Please wait a minute...
img img
高级检索
地球科学进展  2019, Vol. 34 Issue (2): 191-201    DOI: 10.11867/j.issn.1001-8166.2019.02.0191
    
60年来我国主要粮食作物适宜生长区的时空分布
宁晓菊1,2,张丽君2,秦耀辰2,刘凯1
1. 河南财经政法大学城乡协调河南省协同创新中心,河南 郑州 475000
2. 河南大学环境与规划学院,河南 开封 475004
Temporal-spatial Distribution of Suitable Areas for Major Food Crops in China Over 60 Years
Xiaoju Ning1,2,Lijun Zhang2,Yaochen Qin2,Kai Liu1
1. Collaborative Innovation Center on the Coordinated Development of Urban and Rural in Henan Province, Henan University of Economics and Law, Zhengzhou 475000,China
2. College of Environment and Planning, Henan University, Henan Kaifeng 475004,China
 全文: PDF(4667 KB)   HTML
摘要:

模拟作物适宜生长区的时空分布是分析气候变化对作物生长影响、提高作物生长适应能力的重要内容。选择影响主要粮食作物(小麦、玉米和水稻)生长的气候要素,结合地表土壤和地面高程要素与农业观测站数据,模拟和分析1953—2012年主要粮食作物适宜生长区的变动,评估气候变化下作物的适应能力。研究发现:60年来3种粮食作物适宜生长区对气候变化响应程度从大到小依次是小麦、水稻和玉米。同一时空尺度上,主要粮食作物适宜生长类型区在南方农区较北方农区多样化,在山地较盆地多样化,在高原较平原多样化。小麦生长适应气候变化的能力在多数农区略有上升。玉米生长的适应能力在北方和南方农区分别略微提高和下降。水稻生长的适应能力在长江中下游区、西南区和华南区相对稳定,在黄淮海区和东北区分别下降和提高。60年来,主要粮食作物综合生长适应气候变化的能力在黄淮海区和长江中下游区下降,在其余农区升高。玉米和水稻适宜生长区分别与播种面积和作物产量显著相关,这为模拟未来不同气候情景下二者适宜生长区的分布提供了可行性。小麦适宜生长区与播种面积和产量均不显著相关,未来需要考虑更多因素精准识别小麦适宜生长区,以便更为有效地提高小麦生长对气候变化的适应能力。

关键词: 适宜生长区适宜等级适应能力气候变化粮食作物    
Abstract:

Simulating the temporal-spatial distribution of areas suitable for crops is an important part of analyzing the effects of climate change on crop growth, reducing the vulnerability of crop growth, and assessing the adaptability of crop growth to climate change. This study selected climate factors that affect the growth of wheat, maize and rice, and it combined surface soil and ground elevation factors as environment variables, as well as data from agricultural observation stations as species variables. The MaxEnt ecological model was used to identify suitable areas for these three crops during the period of 1953-2012. The areas suitable for the three crops were analyzed to determine the temporal-spatial distribution of major food crops and to estimate the difference in crop growth adaptability under climate change. The results showed the following: The response to climate change of the areas suitable for food crops could be ranked from strongest to weakest as follows: wheat, rice, and maize. On the same space-time scale, for the growth of wheat and rice, the southern agricultural regions, mountainous areas and plateaus were relatively unsuitable for a wider variety of crops than the northern agricultural regions, plains and basins. The adaptability of wheat increased in the major agricultural regions slightly. The adaptability of maize increased in the northern agricultural regions and decreased in the southern agricultural regions, respectively. The adaptability of rice was stable in the southern agricultural regions, and it decreased in the Huang-Huai-Hai region and increased in the northeastern region. Over 60 years, the ability of the major food crops to adapt to climate change increased in the northeast region, Gansu-Xinjiang region, Southwest region and Loess Plateau region, but the adaptability of major food crops decreased in the Huang-Huai-Hai region and the Mid-and-Lower Reaches of the Yangtze River. The suitable areas of maize and rice were significantly correlated with planting areas and yields, respectively, which provided feasibility for simulating the distribution of suitable areas on maize and rice in different climate scenarios in the future. The suitable area of wheat is not significantly related to the planting area and yield. In the future, we will take more factors to model the suitable area of wheat accurately.

