Please wait a minute...
img img
高级检索
地球科学进展  2020, Vol. 35 Issue (4): 378-388    DOI: 10.11867/j.issn.1001-8166.2020.032
构造地貌学专栏     
夷平面研究新进展
熊建国1(),李有利2,张培震1,3
1.地震动力学国家重点实验室,中国地震局地质研究所,北京 100029
2.地表过程分析与模拟教育部重点实验室,北京大学城市与环境学院,北京 100871
3.广东省地球动力作用与地质灾害重点实验室,中山大学地球科学与工程学院,广州 510275
New Advances in Planation Surface Research
Jianguo Xiong1(),Youli Li2,Peizhen Zhang1,3
1.State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing 100029, China
2.Key Laboratory of Earth Surface Processes of Ministry of Education, Peking University, Beijing 100871, China
3.Guangdong Provincial Key Laboratory of Geodynamics and Geohazards, School of Earth Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
 全文: PDF(2758 KB)   RICH HTML
摘要:

夷平面占据大的地域范围,其形成跨越长时间尺度,是地貌学研究的重要内容和基本理论问题。对夷平面的3个主要类型,即准平原、山麓面和刻蚀平原的基本概念、相关理论及其发展历史进行了简要回顾;然后基于夷平面与地层的关系,对上覆地层和下伏地层的年代学研究,以及一些综合的年代学方法进行了简要介绍;夷平面发育、最终形成和解体深受构造运动和气候变化的影响,因此在深入剖析两者各自作用后,详细阐释它们对夷平面的共同影响;最后对中国夷平面研究尤其华北地区夷平面研究的进展进行了阐述,并详细介绍了有关山西地堑系南部中条山北麓唐县面的演化过程的研究。

关键词: 夷平面准平原山麓面构造运动气候变化    
Abstract:

The planation surface occupies a large area and its formation spans a long-time scale. It is an important content and basic theoretical problem in geomorphology research. In this article, the basic concepts, related theories and development history of the three main types of planation surfaces, i.e. peneplain, pediment, and etchplain, were briefly reviewed. Then, based on the relationship between planation surface and strata, the chronological study of overlying and underlying strata, and some comprehensive chronological methods were briefly introduced. The respective and combined influence of tectonic movement and climate change on the development, final formation and disintegration of planation surface were deeply analyzed. Finally, the progress of planation surface research in China, especially in North China was elaborated, and the research on the evolution process of the Tangxian surface in the northern Zhongtiao Shan in the southern Shanxi Graben System was introduced in detail.

Key words: Planation surface    Peneplain    Pediment    Tectonic movement    Climate change
收稿日期: 2020-01-30 出版日期: 2020-05-08
ZTFLH:  P931  
基金资助: 国家自然科学基金项目“山西地堑系北部六棱山地貌演化定量研究”(41971002);“榆林河地貌演化及其对阿尔金断裂扩展的响应”(41702219)
作者简介: 熊建国(1986-),男,重庆人,副研究员,主要从事活动构造和构造地貌学研究. E-mail:xiongjg@pku.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
熊建国
李有利
张培震

引用本文:

熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.

Jianguo Xiong, Youli Li, Peizhen Zhang. New Advances in Planation Surface Research. Advances in Earth Science, 2020, 35(4): 378-388.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2020.032        http://www.adearth.ac.cn/CN/Y2020/V35/I4/378

图1  坡地演化理论对比
图2  山麓面形成中的山坡要素(据参考文献[14]修改)
图3  中国华北地区夷平面分布(据参考文献[29,33]修改)1:五台山;2:小五台山
图4  中条山唐县面地质地貌图(a)中条山—运城盆地地质简图(据1∶20万地质图)和主要断裂[86,87];(b)中条山—运城盆地地质结构图(据参考文献[29]修改);唐县面、夏县砾岩、低台地和运城盆地分别被中条山北麓断裂的分支断裂F1、F2、F3分割;SLB:盐湖钻孔;WYK:王峪口剖面;XX:夏县剖面;YT:窑头剖面;NY:南窑剖面;LP:了坡剖面
1 Davis W M. The geographical cycle[J]. The Geographical Journal, 1899, 14: 481-504.
2 Penck W. Die Morphologische Analyse[M]. Vienna:Springer, 1924.
3 King L C. Canons of landscape evolution[J]. Geological Society of America Bulletin, 1953, 64(7): 721-752.
4 Tator B A. Pediment characteristics and terminology[J]. Annals of the Association of American Geographers, 1952, 42(4): 295-317.
