地球科学进展 ›› 2020, Vol. 35 ›› Issue (1): 38 -51. doi: 10.11867/j.issn.1001-8166.2020.004

综述与评述 上一篇    下一篇

高山树线的调查与研究方法
王亚锋 1( ),芦晓明 2,朱海峰 2, 3,梁尔源 2, 3   
  1. 1.南京林业大学生物与环境学院生态学系,江苏 南京 210037
    2.中国科学院青藏高原研究所,高寒 生态重点实验室,北京 100101
    3.中国科学院青藏高原地球科学卓越创新中心, 北京 100101
  • 收稿日期:2019-10-14 修回日期:2019-12-05 出版日期:2020-01-20
  • 基金资助:
    中国科学院A类战略性先导科技专项“泛第三极环境变化与绿色丝绸之路建设”(XDA20050101);国家自然科学基金杰出青年科学基金项目“树轮生态学与气候学”(41525001)

Field Survey and Research Approaches at Apine Treelines

Yafeng Wang 1( ),Xiaoming Lu 2,Haifeng Zhu 2, 3,Eryuan Liang 2, 3   

  1. 1.Department of Ecology, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
    2.Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
    3.CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
  • Received:2019-10-14 Revised:2019-12-05 Online:2020-01-20 Published:2020-02-27
  • About author:Wang Yafeng (1981-), male, Ruzhou City, He'nan Province, Associate professor. Research areas include dendroecology. E-mail: wangyf@njfu.edu.cn
  • Supported by:
    the Strategic Priority Research Program of Chinese Academy of Sciences “Pan-Third Pole environment study for a Green Silk Road (Pan-TPE)”(XDA20050101);The National Natural Science Foundation of China “Dendroecology and dendroclimatology”(41525001)

树线作为直立树木分布的海拔或纬度上限,被视为指示气候变化的敏感生态指标,在全球变化生态学研究中备受关注。过去10年来,树线研究快速发展,然而,不同研究采用的调查与研究方法差异较大,不利于从全球或区域尺度上评估山地森林对气候变化的响应与反馈。因此,有必要梳理不同的树线调查与研究方法,总结各方法的特点,进而提出当前亟待关注的前沿问题。目前,树线的调查与研究方法主要包括:历史照片比较、遥感影像分析、样线法、样圆法、样方法、空间点格局模型、树线动态模型、控制与移植实验等。历史照片比较和遥感影像分析虽然能够提供直观的参考,但用于推断树线动态仍存在不确定性。与样线法、样圆法和小方样法等选择性采样法相比,包含当前林线与树线的全样本采样法能得到更准确的树线位置与结构信息。空间点格局模型可建立树线格局与过程联系;树线动态模型可揭示树线变化格局及其驱动机制;控制与移植实验在探索树线变化的关键驱动因子方面具有优势。在今后的研究中,建议使用全样本采样法以便规范开展树线结构与格局变化研究;设置树线固定大样地并定期监测;在区域尺度上开展树线的控制与移植实验;尝试开发移植性强的树线动态模型。

A tree line, as the altitudinal or latitudinal limit of erect trees, is considered as a sensitive ecological indicator of climate change, and becomes one of the hot issues in the studies of global change ecology. During the last decade, rapid progress has been made in tree line studies. However, field survey and research methods may vary significantly among tree line literatures, limiting the evaluation of mountainous forest response and feedback to climate change at regional or global scale. Herein, we reviewed the research progress regarding the field survey and research methods on tree lines, evaluated the advantages and disadvantages of each method, and pointed out the current research frontiers. Field survey and research methods in tree line literatures mainly include: Repeat landscape photography, remote sensing image analysis, land line transect method, circular sampling plot, rectangular or square sampling plot, spatial point pattern analysis, tree line dynamic model, controlled experiment, and transplant experiment. Repeat landscape photography and remote sensing image analysis can provide an intuitive reference for treeline dyanmics, but some uncertainties remain. Compared with selective sampling approach (e.g., line transect method, circular sampling plot and square small plot), sample-total method (rectangular large plots including the whole tree line ecotone, i.e., encompassing the current timberline and the tree line) provides more robust results regarding tree line structure and shifts. Spatial point pattern analysis has been used to establish the linkage between the ecological patterns and processes of the tree line ecotone. Tree line dynamic models can be used to reveal temporal patterns of position and structure of tree line ecotones and their driving mechanisms. Controlled or transplant experiment has advantages in exploring the critical drivers of tree line dynamics. In future studies, sample-total method and its protocol are recommended when exploring variations in structure and position of tree lines; regular monitoring of fixed large tree line plot is worth carrying out; controlled or transplant experiment can be set up at diverse tree lines across a regional scale; researchers should attempt to develop new tree line dynamic models with good transplantation capability.

