地球科学进展 ›› 2021, Vol. 36 ›› Issue (9): 950 -961. doi: 10.11867/j.issn.1001-8166.2021.088

研究论文 上一篇    下一篇

18792015年巴尔喀什湖水位变化及其主要影响因素分析
段伟利 1, 2( ),邹珊 1, 2, 3, 4,陈亚宁 1, 2( ),李稚 1, 2,方功焕 1, 2   
  1. 1.中国科学院新疆生态与地理研究所 荒漠与绿洲生态国家重点实验室,新疆 乌鲁木齐 830011
    2.中国科学院大学 资源与环境学院,北京 100049
    3.中国科学院中亚生态与环境研究中心,新疆 乌鲁木齐 830011
    4.根特大学地理系,比利时 根特 9000
  • 收稿日期:2021-01-13 修回日期:2021-09-15 出版日期:2021-09-10
  • 通讯作者: 陈亚宁 E-mail:duanweili@ms.xjb.ac.cn;chenyn@ms.xjb.ac.cn
  • 基金资助:
    国家自然科学基金项目“中哈巴尔喀什湖流域水资源变化及优化配置模拟”(41971149);新疆自治区高层次人才引进项目“中哈巴尔喀什湖流域水资源评估及模拟”(Y941181)

Analysis of Water Level Changes in Lake Balkhash and Its Main Influencing Factors during 1879-2015

Weili DUAN 1, 2( ),Shan ZOU 1, 2, 3, 4,Yaning CHEN 1, 2( ),Zhi LI 1, 2,Gonghuan FANG 1, 2   

  1. 1.State Key Laboratory of Desert and Oasis Ecology,Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences,Urumqi 830011,China
    2.College of Resources and Environment,University of Chinese Academy of Sciences,Beijing 100049,China
    3.Research Center for Ecology and Environment of Central Asia,Chinese Academy of Sciences,Urumqi 830011,China
    4.Department of Geography,Ghent University,Ghent 9000,Belgium
  • Received:2021-01-13 Revised:2021-09-15 Online:2021-09-10 Published:2021-10-15
  • Contact: Yaning CHEN E-mail:duanweili@ms.xjb.ac.cn;chenyn@ms.xjb.ac.cn
  • About author:DUAN Weili (1986-), male, Lengshuijiang City, Hunan Province, Professor. Research areas include sustainable development of water resources. E-mail: duanweili@ms.xjb.ac.cn
  • Supported by:
    the National Nature Science Foundation of China "Research on water resource change and optimal allocation in the Balkhash Lake Basin of the Sino-Kazakhstan"(41971149);The Program for High-Level Talents Introduction in Xinjiang Uygur Autonomous Region "Assessment and simulation of water resources in the Balkhash Lake Basin of the Sino-Kazakhstan"(Y941181)

近年来因气候变暖和人类活动影响,巴尔喀什湖水位下降,造成了湖泊及周边区域的生态危机,引起了国际关注。基于巴尔喀什湖流域1879—2015年的湖泊水位、河川径流、降水、气温和土地利用等数据,采用趋势分析、突变检验、周期分析和相关性分析等方法,定量解析了流域湖泊水位、气候和土地利用等变化特征,综合探讨了巴尔喀什湖水位的影响因素。结果表明:1879—2015年,巴尔喀什湖水位在340~344 m呈明显丰枯周期性的变化,变化周期为48~52年;1988—2015年,水位呈现显著上升趋势,增速约为6.91 cm/a。巴尔喀什湖流域主要河流的入湖水量均呈减少趋势,东部主要支流甚至出现断流现象,使得伊犁河入湖水量占比约80%,且不断增大;中国伊犁河流入哈萨克斯坦境内的水量呈增加趋势,但由于普恰盖水库截流蓄水,导致伊犁河下游水量急剧减少。巴尔喀什湖流域农业用地从1928年左右开始到现在经历了“增加—减少—增加—平稳”的变化过程,伊犁河中下游哈萨克斯坦的农业用地扩张和水利工程建设造成了伊犁河入湖水量减少,是巴尔喀什湖水位下降的根本原因。研究结果可为中哈跨境流域水资源合理利用、生态环境保护等提供一定参考。

In recent years, impacts of climate warming and human activities have brought irregular fluctuations of Balkhash Lake's water level into focus as the issue draws growing attention from the public and politicians. This study uses trend and correlation analysis to quantitatively analyze the changes of lake level, river discharge, precipitation, temperature, and land cover in the Balkhash Lake Basin, and comprehensively explore the influencing factors of lake levels.