5 Coltorti M, Ollier C D. Geomorphic and neotectonic evolution of the Ecuadorian Andes[J]. Geomorphology, 2000, 32(32): 1-19.
6 Coltorti M, Dramis F, Ollier C D. Planation surfaces in northern Ethiopia[J]. Geomorphology, 2007, 89(3): 287-296.
7 Evenstar L A, Hartley A J, Stuart F M, et al. Multiphase development of the Atacama Planation Surface recorded by cosmogenic 3He exposure ages: Implications for uplift and Cenozoic climate change in western South America[J]. Geology, 2009, 37(1): 27-30.
8 Dani?ík M, Migoń P, Kuhlemann J, et al. Thermochronological constraints on the long-term erosional history of the Karkonosze Mts. Central Europe[J]. Geomorphology, 2010, 117(1/2): 78-89.
9 Adams G F. Planation Surfaces: Peneplains, Pediplains, and Etchplains[M]. Dowden: Hutchinson & Ross, 1975.
10 Phillips J D. Erosion, isostatic response, and the missing peneplains[J]. Geomorphology, 2002, 45(3): 225-241.
11 Cui Z, Li D, Feng J, et al. Comments on the planation surface once more[J]. Chinese Science Bulletin, 2002, 47(10): 793-797.
12 Fair T. Slope form and development in the interior of Natal, South Africa[J]. South African Journal of Geology, 1947, 50: 105-118.
13 Glade R C, Anderson R S. Quasi‐steady evolution of hillslopes in layered landscapes: An analytic approach[J]. Journal of Geophysical Research: Earth Surface, 2018, 123(1): 26-45.
14 Wood A. The development of hillside slopes[J]. Proceedings of the Geologists' Association, 1942, 53(3/4): 128-138.
15 Goudie A S. Encyclopedia of Geomorphology[M]. New York: Routledge Publisher, 2004.
16 Selby M J. Hillslope Materials and Processes[M]. Oxford:Oxford University Press, 1982: 241-260.
17 Kirkby M J. Hillslope process-response models based on the continuity equation[J]. Institute of British Geographers Special Publication, 1971, 3: 15-30.
18 Johnstone S A, Hilley G E. Lithologic control on the form of soil-mantled hillslopes[J]. Geology, 2014, 43(1): 83-86.
19 Ward D J, Berlin M M, Anderson R S. Sediment dynamics below retreating cliffs[J]. Earth Surface Processes and Landforms, 2011, 36(8): 1 023-1 043.
20 Nott J. The antiquity of landscapes on the north Australian craton and the implications for theories of long-term landscape evolution[J]. The Journal of Geology, 1995, 103(1): 19-32.
21 Twidale C R. Early Mesozoic (?Triassic) landscapes in Australia: Evidence, argument, and implications[J]. The Journal of Geology, 2000, 108(5): 537-552.
22 Chardon D, Chevillotte V, Beauvais A, et al. Planation, bauxites and epeirogeny: One or two paleosurfaces on the West African margin?[J]. Geomorphology, 2006, 82(3): 273-282.
23 Stanford S D, Seidl M A, Ashley G M. Exposure age and erosional history of an upland planation surface in the US Atlantic Piedmont[J]. Earth Surface Processes and Landforms, 2000, 25(9): 939-950.
24 Kroonenberg S B, Bakker J G, van der Wiel A M. Late Cenozoic uplift and paleogeography of the Colombian Andes: Constraints on the development of high-Andean biota[J]. Geologie en Mijnbouw, 1990, 69: 279-290.
25 Bonow J M, Japsen P, Nielsen T F. High-level landscapes along the margin of southern East Greenland—A record of tectonic uplift and incision after breakup in the NE Atlantic[J]. Global and Planetary Change, 2014, 116: 10-29.
26 Cornée J J, Ferrandini M, Saint Martin J P, et al. The late Messinian erosional surface and the subsequent reflooding in the Mediterranean: New insights from the Melilla-Nador basin (Morocco)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 230(1): 129-154.
27 Hu Z, Pan B, Guo L, et al. Rapid fluvial incision and headward erosion by the Yellow River along the Jinshaan gorge during the past 1.2 Ma as a result of tectonic extension[J]. Quaternary Science Reviews, 2016, 133: 1-14.