中图分类号: 

图1 树线过渡带示意图
Fig. 1 The diagram of the treeline ecotone
表1 树线调查与研究方法的优缺点
Table 1 Field survey and research approaches at apine treelines and their advantages
图2 树线野外调查方法示意图
(a)样线法;(b)样圆法;(c)~(e)样方法
Fig. 2 Field survey methods at treeline
(a) Line transect method; (b) Circular sampling plot; (c)~(e) Rectangular or square sampling plot
图3 全样本采样法在藏东南急尖长苞冷杉树线调查中的使用
Fig. 3 Smith fir (Abies georgei var. smithii) treeline plot survey using sample-total method in southeast Tibet
图4 基于Programita软件的空间点格局分析[ 28 ]
Fig. 4 Spatial point pattern analysis using Programita software[ 28 ]
图5 基于Netlogo语言的树线动态模型[ 65 ]
Fig. 5 Treeline dynamic model based on Netlogo modeling environment[ 65 ]
图6 海拔梯度上幼苗移植实验与空间替代时间的方法
Fig.6 Seedling transplant experiment along the altitudinal gradients and method of space for time substitution
1 Holtmeier F. Mountain Timberlines: Ecology, Patchiness and Dynamics [M]. Dordrecht, Germany:Kluwer Academic Publishers,2003.
2 K?rner C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems [M]. Berlin: Springer,2003.
3 Kullman L. Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes [J]. Journal of Ecology,2002,90(1):68-77.
4 Li X, Liang E, Gricar J, et al. Critical minimum temperature limits xylogenesis and maintains treelines on the southeastern Tibetan Plateau [J]. Science Bulletin,2017,62(11):804-812.
5 Liang E, Wang Y, Eckstein D, et al. Little change in the fir tree-line position on the southeastern Tibetan Plateau after 200 years of warming [J]. New Phytologist,2011,190(3):760-769.
6 Liang E Y, Wang Y F, Xu Y, et al. Growth variation in Abies georgei var. smithii along altitudinal gradients in the Sygera Mountains, southeastern Tibetan Plateau[J]. Trees-Structure and Function,2010,24 (2):363-373.
7 Liu B, Liang E Y, Zhu L P. Microclimatic conditions for Juniperus saltuaria treeline in the Sygera Mountains, Southeastern Tibetan Plateau[J]. Mountain Research and Development,2011,31 (1):45-53.
8 Wang Y F, Case B, Rossi S, et al. Frost controls spring phenology of juvenile Smith fir along elevational gradients on the southeastern Tibetan Plateau [J]. International Journal of Biometeorology,2019,63(7):963-972.
9 Devi N, Hagedorn F, Moiseev P, et al. Expanding forests and changing growth forms of Siberian larch at the Polar Urals treeline during the 20th century [J]. Global Change Biology,2008,14(7):1581-1591.
10 Du H, Liu J, Li M H, et al. Warming-induced upward migration of the alpine treeline in the Changbai Mountains, northeast China [J]. Global Change Biology,2018,24 (3):1256-1266.
11 Kullman L. 20th century climate warming and tree-limit rise in the southern Scandes of Sweden[J]. Ambio,2001,30(2):72-80.