Results

show that the water level of Balkhash Lake exhibited obvious periodic variations between 340~344 m during 1879-2015, and the change period was between 48~52 years. A significant upward trend was detected for the water level from 1988 to 2015, with an increasing speed of about 6.91 cm/a. A decreasing trend was observed for runoff from major rivers flowing into the lake; among them, the amount of water from the Ili River accounted for about 80% with an upward trend. Also, The Ili River's runoff flowing into Kazakhstan from China has been increasing, suggesting that the water utilization in China does not cause the decrease in the lower stream of the Ili River. The first water storage of the Kapchagay Reservoir directly lead to a sharp decrease in runoff in in the lower reaches of the Ili River, which eventually caused a significant downward trend in lake levels. During this period, the lowest level was about 340.68 m in 1987, suggesting a decrease of nearly 2.3 m. Since the Soviet period, agriculture land of the Balkhash Lake Basin has undergone four periods: increasing period, decreasing period, increasing period, and stable period, and the expansion of agricultural land and water conservancy projects in the middle and lower reaches of Kazakhstan resulted in a decrease in the amount of water flowing into the lake from the Ili River.

Results

obtained from this study could offer a useful reference for the rational utilization of water resources and ecological environment protection in the Sino-Kazakh cross-border river basin.

中图分类号: 