Key words: Suitable area    Crop adaptability    Suitability level    Climate change    Major food crops.
收稿日期: 2018-10-25 出版日期: 2019-03-26
ZTFLH:  P935.1  
基金资助: 国家重点研发计划项目“碳排放和减碳的社会经济代价研究”(编号:2016YFA0602500);国家自然科学基金面上项目“地理学本体论问题理论研究”(编号:41771445)资助.
作者简介: 宁晓菊(1987-),女,河南商丘人,讲师,主要从事气候变化与农业适应性研究.E-mail:nxj0655@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
宁晓菊
张丽君
秦耀辰
刘凯

引用本文:

宁晓菊,张丽君,秦耀辰,刘凯. 60年来我国主要粮食作物适宜生长区的时空分布[J]. 地球科学进展, 2019, 34(2): 191-201.

Xiaoju Ning,Lijun Zhang,Yaochen Qin,Kai Liu. Temporal-spatial Distribution of Suitable Areas for Major Food Crops in China Over 60 Years. Advances in Earth Science, 2019, 34(2): 191-201.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2019.02.0191        http://www.adearth.ac.cn/CN/Y2019/V34/I2/191

作物主要气候要素
小麦0 积温及持续天数、年平均气温、年极端低温、最冷月平均气温、日照时数、年降水量及降水天数
玉米10 积温、年平均气温、最热月平均气温、无霜期、日照时数、年降水量、年降水天数
水稻18 积温及持续天数、10 积温持续天数、年平均气温、最热月平均气温、年温差、年降水量及降水天数
表1  影响主要粮食作物种植分布的关键气候要素
图1  主要粮食作物农业观测站分布
图2  60年来小麦适宜生长区的时空变化
农区1953—1982年各类型面积比值1983—2012年各类型区面积变化幅度
不适宜区低适宜区中适宜区高适宜区不适宜区低适宜区中适宜区高适宜区
东北区2.4854.2053.1701.619+0.062-0.214+0.098+0.054
内蒙及长城沿线区0.0021.4115.0292.814-0.001-0.205-0.358+0.564
甘新区8.6258.0985.1582.963+0.969-1.115+0.252-0.107
青藏区17.8572.5151.0450.903-0.020-0.032-0.008+0.059
黄土高原区0.0140.3241.7771.972+0.000-0.041+0.009+0.031
黄淮海区0.0000.2121.1593.187+0.000-0.034-0.134+0.168
长江中下游区2.9763.0201.9261.229-0.061+0.054+0.210-0.204
西南区1.3974.8552.0961.349+0.020-0.089+0.023+0.046
华南区3.1881.2570.1450.018-0.028+0.072-0.031-0.013
总和36.54425.89821.50516.053+0.943-1.602+0.062+0.598
表2  小麦适宜生长区各类型占全国面积比值及变化幅度(单位:%)
图3  60年来玉米适宜生长区的时空分布
农区1953—1982年各类型面积比值1983—2012年各类型区面积变化值
不适宜区低适宜区中适宜区高适宜区不适宜区低适宜区中适宜区高适宜区
东北区3.6972.3042.4533.025-0.084+0.337-0.283+0.030
内蒙及长城沿线区3.8891.8991.4781.991-0.233+0.209+0.118-0.094
甘新区14.9686.6582.4900.729-0.029-0.011+0.017+0.023
青藏区21.4950.5780.0920.156+0.020-0.005-0.011-0.004