12 Li Junsheng. Ecological Characteristics of Larix Chinensis Beissn and Its Responses to Climate Change [M]. Beijing: Science Press,2012.
李俊生. 秦岭林线树种太白红杉生态特征及其对气候变化的响应[M].北京:科学出版社,2012.
13 Liang E, Wang Y, Piao S, et al. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau [J]. Proceedings of the National Academy of Sciences of the United States of America,2016,113(16):4 380-4 385.
14 Cui Haiting, Liu Hongyan, Dai Junhu. Study on Mountain Ecology and Alpine Timberline [M]. Beijing: Science Press,2005.
崔海亭, 刘鸿雁, 戴君虎. 山地生态学与高山林线研究[M]. 北京: 科学出版社, 2005.
15 Dang H, Zhang Y, Zhang Y, et al. Variability and rapid response of subalpine ?r (Abies fargesii) to climate warming at upper altitudinal limits in north-central China [J]. Trees-Structure and Function,2015,29(3):785-795.
16 Gatti R C, Callaghan T, Velichevskaya A, et al. Accelerating upward treeline shift in the Altai Mountains under last-century climate change [J]. Scientific Reports,2019,9. DOI:10.1038/s41598-019-44188-1.
doi: 10.1038/s41598-019-44188-1    
17 Gou X H, Zhang F, Deng Y, et al. Patterns and dynamics of tree-line response to climate change in the eastern Qilian Mountains, northwestern China[J]. Dendrochronologia,2012,30(2):121-126.
18 Lyu L X, Zhang Q B. Fine-scale distribution of treeline trees and the nurse plant facilitation on the eastern Tibetan Plateau[J]. Ecological Indicators,2016,66:251-258.
19 Shen Zehao, Fang Jingyun, Liu Zengli, et al. Structure and dynamics of Abies fabri population near the alpine timberline in Hailuo Clough of Gongga Mountain [J]. Acta Botanica Sinica,2001,43(12):1 288-1 293.
沈泽昊,方精云,刘增力,等.贡嘎山海螺沟林线附近峨眉冷杉种群的结构与动态[J].植物学报,2001,43(12):1 288-1 293.
20 Wang Xiaochun, Ji Ying. Review of advances in dendropyrochronology [J]. Chinese Journal of Plant Ecology,2009,33(3):587-597.
王晓春,及莹.树木年轮火历史研究进展[J].植物生态学,2009,33(3):587-597.
21 Wang Yafeng, Liang Eryuan. Research advances in disturbance and ecological processes of the treeline ecotone [J]. Chinese Science Bulletin,2019,64 (16):1 711-1 721.
王亚锋, 梁尔源.干扰对树线生态过程的影响研究进展[J].科学通报,2019, 64(16):1 711-1 721.
22 Wang Yafeng, Liang Eryuan. A review on progresses in treeline dynamics and climate change [J]. Journal of Earth Environment,2012,3 (3):855-861.
王亚锋, 梁尔源. 树线波动与气候变化研究进展[J].地球环境学报,2012,3(3):855-861.
23 Gazol A, Moiseev P, Camarero J J. Changes in plant taxonomic and functional diversity patterns following treeline advances in the South Urals [J]. Plant Ecology & Diversity,2017,10(4):283-292.
24 Forrest J L, Wikramanayake E, Shrestha R, et al. Conservation and climate change: Assessing the vulnerability of snow leopard habitat to treeline shift in the Himalaya [J]. Biological Conservation,2012,150(1):129-135.
25 Greenwood S, Jump A S. Consequences of treeline shifts for the diversity and function of high altitude ecosystems [J]. Arctic Antarctic and Alpine Research,2014,46(4):829-840.