图1 巴尔喀什湖流域水系及主要水文站点分布
Fig. 1 Location of Lake Balkhash Basin and hydrological stations
图2 18792015年巴尔喀什湖水位时间序列变化(a)、水位小波周期分析(b)及数据拟合(c)结果
Fig. 2 Changes of the Balkhash Lake's levels a), and results of the wavelet analysis for periodic analysis b and data fitting c during the period 1879-2015
图3 巴尔喀什湖流域主要水文站点径流变化
Fig. 3 Changes in river discharges at main hydrological stations in Lake Balkhash Basin
图4 巴尔喀什湖流域19012015 年的降水和气温时空分布
Fig. 4 Maps of values in mean annual precipitation and temperature during 1901-2015 in the Balkhash Lake Basin红色的点(a)~(d)表示该网格的时间序列趋势变化通过显著性检验(95%的置信区间)Red solid dots in figure(a)~(d) indicate grid points with changes that are significant at the 95% confidence level
表1 19012015年巴尔喀什湖流域降水及气温趋势分析结果
Table 1 Precipitation and temperature changes in the Balkhash Lake Basin during 1901-2015
表2 巴尔喀什湖流域 19922015年土地利用变化情况列表
Table 2 Land cover changes in the Balkhash River Basin from 1992 to 2015
图5 巴尔喀什湖流域19922015年的土地利用变化
Fig. 5 The changes of land use for the whole Balkhash Lake Basin during 1992-2015
图6 巴尔喀什湖水位(a)、伊犁河水文站点Ab)和水文站点Dc)年均径流与降水和气温的关系
Fig. 6 Scatter-plot of lake levels a), river discharges at A station b and D station c versus precipitation and temperature in the Balkhash Lake Basin
图7 伊犁河Ka-up水文站流量与Ka-down水文站流量在19301969年、19701997年和199820143个时段的相关变化
Fig. 7 Scatter-plot of annual discharge at Ka-up station versus Ka-down station during the period 1930-1969 1970-1997 and 1998-2014
1 WANG Sijia, LIU Hu, ZHAO Wenzhi, et al. Groundwater sustainability in arid and semi-arid environments: a review [J]. Advances in Earth Science, 2019, 34(2): 210-223.
王思佳,刘鹄,赵文智,等. 干旱, 半干旱区地下水可持续性研究评述[J]. 地球科学进展, 2019, 34(2): 210-223.
2 BERNAUER T, SIEGFRIED T. Climate change and international water conflict in Central Asia [J]. Journal of Peace Research, 2012, 49(1): 227-239.
3 DUAN W, CHEN Y, ZOU S, et al. Managing the water-climate- food nexus for sustainable development in Turkmenistan [J]. Journal of Cleaner Production, 2019, 220: 212-224.
4 BOKLAN D S, JANUSZ-PAWLETTA B. Legal challenges to the management of transboundary watercourses in Central Asia under the conditions of Eurasian Economic Integration [J]. Environmental Earth Sciences, 2017, 76(12): 437.
5 JIAO Yiqiang, LIU Yifan. Water resources problems in Central Asia: crux, impacts and future prospects [J]. Social Sciences in Xinjiang, 2013 (1):77-83.
焦一强,刘一凡. 中亚水资源问题:症结、影响与前景[J]. 新疆社会科学, 2013 (1): 77-83.
6 GAO Yuan. Cross-border water resources problems and cooperation prospects in Central Asian countries[D]. Shanghai: East China Normal University, 2012.
皋媛. 中亚国家的跨境水资源问题及其合作前景[D].上海:华东师范大学, 2012.
7 SIEGFRIED T, BERNAUER T, GUIENNET R, et al. Will climate change exacerbate water stress in Central Asia?[J]. Climatic Change, 2012, 112(3/4): 881-899.
8 MUNIA H, GUILLAUME J, MIRUMACHI N, et al. Water stress in global transboundary river basins: significance of upstream water use on downstream stress [J]. Environmental Research Letters, 2016, 11(1): 14002.
9 CHEN Fahu,DONG Guanghui,CHEN Jianhui,et al. Climate change and silk road civilization evolution in arid central Asia:progress and issues [J]. Advances in Earth Science, 2019, 34(6): 561-572.
陈发虎,董广辉,陈建徽,等. 亚洲中部干旱区气候变化与丝路文明变迁研究: 进展与问题[J]. 地球科学进展, 2019, 34(6): 561-572.
10 XIE L, JIA S. China's international transboundary rivers: politics, security and diplomacy of shared water resources [M]. Routledge, 2017.
11 ZHANG Chuhan, WANG Guangqian. Water security, and hydroscience and technology in China: focuses and frontiers [J]. Science China Technological Sciences, 2015, 45(10): 1 007-1 012.
张楚汉,王光谦. 我国水安全和水利科技热点与前沿[J]. 中国科学: 技术科学, 2015, 45(10): 1 007-1 012.
12 GAO Yanhua, WANG Hongliang, ZHOU Xu, et al. Remote sensing monitoring and analyses of the dynamic change of Balkhash Lake in the last 30 years[J]. Environment and Sustainable Development, 2016 (1):102-106.
高彦华,王洪亮,周旭,等. 巴尔喀什湖近30余年动态变化遥感监测与分析[J]. 环境与可持续发展, 2016 (1): 102-106.
13 PUEPPKE S G. Central Asia's Ili River ecosystem as a wicked problem: unraveling complex interrelationships at the interface of water, energy, and food[M]. Berlin, Heidelberg: Springer, 2018.
14 DUAN W, ZOU S, CHEN Y, et al. Sustainable water management for cross-border resources: the Balkhash Lake Basin of Central Asia, 1931-2015[J]. Journal of Cleaner Production, 2020, 263: 121614.
