. E-mail:nxj0655@163.com
  • Supported by:
    Project supported by the National Key Research and Development Program of China “Initiative on social and economic dimensions on climate change and carbon reduction”(No.2016YFA0602500);The National Natural Science Foundation of China “The theoretical study of geography ontology”(No.41771445);Project supported by the National Key Research and Development Program of China “Initiative on social and economic dimensions on climate change and carbon reduction” (No.2016YFA0602500); The National Natural Science Foundation of China “The theoretical study of geography ontology” (No.41771445).

模拟作物适宜生长区的时空分布是分析气候变化对作物生长影响、提高作物生长适应能力的重要内容。选择影响主要粮食作物(小麦、玉米和水稻)生长的气候要素,结合地表土壤和地面高程要素与农业观测站数据,模拟和分析1953—2012年主要粮食作物适宜生长区的变动,评估气候变化下作物的适应能力。研究发现: 60年来3种粮食作物适宜生长区对气候变化响应程度从大到小依次是小麦、水稻和玉米。 同一时空尺度上,主要粮食作物适宜生长类型区在南方农区较北方农区多样化,在山地较盆地多样化,在高原较平原多样化。 小麦生长适应气候变化的能力在多数农区略有上升。玉米生长的适应能力在北方和南方农区分别略微提高和下降。水稻生长的适应能力在长江中下游区、西南区和华南区相对稳定,在黄淮海区和东北区分别下降和提高。 60年来,主要粮食作物综合生长适应气候变化的能力在黄淮海区和长江中下游区下降,在其余农区升高。 玉米和水稻适宜生长区分别与播种面积和作物产量显著相关,这为模拟未来不同气候情景下二者适宜生长区的分布提供了可行性。小麦适宜生长区与播种面积和产量均不显著相关,未来需要考虑更多因素精准识别小麦适宜生长区,以便更为有效地提高小麦生长对气候变化的适应能力。

Simulating the temporal-spatial distribution of areas suitable for crops is an important part of analyzing the effects of climate change on crop growth, reducing the vulnerability of crop growth, and assessing the adaptability of crop growth to climate change. This study selected climate factors that affect the growth of wheat, maize and rice, and it combined surface soil and ground elevation factors as environment variables, as well as data from agricultural observation stations as species variables. The MaxEnt ecological model was used to identify suitable areas for these three crops during the period of 1953-2012. The areas suitable for the three crops were analyzed to determine the temporal-spatial distribution of major food crops and to estimate the difference in crop growth adaptability under climate change. The results showed the following: The response to climate change of the areas suitable for food crops could be ranked from strongest to weakest as follows: wheat, rice, and maize. On the same space-time scale, for the growth of wheat and rice, the southern agricultural regions, mountainous areas and plateaus were relatively unsuitable for a wider variety of crops than the northern agricultural regions, plains and basins. The adaptability of wheat increased in the major agricultural regions slightly. The adaptability of maize increased in the northern agricultural regions and decreased in the southern agricultural regions, respectively. The adaptability of rice was stable in the southern agricultural regions, and it decreased in the Huang-Huai-Hai region and increased in the northeastern region. Over 60 years, the ability of the major food crops to adapt to climate change increased in the northeast region, Gansu-Xinjiang region, Southwest region and Loess Plateau region, but the adaptability of major food crops decreased in the Huang-Huai-Hai region and the Mid-and-Lower Reaches of the Yangtze River. The suitable areas of maize and rice were significantly correlated with planting areas and yields, respectively, which provided feasibility for simulating the distribution of suitable areas on maize and rice in different climate scenarios in the future. The suitable area of wheat is not significantly related to the planting area and yield. In the future, we will take more factors to model the suitable area of wheat accurately.