26 Wilmking M, Harden J, Tape K. Effect of tree line advance on carbon storage in NW Alaska [J]. Journal of Geophysical Research-Biogeosciences,2006,111(G2). DOI:10.1029/2005JG000074.
doi: 10.1029/2005JG000074    
27 Wiegand T, Camarero J J, Rüger N. Abrupt population changes in treeline ecotones along smooth gradients [J]. Journal of Ecology,2006,94(4):880-892.
28 Wiegand T, Moloney K A. Handbook of Spatial Point-pattern Analysis in Ecology [M]. Boca Raton, Florida, USA: Chapman & Hall/CRC,2014.
29 Danby R K, Hik D S. Responses of white spruce (Picea glauca) to experimental warming at a subarctic alpine treeline [J]. Global Change Biology,2007,13(2):437-451.
30 Handa I T, K?rner C, H?ttenschwiler S. Conifer stem growth at the altitudinal treeline in response to four years of CO2 enrichment [J]. Global Change Biology,2006,12 (12):2 417-2 430.
31 Xu Z, Lu T, Zhang Y. Effects of experimental warming on phenology, growth and gas exchange of treeline birch (Betula utilis) saplings, Eastern Tibetan Plateau, China [J]. European Journal of Forest Research,2012,101(5):788-795.
32 Fajardo A, Piper F. An experimental approach to explain the southern Ades elevational treelines [J]. American Journal of Botany,2014,101(5):788-795.
33 Beckage B, Osborne B, Gavin D G, et al. A rapid upward shift of a forest ecotone during 40 years of warming in the Green Mountains of Vermont [J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(11):4 197-4 202.
34 Camarero J J, Gutierrez E. Pace and pattern of recent treeline dynamics: Response of ecotones to climatic variability in the Spanish Pyrenees[J]. Climatic Change,2004,63(1/2):181-200.
35 Hagedorn F, Shiyatov S G, Mazepa V S, et al. Treeline advances along the Urals mountain range- driven by improved winter conditions? [J]. Global Change Biology,2014,20(11):3 530-3 543.
36 Holtmeier F K. Mountain Timberlines: Ecology, Patchiness and Dynamics [M]. Berlin: Springer,2009.
37 Bolton D K, Coops N C, Hermosilla T, et al. Evidence of vegetation greening at alpine treeline ecotones: Three decades of Landsat spectral trends informed by lidar-derived vertical structure [J]. Environmental Research Letters,2018,13:084022.
38 Wang Y F, Zhu H F, Liang E Y, et al. Impact of plot shape and size on the evaluation of treeline dynamics in the Tibetan Plateau [J]. Trees-Structure and Function,2016,30(4):1 045-1 056.
39 Baker B, Moseley R. Advancing treeline and retreating glaciers: Implications for conservation in Yunnan, PR China [J]. Arctic, Antarctic, Alpine Research,2007,39(2):200-209.
40 Bauer H L. The statistical analysis of chaparral and other plant communities by means of transect samples [J]. Ecology,1943,24(1):45-60.
41 McIntyre G A. Estimation of plant density using line transects [J]. Ecology,1953,41(2):319-330.
42 Strong C W. An improved method of obtaining density from line-transect data [J]. Ecology,1966,47(2):311-313.
43 Buckland S T, Borchers D L, Johnston A, et al. Line transect methods for plant surveys [J]. Biometrics,2007,63(4):989-998.
44 Sun Zhenjun, Zhou Dongxing. Research Methods in Ecological Studies [M]. Beijing: Science Press,2017.
孙振钧,周东兴.生态学研究方法[M].北京:科学出版社,2017.
45 Speed J D M, Austrheim G, Hester A J, et al. Experimental evidence for herbivore limitation of the treeline [J]. Ecology,2010,91(11):3 414-3 420.
46 Frayer W E, Furnival G M. Forest survey sampling designs: A history [J]. Forestry,1999,97:4-10.
47 Kangas A, Maltamo M. Forest Inventory: Methodology and Applications [M]. Dordrecht: Springer,2006.
48 LaBau V J, Bones J T, Kingsley N P, et al. A history of the Forest Survey in the United States: 1830-2004 [M]. Washington DC: Forest Service, US Department of Agriculture,2007.