28 Xiong J, Li Y, Zhong Y, et al. Paleomagnetic age of the tangxian planation surface, northwestern Zhongtiao Shan of the Shanxi Graben system, North China[J]. Geomorphology, 2017, 283: 17-31.
29 Xiong J, Li Y, Zheng W, et al. Climatically driven formation of the Tangxian planation surface in North China: An example from northwestern Zhongtiao Shan of the Shanxi Graben System[J]. Lithosphere, 2018. DOI:org/10.1130/L720.1.
doi: org/10.1130/L720.1
30 Li J, Xie S, Kuang M. Geomorphic evolution of the Yangtze Gorges and the time of their formation[J]. Geomorphology, 2001, 41(2): 125-135.
31 Wei Y, Zhang K, Garzione C N, et al. Low palaeoelevation of the northern Lhasa terrane during late Eocene: Fossil foraminifera and stable isotope evidence from the Gerze Basin[J]. Scientific reports, 2016, 6: 27 508.
32 Peulvast J P, Sales V D C. Stepped surfaces and palaeolandforms in the northern Brazilian Nordeste: Constraints on models of morphotectonic evolution[J]. Geomorphology, 2004, 62(1): 89-122.
33 Wu Chen. Landform Environment and Its Formation in North China[M]. Beijing: Science Press, 2008.
33 吴忱. 华北地貌环境及其形成演化[M]. 北京:科学出版社,2008.
34 Chevillotte V, Chardon D, Beauvais A, et al. Long-term tropical morphogenesis of New Caledonia (Southwest Pacific): Importance of positive epeirogeny and climate change[J]. Geomorphology, 2006, 81(3): 361-375.
35 Japsen P, Bonow J M, Green P F. Formation, uplift and dissection of planation surfaces at passive continental margins—A new approach[J]. Earth Surface Processes and Landforms, 2009, 34(5): 683-699.
36 Wagner T, Fritz H, Stüwe K, et al. Correlations of cave levels, stream terraces and planation surfaces along the River Mur—Timing of landscape evolution along the eastern margin of the Alps[J]. Geomorphology, 2011, 134(1): 62-78.
37 Dohrenwend J C. Pediments in arid environments[M]//Abrahams A D, Parsons A J. Geomorphology of Desert Environments. London: Chapman and Hall, 1994: 321-353.
38 Kennan L, Lamb S H, Hoke L. High-altitude palaeosurfaces in the Bolivian Andes: Evidence for Late Cenozoic surface uplift[J]. The Geological Society, 1997, 120(1): 307-323.
39 Maroukian H, Gaki-Papanastassiou K, Karymbalis E, et al. Morphotectonic control on drainage network evolution in the Perachora Peninsula, Greece[J]. Geomorphology, 2008, 102(1): 81-92.
40 Wang X, Lu H, Vandenberghe J, et al. Late Miocene uplift of the NE Tibetan Plateau inferred from basin filling, planation and fluvial terraces in the Huang Shui catchment[J]. Global and Planetary Change, 2012, 88: 10-19.
41 Japsen P, Bonow J M, Green P F, et al. Episodic burial and exhumation in NE Brazil after opening of the South Atlantic[J]. Geological Society of America Bulletin, 2012, 124(5/6): 800-816.
42 Coltorti M, Pieruccini P. Late Lower Pliocene planation surface across the Italian Peninsula: A key tool in neotectonic studies[J]. Journal of Geodynamics, 2000, 29(3): 323-328.
43 Lidmar-Bergstr?m K, Bonow J M, Japsen P. Stratigraphic Landscape Analysis and geomorphological paradigms: Scandinavia as an example of Phanerozoic uplift and subsidence[J]. Global and Planetary Change, 2013, 100: 153-171.
44 Japsen P, Chalmers J A, Green P F, et al. Elevated, passive continental margins: Not rift shoulders, but expressions of episodic, post-rift burial and exhumation[J]. Global and Planetary Change, 2012, 90: 73-86.
45 Galadini F, Messina P, Giaccio B, et al. Early uplift history of the Abruzzi Apennines (central Italy): Available geomorphological constraints[J]. Quaternary International, 2003, 101: 125-135.