黄土高原区0.2541.0791.5761.178+0.001-0.088+0.074+0.013
黄淮海区0.0000.0570.8933.6080.000-0.021-0.153+0.174
长江中下游区0.6046.6351.8070.104+0.377-0.396+0.072-0.054
西南区0.5114.4402.6712.0750.000+0.092+0.007-0.099
华南区0.5783.3630.5680.098-0.004-0.079+0.016+0.067
总和45.99427.01314.02912.964+0.048+0.038-0.142+0.056
表3  玉米适宜生长区各类型的面积比值及变化幅度(单位:%)
图4  60年来水稻适宜生长区的时空分布
农区1953—1982年各类型面积比值1983—2012年各类型区面积比值
不适宜区低适宜区中适宜区高适宜区不适宜区低适宜区中适宜区高适宜区
东北区3.8155.1342.3290.201+0.136-0.288+0.047+0.105
内蒙及长城沿线区8.1831.0620.0120.000+0.059-0.054-0.0050.000
甘新区24.7040.1400.0000.000-0.242+0.2420.0000.000
青藏区21.8410.2500.1140.116-0.007+0.009-0.001-0.002
黄土高原区3.3930.6540.0400.000-0.099-0.003+0.102+0.000
黄淮海区0.1292.2072.1100.113-0.001+0.461-0.621+0.160
长江中下游区0.8322.0782.9413.299-0.257+0.221+0.216-0.181
西南区0.9382.2453.2503.263-0.085-0.035-0.109+0.230
华南区0.3471.2621.6791.318-0.067+0.035+0.194-0.162
总和64.18115.03212.4768.310-0.563+0.589-0.177+0.151
表4  水稻适宜生长区各类型的面积比值及变化幅度(单位:%)
图5  主要粮食作物适宜生长区的时空分布
粮食作物类型区1953—1982年1983—2012年变化粮食作物类型区1953—1982年1983—2012年变化
whHM,mzHM,pdHM7.7477.714-0.033whL,mzL,pdN3.4253.391-0.034
whHM,mzHM,pdL6.4386.837+0.399whL,mzN,pdHM0.0870.157+0.070
whHM,mzHM,pdN7.4817.377-0.104whL,mzN,pdL0.4170.348-0.069
whHM,mzL,pdHM2.6292.467-0.162whL,mzN,pdN10.6729. 383-1.289
whHM,mzL,pdL0.7341.026+0.292whN,mzHM,pdHM0.8150.759-0.056
whHM,mzL,pdN7.1127.277+0.165whN,mzHM,pdL0.5860.527-0.059
whHM,mzN,pdHM0.0010.000-0.001whN,mzHM,pdN0.0260.017-0.009
whHM,mzN,pdL0.0490.050+0.001whN,mzL,pdHM2.1622.373+0.211
whHM,mzN,pdN5.3675.469+0.102whN,mzL,pdL2.5322.372-0.160
whL,mzHM,pdHM2.4812.521+0.040whN,mzL,pdN1.0210.804-0.217
whL,mzHM,pdL1.0430.815-0.228whN,mzN,pdHM0.1490.142-0.007
whL,mzHM,pdN0.3760.339-0. 037whN,mzN,pdL0.5510. 930+0.379
whL,mzL,pdHM4.7154.626-0.089whN,mzN,pdN28.70029.562+0.862
whL,mzL,pdL2.6832.716+0.033
表5  主要粮食作物适宜生长区分布面积比例及变化幅度(单位:%)
中高适宜区适宜区
作物小麦玉米水稻小麦玉米水稻