49 Danby R K, Hik D S. Variability, contingency and rapid change in recent subarctic alpine tree line dynamics[J]. Journal of Ecology,2007,95(2):352-363.
50 Wong M H, Duan C, Long Y C, et al. How will the distribution and size of subalpine Abies Georgei forest respond to climate change?[J]. Physical Geography,2010,31(4):319-335.
51 Evaluation Groups of Notational Forestry Administration for the Service Functions of Forest Ecosystems in China. Evaluation and Monitoring of Chinese Forest Resources and Their Ecological Functions During the Past 40 Years [M]. Beijing: China Forestry Press, 2018.
国家林业局中国森林生态系统服务功能评估项目组.中国森林资源及其生态功能四十年监测与评估[M].北京:中国林业出版社,2018.
52 Harsch M A, Hulme P E, McGlone M S, et al. Are treelines advancing?A global meta-analysis of treeline response to climate warming [J]. Ecology Letters,2009,12(10):1 040-1 049.
53 Liu H Y, Yin Y. Response of forest distribution to past climate change: An insight into future predictions [J]. Chinese Science Bulletin,2013,58(35):4 426-4 436.
54 Elliot G P. In?uences of 20th-century warming at the upper tree line contingent on local-scale interactions: Evidence from a latitudinal gradient in the Rocky Mountains, USA[J]. Global Ecology and Biogeography,2011,20(1):46-57.
55 Batllori E, Camarero J J, Ninot J M, et al. Seedling recruitment, survival and facilitation in alpine Pinus uncinata tree line ecotones. Implications and potential responses to climate warming[J]. Global Ecology and Biogeography,2009,18 (4):460-472.
56 Batllori E, Gutierrez E. Regional tree line dynamics in response to global change in the Pyrenees [J]. Journal of Ecology,2008,96(6):1 275-1 288.
57 Shrestha K B, Hofgaard A, Vandvik V. Recent treeline dynamics are similar between dry and mesic areas of Nepal, central Himalaya [J]. Journal of Plant Ecology,2015,8(4):347-358.
58 Tiwari A, Fan Z X, Jump A S, et al. Gradual expansion of moisture sensitive Abies spectabilis forest in the Trans-Himalayan zone of central Nepal associated with climate change [J]. Dendrochronologia,2017,41:34-43.
59 Sigdel S R, Wang Y F, Camarero J J, et al. Moisture-mediated responsiveness of treeline shifts to global warming in the Himalayas [J]. Global Change Biology,2018,24(11):5 549-5 559.
60 Wang Y, Camarero J J, Luo T X, et al. Spatial patterns of Smith ?r alpine treelines on the south-eastern Tibetan Plateau support that contingent local conditions drive recent treeline patterns [J]. Plant Ecology & Diversity,2013,5(3):311-321.
61 Wang Y F, Pederson N, Ellison A M, et al. Increased stem density and competition may diminish the positive effects of warming at alpine treeline [J]. Ecology,2016,97(7):1 668-1 679.
62 Wang Y F, Sylvester S P, Lu X M, et al. The stability of spruce treelines on the eastern Tibetan Plateau over the last century is explained by pastoral disturbance [J]. Forest Ecology and Management,2019,442:34-45.
63 Wang Y F, Case B, Lu X M, et al. Fire facilitates warming-induced upward shifts of alpine treelines by altering interspecific interactions [J]. Trees-Structure and Function,2019,33(4):1 051-1 061.
64 Grimm V, Railsback S F. Individual-based Modeling and Ecology [M]. Princeton: Princeton University Press,2005.
65 Smith-McKenna E K, Malanson G P, Resler L M, et al. Cascading effects of feedbacks, disease, and climate change on alpine teeline dynamics [J]. Environmental Modelling & Software,2014,62:85-96.