46 Bonow J M, Lidmar-Bergstrom K, Japsen P, et al. Elevated erosion surfaces in central West Greenland and southern Norway: Their significance in integrated studies of passive margin development[J]. Norsk Geologisk Tidsskrift, 2007, 87(1/2): 197.
47 Regard V, Saillard M, Martinod J, et al. Renewed uplift of the Central Andes Forearc revealed by coastal evolution during the Quaternary[J]. Earth and Planetary Science Letters, 2010, 297(1): 199-210.
48 Hetzel R, Dunkl I, Haider V, et al. Peneplain formation in southern Tibet predates the India-Asia collision and plateau uplift[J]. Geology, 2011, 39(10): 983-986.
49 McConnell R B. Planation surfaces in Guyana[J]. The Geographical Journal, 1968, 134(4): 506-520.
50 Blanchon P, Jones B. Marine-planation terraces on the shelf around Grand Cayman: A result of stepped Holocene sea-level rise[J]. Journal of Coastal Research, 1995. DOI:10.2307/4298310.
doi: 10.2307/4298310
51 Woodroffe C D, Murray-Wallace C V, Bryant E A, et al. Late Quaternary sea-level highstands in the Tasman Sea: Evidence from Lord Howe Island[J]. Marine Geology, 1995, 125(1/2): 61-72.
52 Rossetti D F. Paleosurfaces from northeastern Amazonia as a key for reconstructing paleolandscapes and understanding weathering products[J]. Sedimentary Geology, 2004, 169(3): 151-174.
53 Hearty P J, Hollin J T, Neumann A C, et al. Global sea-level fluctuations during the Last Interglaciation (MIS 5e) [J]. Quaternary Science Reviews, 2007, 26(17): 2 090-2 112.
54 Cornée J J, Saint Martin J P, Conesa G, et al. Correlations and sequence stratigraphic model for Messinian carbonate platforms of the western and central Mediterranean[J]. International Journal of Earth Sciences, 2004, 93(4): 621-633.
55 Phillips J D. Evolutionary geomorphology: Thresholds and nonlinearity in landform response to environmental change[J]. Hydrology & Earth System Sciences, 2006, 10(5): 731-742.
56 R?mer W. Multiple planation surfaces in basement regions: Implications for the reconstruction of periods of denudation and uplift in southern Zimbabwe[J]. Geomorphology, 2010, 114(3): 199-212.
57 Reynaud J Y, Tessier B, Proust J N, et al. Architecture and sequence stratigraphy of a late Neogene incised valley at the shelf margin, southern Celtic Sea[J]. Journal of Sedimentary Research, 1999, 69(2): 351-364.
58 Casas-Sainz A M, Cortés-Gracia A L. Cenozoic landscape development within the central Iberian Chain, Spain[J]. Geomorphology, 2002, 44(1): 19-46.
59 Miller K G, Kominz M A, Browning J V, et al. The Phanerozoic record of global sea-level change[J]. Science, 2005, 310(5 752): 1 293-1 298.
60 Zachos J C, Dickens G R, Zeebe R E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics[J]. Nature, 2008, 451(7 176): 279-283.
61 Ding L, Xu Q, Yue Y, et al. The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene-Eocene Linzhou Basin[J]. Earth and Planetary Science Letters, 2014, 392: 250-264.
62 Molnar P, England P. Late Cenozoic uplift of mountain ranges and global climate change: Chicken or egg?[J]. Nature, 1990, 346(6 279): 29-34.
63 Zhang P, Molnar P, Downs W R. Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates[J]. Nature, 2001, 410(6 831): 891-897.
64 Green P F, Japsen P, Chalmers J A, et al. Thermochronology, erosion surfaces and missing section in West Greenland[J]. Journal of the Geological Society, 2011, 168(4): 817-830.
65 Krijgsman W, Hilgen F J, Raffi I, et al. Chronology, causes and progression of the Messinian salinity crisis[J]. Nature, 1999, 400(6 745): 652-655.
66 Cui Zhijiu, Gao Quanzhou, Liu Gengnian, et al. Planation surface, paleokarst and uplift of the Qinghai Tibet Plateau[J]. Science in China(Series D), 1996, (4):92-100.
66 崔之久,高全洲,刘耕年,等. 夷平面、古岩溶与青藏高原隆升[J]. 中国科学:D辑, 1996, (4):92-100.
67 Zhang K J. Cretaceous palaeogeography of Tibet and adjacent areas (China): Tectonic implications[J]. Cretaceous Research, 2000, 21(1): 1-33.