中图分类号: 

表1 影响主要粮食作物种植分布的关键气候要素
Table 1 Climate factors for major food crops growth
图1 主要粮食作物农业观测站分布
Fig1 Distribution of agricultural observation stations for major food crops
图2 60年来小麦适宜生长区的时空变化
Fig.2 Temporal-spatial distribution of areas suitable for wheat from 1953 to 2012
表2 小麦适宜生长区各类型占全国面积比值及变化幅度(单位 %
Table 2 Ratio of different suitable areas for wheatunit: %
图3 60年来玉米适宜生长区的时空分布
Fig.3 Temporal-spatial distribution of areas suitable for maize from 1953 to 2012
表3 玉米适宜生长区各类型的面积比值及变化幅度(单位 %
Table 3 Ratio of different suitable areas for maizeunit: %
图4 60年来水稻适宜生长区的时空分布
Fig.4 Temporal-spatial distribution of areas suitable for paddy from 1953 to 2012
表4 水稻适宜生长区各类型的面积比值及变化幅度(单位 %
Table 4 Ratio of different suitable areas for paddyunit: %
图5 主要粮食作物适宜生长区的时空分布
Fig.5 Temporal-spatial distribution of areas suitable for major food crops from 1953 to 2012
表5 主要粮食作物适宜生长区分布面积比例及变化幅度(单位 %
Table 5 Ratio of different suitable areas for major food cropsunit: %
表6 主要粮食作物适宜生长区与实际分布的相关性
Table 6 Correlation coefficient between the suitable area and actual distribution of major grain crops
1 QuJiansheng, XiaoXiantao, ZengJingjing. A profile of international climate change science in the past one hundred years [J]. Advances in Earth Science, 2018, 33 (11):1 193-1 202.
曲建升,肖仙桃,曾静静. 国际气候变化科学百年研究态势分析[J].地球科学进展,2018,33(11):1 193-1 202.
2 EdmarI T, GuentherF, HarrigV V, et al. Global hot-spots of heat stress on agricultural crops due to climate change [J]. Agriculture and Forest Meteorlogy, 2013, 170: 206-215.
3 ZhangMengting, ZhangYujing, TongJinhe, et al. Variations of agro-climatic resources under a future climate scenario in the potential northward region of winter wheat [J]. Climate Change Research,2017,13(2):1-10.
张梦婷,张玉静,佟金鹤,等.未来气候情景下冬小麦潜在北移区农业气候资源变化特征[J].气候变化研究进展, 2017, 13(2): 1-10.
4 ZhaoJunfang, GuoJianping, XuYanhong, et al. Effects of climate change on cultivation patterns of spring maize and its climatic suitability in Northeast China [J]. Agriculture, Ecosystems and Environment, 2015, 202: 178-187.
5 MamatYusuf, UlamMahpiret, SabitMansur. Impact of climate warming on cotton production of Ugan-Kuqa River delta oasis [J]. Geographical Research, 2014, 33(2): 251-259.
玉苏甫.买买提, 买合皮热提.吾拉木,满苏尔.沙比提.气候变化对渭干河—库车河三角洲棉花生产的影响[J].地理研究,2014, 33(2): 251-259.
6 DaiShengpei, LiHailiang, LuoHongxia, et al. The spatio-temporal change of active accumulated temperature≥10℃ in Southern China from 1960 to 2011[J]. Acta Geographica Sinica, 2014, 69(5): 650-660.
戴声佩,李海亮,罗红霞,等.1960—2011年华南地区界限温度10℃积温时空变化分析[J].地理学报,2014, 69(5): 650-660.
7 ZhangGeli, DongJinwei, ZhouCaping, et al. Increasing cropping intensity in response to climate warming in Tibetan Plateau, China[J]. Field Crops Research, 2013, 142: 36-46.
8 HuShi, MoXingguo, LinZhonghui. The contribution of climate change to the crop phenology and yield in Haihe River Basin [J]. Geographical Research, 2014, 33(1): 3-12.
胡实,莫兴国,林忠辉.气候变化对海河流域主要作物物候和产量影响[J].地理研究, 2014, 33(1): 3-12.
9 QianJinxia, LiNa, HanPu. Influence of climate warming in winter on the winter wheat cultivable area in Shanxi Province [J]. Acta Geographica Sinica, 2014, 69(5): 672-680.
钱锦霞,李娜,韩普.冬季变暖对山西省冬小麦可种植区的影响[J]. 地理学报, 2014, 69(5): 672-680.
10 MoXingguo, HuShi, LinZhonghui, et al. Impacts of climate change on agricultural water resources and adaptation on the North China Plain [J]. Advances in Climate Change Research, 2017, (8): 93-98.