66 Kabacoff R I. R in Action: Data Analysis, and Graphics with R [M]. Beijing: Posts & Telecom Press,2013.
67 McIntire E J B, Fajardo A. Beyond description: The active and effective way to infer processes from spatial patterns [J]. Ecology,2009,90(1):46-56.
68 Camarero J J, Gutiérrez E, Fortin M. Spatial pattern of subalpine forest-alpine grassland ecotones in the Spanish Central Pyrenees [J]. Forest Ecology and Management,2000,134(1/3):1-16.
69 Xue Jianhui. Forest Ecology [M]. Beijing: Chinese Forestry Press,2006.
薛建辉.森林生态学[M].北京:中国林业出版社, 2006.
70 Tobler W A. A computer movie simulating urban growth in the Detroit region [J]. Economic Geography,1970,46:234-240.
71 Harper K A, Danby R K, De Fields D L, et al. Tree spatial pattern within the forest-tundra ecotone: A comparison of sites across Canada [J]. Canadian Journal of Forest Research-Revue Canadienne de Recherche Forestiere,2011,41(3):479-489.
72 Buckley H L, Case B S, Ellison A M. Using codispersion analysis to characterize spatial patterns in species co-occurrences [J]. Ecology,2016,97(1):32-39.
73 Dearborn K D, Danby R K. Spatial analysis of forest-tundra ecotones reveals the influence of topography and vegetation on alpine treeline patterns in the subarctic [J]. Annals of the American Association of Geographers,2020,110(1):18-35.
74 Kruse S, Wieczorek M, Jeltsch F, et al. Treeline dynamics in Siberia under changing climates as inferred from an individual-based model for Larix [J]. Ecological Modelling,2016,338:101-121.
75 Martínez I, Wiegand T, Camarero J J, et al. Disentangling the formation of contrasting tree-line Physiognomies Combining Model Selection and Bayesian Parameterization for simulation models [J]. American Naturalist,2011,177(5):E136-E152.
76 Wieczorek M, Kruse S, Epp L S, et al. Dissimilar responses of larch stands in northern Siberia to increasing temperatures—A field and simulation based study [J]. Ecology,2017,98(9):2 343-2 355.
77 Renard S M, McIntire E J B, Fajardo A. Winter conditions-not summer temperature-influence establishment of seedlings at white spruce alpine treeline in Eastern Quebec [J]. Journal of Vegetation Science,2016,27(1):29-39.
78 Lett S, Nilsson M C, Wardle D A, et al. Bryophyte traits explain climate-warming effects on tree seedling establishment [J]. Journal of Ecology,2017,105(2):496-506.
79 Shen W, Zhang L, Liu X S, et al. Seed-based treeline seedlings are vulnerable to freezing events in the early growing season under a warmer climate: Evidence from a reciprocal transplant experiment in the Sergyemla Mountains, southeast Tibet [J]. Agricultural and Forest Meteorology,2014,187:83-92.
80 Chen J, Yang Y, Wang S. Shrub facilitation promotes selective tree establishment beyond the climatic treeline [J]. Science of the Total Environment,2019, 708(15):134 618.
81 Elmendorf S C, Henry G H R, Hollister R D, et al. Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns [J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(30):E4156-E4156.
82 Fadrique B, Baez S, Duque A, et al. Widespread but heterogeneous responses of Andean forests to climate change [J]. Nature,2018,564(7 735):207-212.
83 Harsch M A, Bader M Y. Treeline form—A potential key to understanding treeline dynamics [J]. Global Ecology and Biogeography,2011,20(4):582-596.
84 Fang Keyan, Gou Xiaohua, Chen Fahu, et al. The advance of dendroecology [J]. Journal of Glaciology and Geocryology,2008,30 (5):825-834.
方克艳,勾晓华,陈发虎,等.树轮生态学研究进展[J].冰川冻土,2008,30(5):825-834.
85 Li Z S, Liu G H, Fu B J, et al. Anomalous temperature-growth response of Abies faxoniana to sustained freezing stress along elevational gradients in China's Western Sichuan Province [J]. Trees-Structure and Function,2012,26(4):1 373-1 388.