68 Haider V L, Dunkl I, von Eynatten H, et al. Cretaceous to Cenozoic evolution of the northern Lhasa Terrane and the Early Paleogene development of peneplains at Nam Co, Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2013, 70: 79-98.
69 Yi H, Wang C, Liu Shun, et al. Sedimentary record of the planation surface in the Hoh Xil region of the northern Tibet Plateau[J]. Acta Geologica Sinica, 2000, 74(4): 827-835.
70 Li J, Ma Z, Li X, et al. Late Miocene-Pliocene geomorphological evolution of the Xiaoshuizi peneplain in the Maxian Mountains and its tectonic significance for the northeastern Tibetan Plateau[J]. Geomorphology, 2017, 295: 393-405.
71 Zhang Ke, Huang Yukun. Reseraches on the planation surfaces in north Guangdong[J]. Tropical Geography, 1995, 15(4): 295-305.
71 张珂, 黄玉昆. 粤北地区夷平面的初步研究[J]. 热带地理, 1995, 15(4): 295-305.
72 Cui Z, Li D, Wu Y, et al. Comment on planation surface[J]. Chinese Science Bulletin, 1999, 44(22): 2 017.
73 Cui Z, Li D, Feng J, et al. The covered karst, weathering crust and karst (double-level) planation surface[J]. Science in China (Series D), 2002, 45(4): 366-379.
74 Willis B, Blackwelder E, Sargent R H. Research in China, Part one: Descriptive Topography and Geology[M]. Washington DC: The Caxnegie Institution of Washington, 1907: 3-280.
75 Teilhard de Chardin P,Yang Zhongjian. On the Mammalian remainsfrom the archeological site of Anyang[M]// Paleontology in China,Gamma,No. 12,Volume1. Beijing:Geological Survey Institute of the Ministry of industry and Beiping National Research Institute of Geology,1936.[
75 Teilhard de Chardin P, 杨锺健. 安阳殷墟之哺乳动物群[M]//中国古生物志,丙种,第十二号. 北京:北平研究院地质学研究所,1936.]
76 Wang Nailiang, Han Mukang, Zhu Zhijie, et al. Cenozoic sedimentary facies and lanforms near the valley mouth of river Hutonghe along the esatern piedmont[J]. Quaternary Sciences, 1985, 6(1): 44-59.
76 王乃樑, 韩慕康, 朱之杰,等. 太行山东麓滹沱河出山处新生代沉积相与地貌结构[J]. 第四纪研究, 1985, 6(1): 44-59.
77 Liu Yunming, Li Youli, Zhou Baohua. Terrace sequences and their formation ages in Pantang-Heiyukou area, Northern Shanxi-Shaanxi Gorge, China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016, 52(2): 257-264.
77 刘运明,李有利,周葆华. 晋陕峡谷北部盘塘—黑峪口地区黄河阶地序列及其形成年代[J]. 北京大学学报:自然科学版, 2016, 52(2): 257-264.
78 Su Peng, He Honglin, Shi Feng, et al. The formation mechanisms of the Dianziliang low-relief, high elevation surface in Shanxi Graben System and its implication of neotectonics evolution[J]. Quaternary Sciences, 2018, 38(6): 1 348-1 357.
78 苏鹏, 何宏林, 石峰, 等. 山西地堑系甸子梁期低起伏高海拔地貌面成因及新构造演化[J]. 第四纪研究, 2018, 38(6): 1 348-1 357.
79 Xu X, Ma X, Deng Q. Neotectonic activity along the Shanxi rift system, China[J]. Tectonophysics, 1993, 219(4): 305-325.
80 Pan B, Hu Z, Wang J, et al. The approximate age of the planation surface and the incision of the Yellow River[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2012, 356(9): 54-61.
81 Wu Chen, Ma Yonghong, Zhang Xiuqing, et al. Topographic Surface, Physiographic Period and Geomorphic Evolution of Mountain Area in the North China[M]. Shijiazhuang: Hebei Science & Technology Press, 1999: 200-255.
81 吴忱, 马永红, 张秀清, 等. 华北山地地形面地文期与地貌发育史[M]. 石家庄: 河北科学技术出版社, 1999: 200-255.