产量

置信水平

0.156

0.402

0.765**

0.000

0.729**

0.000

0.05

0.791

0.415*

0.02

0.579**

0.001

播种面积

置信水平

0.188

0.311

0.775**

0.000

0.721**

0.000

0.075

0.690

0.431*

0.015

0.578**

0.001

表6  主要粮食作物适宜生长区与实际分布的相关性
1 QuJiansheng, XiaoXiantao, ZengJingjing. A profile of international climate change science in the past one hundred years [J]. Advances in Earth Science, 2018, 33 (11):1 193-1 202.
1 曲建升,肖仙桃,曾静静. 国际气候变化科学百年研究态势分析[J].地球科学进展,2018,33(11):1 193-1 202.
2 EdmarI T, GuentherF, HarrigV V, et al. Global hot-spots of heat stress on agricultural crops due to climate change [J]. Agriculture and Forest Meteorlogy, 2013, 170: 206-215.
3 ZhangMengting, ZhangYujing, TongJinhe, et al. Variations of agro-climatic resources under a future climate scenario in the potential northward region of winter wheat [J]. Climate Change Research,2017,13(2):1-10.
3 张梦婷,张玉静,佟金鹤,等.未来气候情景下冬小麦潜在北移区农业气候资源变化特征[J].气候变化研究进展, 2017, 13(2): 1-10.
4 ZhaoJunfang, GuoJianping, XuYanhong, et al. Effects of climate change on cultivation patterns of spring maize and its climatic suitability in Northeast China [J]. Agriculture, Ecosystems and Environment, 2015, 202: 178-187.
5 MamatYusuf, UlamMahpiret, SabitMansur. Impact of climate warming on cotton production of Ugan-Kuqa River delta oasis [J]. Geographical Research, 2014, 33(2): 251-259.
5 玉苏甫.买买提, 买合皮热提.吾拉木,满苏尔.沙比提.气候变化对渭干河—库车河三角洲棉花生产的影响[J].地理研究,2014, 33(2): 251-259.
6 DaiShengpei, LiHailiang, LuoHongxia, et al. The spatio-temporal change of active accumulated temperature≥10℃ in Southern China from 1960 to 2011[J]. Acta Geographica Sinica, 2014, 69(5): 650-660.
6 戴声佩,李海亮,罗红霞,等.1960—2011年华南地区界限温度10℃积温时空变化分析[J].地理学报,2014, 69(5): 650-660.
7 ZhangGeli, DongJinwei, ZhouCaping, et al. Increasing cropping intensity in response to climate warming in Tibetan Plateau, China[J]. Field Crops Research, 2013, 142: 36-46.
8 HuShi, MoXingguo, LinZhonghui. The contribution of climate change to the crop phenology and yield in Haihe River Basin [J]. Geographical Research, 2014, 33(1): 3-12.
8 胡实,莫兴国,林忠辉.气候变化对海河流域主要作物物候和产量影响[J].地理研究, 2014, 33(1): 3-12.
9 QianJinxia, LiNa, HanPu. Influence of climate warming in winter on the winter wheat cultivable area in Shanxi Province [J]. Acta Geographica Sinica, 2014, 69(5): 672-680.
9 钱锦霞,李娜,韩普.冬季变暖对山西省冬小麦可种植区的影响[J]. 地理学报, 2014, 69(5): 672-680.
10 MoXingguo, HuShi, LinZhonghui, et al. Impacts of climate change on agricultural water resources and adaptation on the North China Plain [J]. Advances in Climate Change Research, 2017, (8): 93-98.
11 HeQijin. Study on the Relationship Between Maize Cultivation Distribution in China and Climate [D]. Nanjing: Nanjing University of Information Science & Technology, 2012.
11 何奇瑾. 我国玉米种植分布与气候关系研究[D].南京:南京信息工程大学, 2012.
12 ZhangShuai, TaoFulu. Modeling the response of rice phenology to climate change and variability in different climatic zones: Comparisons of five models [J]. European Journal of Agronomy, 2013, 45: 165-176.
13 XiaTian, WuWenbin, ZhouQingbo,et al. Spatio-temporal changes in the rice planting area and their relationship to climate change in Northeast China: A model-based analysis[J]. Journal of Integrative Agriculture, 2014, 13(7): 1 575-1 585.