86 Wang Xiaochun, Zhou Xiaofeng, Sun Zhihu. Research advances in the relationship between alpine timberline and climate change [J]. Chinese Journal of Ecology,2005,24(3):301-305.
王晓春,周晓峰, 孙志虎.高山林线与气候变化关系研究进展[J]. 生态学杂志,2005,24(3):301-305.
87 Zhang Qibing, Fang Ouya, Lixin Lü. Dendroecological Studies on the Tibetan Plateau [M]. Beijing: Science Press,2019.
张齐兵, 方欧娅, 吕利新. 青藏高原树木年轮生态学研究[M]. 北京: 科学出版社, 2019.
88 Chu C, Weiner J, Maestre F T, et al. Positive interactions can increase size inequality in plant populations [J]. Journal of Ecology,2009,97(6):1 401-1 407.
89 Lin Y, Berger U, Yue M, et al. Asymmetric facilitation can reduce size inequality in plant populations resulting in delayed density-dependent mortality [J]. Oikos,2016,125(8):1 153-1 161.
90 Zhang B P, Yao Y H. Studies on Mass Evation Effect [M]. Beijing: China Environmental Science Press,2015.
91 Liu X, Luo T. Spatiotemporal variability of soil temperature and moisture across two contrasting timberline ecotones in the Sergyemla Mountains, southeast Tibet [J]. Arctic, Antarctic, and Alpine Research,2011,43(2):229-238.
92 Shilong Piao, Zhang Xianzhou, Wang Tao, et al. Responses and feedback of the Tibetan Plateau’s alpine ecosystem to climate change [J]. Chinese Science Bulletin,2019,64(27):2 842-2 855.
朴世龙, 张宪洲, 汪涛, 等. 青藏高原生态系统对气候变化的响应及其反馈[J].科学通报,2019,64(27):2 842-2 855.
93 Kullman L. Tree line population monitoring of Pinus sylvestris in the Swedish Scandes, 1973-2005: Implications for tree line theory and climate change ecology [J]. Journal of Ecology,2007,95(1):41-52.
94 Barbeito I, Dawes M A, Rixen C, et al. Factors driving mortality and growth at treeline: A 30-year experiment of 92 000 conifers [J]. Ecology,2012,93(2):389-401.
95 Greenwood S, Chen J, Chen C, et al. Strong topographic sheltering effects lead to spatially complex treeline advance and increased forest density in a subtropical mountain region [J]. Global Change Biology,2014,20(12):3 756-3 766.
96 Wang T, Zhang Q B, Ma K P. Treeline dynamics in relation to climatic variability in the central Tianshan Mountains, northwestern China [J]. Global Ecology and Biogeography,2006,15(4):406-415.
97 Shi C, Masson-Delmotte V, Daux V, et al. Unprecedented recent warming rate and temperature variability over the east Tibetan Plateau inferred from Alpine treeline dendrochronology [J]. Climate Dynamics,2015,45(5/6):1 367-1 380.
98 Zhu H, Zheng Y, Shao X, et al. Millennial temperature reconstruction based on tree-ring widths of Qilian juniper from Wulan,Qinghai Province, China [J]. Chinese Science Bulletin,2008,53(24):3 914-3 920.
99 Wang Y, Liang E, Sigdel S, et al. The coupling of treeline elevation and temperature is mediated by non-thermal factors on the Tibetan Plateau [J]. Forests,2017,8:109.
[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[7] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[8] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[9] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[10] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[11] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[12] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[13] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[14] 罗鑫玥,陈明星. 城镇化对气候变化影响的研究进展[J]. 地球科学进展, 2019, 34(9): 984-997.
[15] 闫昕旸,张强,闫晓敏,王胜,任雪塬,赵福年. 全球干旱区分布特征及成因机制研究进展[J]. 地球科学进展, 2019, 34(8): 826-841.
阅读次数
全文


摘要