11 HeQijin. Study on the Relationship Between Maize Cultivation Distribution in China and Climate [D]. Nanjing: Nanjing University of Information Science & Technology, 2012.
何奇瑾. 我国玉米种植分布与气候关系研究[D].南京:南京信息工程大学, 2012.
12 ZhangShuai, TaoFulu. Modeling the response of rice phenology to climate change and variability in different climatic zones: Comparisons of five models [J]. European Journal of Agronomy, 2013, 45: 165-176.
13 XiaTian, WuWenbin, ZhouQingbo,et al. Spatio-temporal changes in the rice planting area and their relationship to climate change in Northeast China: A model-based analysis[J]. Journal of Integrative Agriculture, 2014, 13(7): 1 575-1 585.
14 WangZheng, YueQun, XiaHaibin, et al. China 2050: Climate scenarios and stability of Hu-line [J]. Science in China(Series D), 46(11): 1 505-1 514.
王铮,乐群,夏海斌,等.中国2050: 气候情景与胡焕庸线的稳定性[J].中国科学:D辑, 2016, 46(11): 1 505-1 514.
15 BarrosV R,FieldC B,DokkeD J,et al. IPCC Working Group II to the Fifth Assessment Report of the Intergouvermental Panel on Climate change. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects[M]. Cambridge, United Kingdom and New York, NY, USA:Cambridge University Press,2014.
16 FangJingyun, SongYongchang, LiuHongyan,et al. Vegetation-climate relationship and its application in the division of vegetion zone in China [J]. Acta Botanica Sinica, 2012, 44: 1 105-1 122.
17 ZhaoHong, XiaoGuoju, WangRunyuan, et al. Impact of climate change on spring wheat growth in semi-arid rain feed region [J]. Advances in Earth Science, 2007, 22(3): 322-327.
赵鸿, 肖国举, 王润元, 等. 气候变化对半干旱雨养农业区春小麦生长的影响[J].地球科学进展, 2007, 22(3): 322-327.
18 XiongWei, YangJie, WuWenbin, et al. Sensitivity and vulnerability of China's rice production to observed climate change [J]. Acta Ecologica Sinica, 2013, 33(2): 509-518.
熊伟,杨婕,吴文斌,等.中国水稻生产对历史气候变化的敏感性和脆弱性[J].生态学报, 2013, 33(2): 509-518.
19 Editorial Committee of the National Agricultural Zoning Committee 'Comprehensive Agricultural Regionalization in China/Comprehensive Agricultural Regionalization in China [M]. Beijing: Agricultural Press, 1981: 146.[全国农业区划委员会《中国综合农业区划》编写组.中国综合农业区划[M].北京: 农业出版社, 1981: 146.]
20 NingXiaoju, ZhangLijun, YangQuntao, et al. Trends in the frost-free period in China from 1951 to 2012[J]. Acta Geographica Sinica, 2015, 70(11): 1 811-1 822.
宁晓菊,张丽君,杨群涛,等.1951年以来中国无霜期的变化趋势[J].地理学报, 2015, 70(11): 1 811-1 822.
21 PhillipsS J, AndersonR P, SchapireR E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190(3/4): 231-259.
22 DuanJuqi. Rice Planting Distribution and Its Response to Climate Change in China [D]. Nanjing: Nanjing University of Information Science & Technology, 2012.
段居琦.我国水稻种植分布及其对气候变化的响应[D].南京:南京信息工程大学,2012.
[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[7] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[8] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[9] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[10] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[11] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[12] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[13] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[14] 王亚锋,芦晓明,朱海峰,梁尔源. 高山树线的调查与研究方法[J]. 地球科学进展, 2020, 35(1): 38-51.
[15] 罗鑫玥,陈明星. 城镇化对气候变化影响的研究进展[J]. 地球科学进展, 2019, 34(9): 984-997.
阅读次数
全文


摘要