14 WangZheng, YueQun, XiaHaibin, et al. China 2050: Climate scenarios and stability of Hu-line [J]. Science in China(Series D), 46(11): 1 505-1 514.
14 王铮,乐群,夏海斌,等.中国2050: 气候情景与胡焕庸线的稳定性[J].中国科学:D辑, 2016, 46(11): 1 505-1 514.
15 BarrosV R,FieldC B,DokkeD J,et al. IPCC Working Group II to the Fifth Assessment Report of the Intergouvermental Panel on Climate change. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects[M]. Cambridge, United Kingdom and New York, NY, USA:Cambridge University Press,2014.
16 FangJingyun, SongYongchang, LiuHongyan,et al. Vegetation-climate relationship and its application in the division of vegetion zone in China [J]. Acta Botanica Sinica, 2012, 44: 1 105-1 122.
17 ZhaoHong, XiaoGuoju, WangRunyuan, et al. Impact of climate change on spring wheat growth in semi-arid rain feed region [J]. Advances in Earth Science, 2007, 22(3): 322-327.
17 赵鸿, 肖国举, 王润元, 等. 气候变化对半干旱雨养农业区春小麦生长的影响[J].地球科学进展, 2007, 22(3): 322-327.
18 XiongWei, YangJie, WuWenbin, et al. Sensitivity and vulnerability of China's rice production to observed climate change [J]. Acta Ecologica Sinica, 2013, 33(2): 509-518.
18 熊伟,杨婕,吴文斌,等.中国水稻生产对历史气候变化的敏感性和脆弱性[J].生态学报, 2013, 33(2): 509-518.
19 Editorial Committee of the National Agricultural Zoning Committee 'Comprehensive Agricultural Regionalization in China/Comprehensive Agricultural Regionalization in China [M]. Beijing: Agricultural Press, 1981: 146.[全国农业区划委员会《中国综合农业区划》编写组.中国综合农业区划[M].北京: 农业出版社, 1981: 146.]
20 NingXiaoju, ZhangLijun, YangQuntao, et al. Trends in the frost-free period in China from 1951 to 2012[J]. Acta Geographica Sinica, 2015, 70(11): 1 811-1 822.
20 宁晓菊,张丽君,杨群涛,等.1951年以来中国无霜期的变化趋势[J].地理学报, 2015, 70(11): 1 811-1 822.
21 PhillipsS J, AndersonR P, SchapireR E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190(3/4): 231-259.
22 DuanJuqi. Rice Planting Distribution and Its Response to Climate Change in China [D]. Nanjing: Nanjing University of Information Science & Technology, 2012.
22 段居琦.我国水稻种植分布及其对气候变化的响应[D].南京:南京信息工程大学,2012.
[1] 张晓闻, 臧淑英, 孙丽. 近40年东北地区积雪日数时空变化特征及其与气候要素的关系[J]. 地球科学进展, 2018, 33(9): 958-968.
[2] 潘留杰, 张宏芳. NEX-BCC模式对秦岭及周边地区气候变化的模拟及预估[J]. 地球科学进展, 2018, 33(9): 933-944.
[3] 李宁, 刘丽, 张正涛, 冯介玲, 陈曦, 白扣. 气候变化经济影响研究热点的足迹可视化:整合被引文献和突现词[J]. 地球科学进展, 2018, 33(8): 865-873.
[4] 刘鹄, 赵文智, 李中恺. 地下水依赖型生态系统生态水文研究进展[J]. 地球科学进展, 2018, 33(7): 741-750.
[5] 丁之勇, 鲁瑞洁, 刘畅, 段晨曦. 环青海湖地区气候变化特征及其季风环流因素[J]. 地球科学进展, 2018, 33(3): 281-293.
[6] 曲建升, 肖仙桃, 曾静静. 国际气候变化科学百年研究态势分析*[J]. 地球科学进展, 2018, 33(11): 1193-1202.
[7] 黄存瑞, 王琼. 气候变化健康风险评估、早期信号捕捉及应对策略研究[J]. 地球科学进展, 2018, 33(11): 1105-1111.
[8] 黄平, 周士杰. 全球变暖下热带降水变化研究回顾与挑战*[J]. 地球科学进展, 2018, 33(11): 1181-1192.
[9] 管晓丹, 石瑞, 孔祥宁, 刘婧晨, 甘泽文, 马洁茹, 罗雯, 曹陈宇. 全球变化背景下半干旱区陆气机制研究综述[J]. 地球科学进展, 2018, 33(10): 995-1004.
[10] 周洪建. 当前全球减轻灾害风险平台的前沿话题与展望——基于2017年全球减灾平台大会的综述与思考[J]. 地球科学进展, 2017, 32(7): 688-695.
[11] 李兴文, 张鹏, 强小科, 敖红. 三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究[J]. 地球科学进展, 2017, 32(5): 513-523.
[12] 何霄嘉, 王敏, 冯相昭. 生态系统服务纳入应对气候变化的可行性与途径探讨[J]. 地球科学进展, 2017, 32(5): 560-567.
[13] 吴佳, 高学杰, 韩振宇, 徐影. 基于有效温度指数的云南舒适度变化分析[J]. 地球科学进展, 2017, 32(2): 174-186.
[14] 翦知湣, 党皓文. 解读过去、预告未来:IODP气候与海洋变化钻探研究进展与展望[J]. 地球科学进展, 2017, 32(12): 1267-1276.
[15] 方修琦, 张頔旸. 气候变化影响区域文明发展演化的主要表现方式[J]. 地球科学进展, 2017, 32(11): 1218-1225.