82 Deng C, Zhu R, Zhang R, et al. Timing of the Nihewan formation and faunas[J]. Quaternary Research, 2008, 69: 77-90.
83 Li J, Shi Y, Li B. Uplift of Qinghai Xizang (Tibet) Plateau and Global Change[M]. Lanzhou: Lanzhou University Press, 1995.
84 Zhang K. Planation surfaces in China: One hundred years of investigation[J]. The Geological Society, 2008, 301(1): 171-178.
85 Xiong J, Li Y, Zhong Y, et al. Paleomagnetim of the Jianshui basin in Yunnan, SW China, and geomorphological evolution of the Yunnan Plateau since the Neogene[J]. Journal of Asian Earth Sciences, 2016, 123: 67-77.
86 Li Y, Yang J, Xia Z, et al. Tectonic geomorphology in the Shanxi Graben System, northern China[J]. Geomorphology, 1998, 23(1): 77-89.
87 Wang Q, Li C, Tian G, et al. Tremendous change of the earth surface system and tectonic setting of salt-lake formation in Yuncheng Basin since 7.1 Ma[J]. Science in China, 2002, 45(2): 110-122.
88 Guo Z, Ruddiman W, Hao Q, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J]. Nature, 2002, 416(6 877): 159-163.
89 Yang S, Ding Z. Drastic climatic shift at ~2.8 Ma as recorded in eolian deposits of China and its implications for redefining the Pliocene-Pleistocene boundary[J]. Quaternary International, 2011, 219: 37-44.
90 Li Youli, Yang Jingchun. Environmental evolution of Yuncheng Salt Lake, Shanxi [J]. Geographical Research, 1994, 13(1): 70-75.
90 李有利, 杨景春. 运城盐湖沉积环境演化[J]. 地理研究, 1994, 13(1): 70-75.
91 Tian J, Zhao Q, Wang P, et al. Astronomically modulated Neogene sediment records from the South China Sea[J]. Paleoceanography, 2008, 233): PA3210.
92 Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20, PA1003. DOI:10.1029/2004PA001071.
doi: 10.1029/2004PA001071
93 Kong P, Jia J, Zheng Y. Cosmogenic 26Al/10Be burial dating of the Paleolithic at Xihoudu, North China[J]. Journal of Human Evolution, 2013, 64(5): 466-470.
94 Zhang H, Oskin M E, Liu-Zeng J, et al. Pulsed exhumation of interior eastern Tibet: Implications for relief generation mechanisms and the origin of high-elevation planation surfaces[J]. Earth and Planetary Science Letters, 2016, 449: 176-185.
[1] 张子洋,闫明,MULVANEY Robert,季峻峰,效存德,刘雷保,安春雷. 东南极LGB69冰芯17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[2] 崔林丽,史军,杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[3] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[4] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[5] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[6] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[7] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[8] 王亚锋,芦晓明,朱海峰,梁尔源. 高山树线的调查与研究方法[J]. 地球科学进展, 2020, 35(1): 38-51.
[9] 罗鑫玥,陈明星. 城镇化对气候变化影响的研究进展[J]. 地球科学进展, 2019, 34(9): 984-997.
[10] 闫昕旸,张强,闫晓敏,王胜,任雪塬,赵福年. 全球干旱区分布特征及成因机制研究进展[J]. 地球科学进展, 2019, 34(8): 826-841.
[11] 谢正辉,陈思,秦佩华,贾炳浩,谢瑾博. 人类用水活动的气候反馈及其对陆地水循环的影响研究——进展与挑战[J]. 地球科学进展, 2019, 34(8): 801-813.
[12] 刘鸣彦,孙凤华,侯依玲,赵春雨,周晓宇. 基于HBV模型的太子河流域径流变化情景预估[J]. 地球科学进展, 2019, 34(6): 650-659.
[13] 王思佳,刘鹄,赵文智,李中恺. 干旱、半干旱区地下水可持续性研究评述[J]. 地球科学进展, 2019, 34(2): 210-223.
[14] 汤秋鸿,刘星才,李哲,运晓博,张学君,于强,李俊,张永勇,崔惠娟,孙思奥,张弛,唐寅,冷国勇. 陆地水循环过程的综合集成与模拟[J]. 地球科学进展, 2019, 34(2): 115-123.
[15] 宁晓菊,张丽君,秦耀辰,刘凯. 60年来我国主要粮食作物适宜生长区的时空分布[J]. 地球科学进展, 2019, 34(2): 191-201.