15 DENG Mingjiang,WANG Zhijie, WANG Jiaoyan. Analysis of Balkhash Lake ecological water level evolvement and its regulation strategy [J]. Journal of Hydraulic Engineering, 2011, 42(4): 403-413.
邓铭江,王志杰,王姣妍. 巴尔喀什湖生态水位演变分析及调控对策[J]. 水利学报, 2011, 42(4): 403-413.
16 STONE R. For China and Kazakhstan, no meeting of the minds on water [J]. Science, 2012, 337(6 093): 405-407.
17 HO S. China's transboundary river policies towards Kazakhstan: issue-linkages and incentives for cooperation [J]. Water International, 2017, 42(2): 142-162.
18 GUO L, XIA Z, ZHOU H, et al. Hydrological changes of the Ili River in Kazakhstan and the possible causes [J]. Journal of Hydrologic Engineering, 2015, 20(11): 5015006.
19 LONG Aihua, DENG Mengjiang, XIE Lei, et al. A study of the water balance of Lake Balkhash [J]. Journal of Glaciology and Geocryology, 2011, 33(6):1 341-1 352.
龙爱华,邓铭江,谢蕾,等. 巴尔喀什湖水量平衡研究[J]. 冰川冻土, 2011, 33 (6): 1 341-1 352.
20 PENG D, ZHOU T, ZHANG L, et al. Detecting human influence on the temperature changes in Central Asia [J]. Climate Dynamics, 2019 (5/6): 4 553-4 568.
21 LUO M, LIU T, MENG F, et al. Spatiotemporal characteristics of future changes in precipitation and temperature in Central Asia [J]. International Journal of Climatology, 2019, 3(39): 1 571-1 588.
22 Surface water resources of the USSR. Volume 13. Central and South Kazakhstan. release. 2. pool of the Lake Balkhash[M]. St. Petersburg: Gidrometeoizdat Press, 1970.
23 YANG Chuande, SHAO Xinyuan. Recent change of lakes in Central Asia [M]. Beijing: China Metrological Press, 1993.
杨川德,邵新嫒. 亚洲中部湖泊近期变化[M]. 北京: 气象出版社, 1993.
24 Zh BURLIBAEV M, VOLCHEK A A, BURLIBAEVA D M. Changes in water levels of Balkhash Lake under climate change[J]. Hydrometeorology and Ecology, 2017, 2: 46-65.
25 GUO L, XIA Z. Temperature and precipitation long-term trends and variations in the Ili-Balkhash Basin [J]. Theoretical and Applied Climatology, 2014, 115(1/2): 219-229.
26 AKIYAMA T, LI J, KUBOTA J, et al. Perspectives on sustainability assessment: an integral approach to historical changes in social systems and water environment in the Ili River Basin of Central Eurasia, 1900-2008[J]. World Futures, 2012, 68(8): 595-627.
27 RUAN Hongwei, YU Jingjie. Changes in land cover and evapotranspiration in the five Central Asian countries from 1992 to 2015[J]. Acta Geographica Sinica, 2019, 74(7):1 292-1 304.
阮宏威,于静洁. 1992—2015年中亚五国土地覆盖与蒸散发变化[J]. 地理学报, 2019, 74(7): 1 292-1 304.
28 ZOU S, JILILI A, DUAN W, et al. Human and natural impacts on the water resources in the Syr Darya River Basin, Central Asia[J]. Sustainability, 2019, 11(11): 3 084.
29 KANG Shichang,GUO Wanqin,WU Tonghua,et al. Cryospheric changes and their impacts on water resources in the Belt and Road regions [J]. Advances in Earth Science, 2020, 35(1): 1-17.
康世昌,郭万钦,吴通华,等. “一带一路” 区域冰冻圈变化及其对水资源的影响[J]. 地球科学进展, 2020, 35(1): 1-17.
30 MANN H B. Nonparametric tests against trend [J]. Econometrica: Journal of the Econometric Society, 1945, 13(3):245-259. DOI:10.2307/1907187.
doi: 10.2307/1907187    
31 KENDALL M G. Rank Correlation Methods [M]. 5th Edition. Edward Arnold, London. 1990.
32 MICKLIN P P. Desiccation of the Aral Sea: a water management disaster in the Soviet Union [J]. Science, 1988, 241 (4 870): 1 170-1 176.
33 XU J, LIU S, GUO W, et al. Glacial area changes in the Ili River Catchment (northeastern Tian Shan) in Xinjiang, China, from the 1960s to 2009 [J]. Advances in Meteorology, 2015(4): 1-12. DOI:10.1155/2015/847257.
doi: 10.1155/2015/847257    
[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[3] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[4] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[5] 李芦頔,吴冰,李鑫璐,杨洁,林良国. 土壤侵蚀中的片蚀研究综述[J]. 地球科学进展, 2021, 36(7): 712-726.
[6] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[7] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[8] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[9] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[10] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[11] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[12] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[13] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[14] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[15] 王亚锋,芦晓明,朱海峰,梁尔源. 高山树线的调查与研究方法[J]. 地球科学进展, 2020, 35(1): 38-51.
阅读次数
全文


摘要