地球科学进展 ›› 2021, Vol. 36 ›› Issue (7): 712 -726. doi: 10.11867/j.issn.1001-8166.2021.057

综述与评述 上一篇    下一篇

土壤侵蚀中的片蚀研究综述
李芦頔 1( ),吴冰 1( ),李鑫璐 1,杨洁 2,林良国 2   
  1. 1.西安交通大学 人居环境与建筑工程学院,陕西 西安 710049
    2.长安大学 土地工程学院,陕西 西安 710054
  • 收稿日期:2021-04-07 修回日期:2021-05-25 出版日期:2021-07-10
  • 通讯作者: 吴冰 E-mail:ludylee@stu.xjtu.edu.cn;wubing1099@xjtu.edu.cn
  • 基金资助:
    国家自然科学基金青年科学基金项目“黄土地区受雨滴打击影响的片流搬运能力试验研究”(41907046);地表过程与资源生态国家重点实验室(北京师范大学)开放课题“黄土坡面片蚀过程关键参数及其耦合关系试验研究”(2020-KF-08)

Sheet Erosion Study in Soil Erosion: A Review

Ludi LI 1( ),Bing WU 1( ),Xinlu LI 1,Jie YANG 2,Liangguo LIN 2   

  1. 1.School of Human Settlements and Civil Engineering,Xi'an Jiaotong University,Xi'an 710049,China
    2.School of Land Engineering,Chang'an University,Xi'an 710054,China
  • Received:2021-04-07 Revised:2021-05-25 Online:2021-07-10 Published:2021-08-20
  • Contact: Bing WU E-mail:ludylee@stu.xjtu.edu.cn;wubing1099@xjtu.edu.cn
  • About author:LI Ludi (1996-), female, Xi'an City, Shaanxi Province, Master student. Research areas include soil erosion process and mechanism. E-mail: ludylee@stu.xjtu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China "Experimental study on sediment transport capacity by raindrop-impacted sheet flow on the loess region"(41907046);State Key Laboratory of Earth Surface Processes and Resource Ecology "Experimental study on key parameters and coupling relationship of sheet erosion process on loess hillslope"(2020-KF-08)

土壤侵蚀制约着社会、经济、环境的协调发展,危害极大,片蚀是坡面土壤侵蚀过程的第一阶段,又是土壤坡面水蚀过程中分布面积最大且最为复杂和独特的侵蚀类型。研究片蚀过程和机理对于深入揭示坡面水蚀机制,建立区域水蚀模型具有重要意义。归纳总结了国内外现有的片蚀研究现状,包括片蚀动力学过程与机理,雨滴动能、降雨强度、坡度、植被覆盖、土壤类型和地表粗糙度对片蚀的影响,坡面片蚀分离、搬运及其限制性过程,基于不同影响因子的坡面片蚀预测模型等,虽然学者从各个角度定性定量地研究了片蚀对不同影响因子的响应,但是研究仍存在一定的区域限制性,因此可进一步开展相关研究建立具有广泛应用性的片蚀预测模型。研究结果可为我国水土流失综合治理及生态文明建设提供科学依据。

Soil erosion is extremely dangerous which can restrict the balanced development of society, economy, and environment. Sheet erosion belongs to the first stage of the soil erosion process, and it is the largest and most complex and unique type of erosion in the process of water erosion. Studying the process and mechanism of sheet erosion is of great significance to reveal the mechanism of water erosion and establish regional water erosion models. This article summarizes the current researches of sheet erosion: the dynamic process and mechanism of sheet erosion, the influences of raindrop kinetic energy, rainfall intensity, slope steepness, vegetation cover, soil type and surface roughness on sheet erosion, the detachment-limited process and transport-limited process of sheet erosion and sheet erosion prediction models based on different influencing factors, etc. Although scholars have qualitatively and quantitatively studied the response of sheet erosion to different influencing factors, the current researches still have certain regional limitations. Therefore, relevant researches can be further carried out to establish widely applicable sheet erosion prediction models. The results can provide a scientific basis for the comprehensive management of soil erosion and the construction of ecological civilization in China.

中图分类号: 

表1 水流功率模型汇总 [ 11 ~ 22 ]
Table 1 The summation of stream power models [ 11 ~ 22 ]
模型 试验用土 试验方法 颗粒组成 R2 NSE n 参考文献
T c = 0.437 ( Ω - 0.698 ) d50=0.28 mm

坡度:8.8%、17.6%、22.2%、26.8%、31.5%、 36.4%、41.4%、46.6%

单宽流量:0.625×10-3、1.250×10-3、1.875×10-3、2.500×10-3、3.125×10-3、3.750×10-3、 4.375×10-3、5.00×10-3 m2/s

- 0.98 0.98 64 11
T c = 0.470 ( Ω - 0.95 )

冲击砂

d50=0.326 mm

坡度:8.7%、17.6%、22.2%、26.8%、 31.5%、36.4%、41.4%、46.6%

径流速率:0.25、0.5、0.75、1.0、1.25、1.5、1.75、2.0 L/s

- 0.97 - 64 12

T c = 0.202 Ω 1.45

T c = 1.57 × 10 - 41 Ω 2.88 K E 16.11 e a

-

降雨强度:24、60、90、120、138、150 mm/h

坡度:12.3%、17.6%、26.8%、36.4%、40.4%、46.63%

34.0%砂粒

56.1%粉粒

9.9%黏粒

0.90 0.75 155 13

T c = 0.283 Ω 1.266

T c = 0.178 Ω 1.413

T c = 0.141 Ω 1.423

T c = 0.117 Ω 1.435

T c = 0.095 Ω 1.441

d50=0.10 mm

d50=0.22 mm

d50=0.41 mm

d50=0.69 mm

d50=1.16 mm

单宽流量:0.66×10-3、1.32×10-3、2.63×10-3、 3.95×10-3、5.26×10-3 m2/s

坡度:8.7%、17.4%、25.9%、34.2%、42.3%

-

0.94

0.96

0.96

0.97

0.96

-

22

24

25

25

25

14
Φ = 0.0413 ( Ω ` - 36.5 ) 1.1781

绵黄土

d50=0.04 mm)

沙黄土

d50=0.095 mm)

坡度:12.23%、17.63%、26.8%、 36.4%、40.4%、46.63%

降雨强度:40、60、90、120、138、150 mm/h

沙黄土:

0.30%粗砂粒

64.9%细砂粒

22.0%粗粉粒

2.8%中粉粒

3.2%细粉粒

5.8%黏粒

0.950 0.978 46 15

绵黄土:

36.58%细砂粒

48%粗粉粒

3.84%中粉粒

4.73%细粉粒

6.85%黏粒

S E = 0.0154 ( Ω - 0.00325 ) -

坡度:12.3%、17.6%、26.8%、36.4%、46.6%

降雨强度:42、60、90、120、150 mm/h

植被覆盖率:30%、40%、50%、60%、70%

70.09%砂粒

21.42%粉粒

8.49%黏粒

0.93 0.89 50 16

Φ = 0.03 Ω * 1.55

Φ = 0.05 Ω * 1.43

细砂和粉砂

d50=0.17 mm

d50=0.53 mm

坡度:3.49%~20.9%

单宽流量:0.0667×10-3~0.3333×10-3 m2/s

-

0.82

0.95

- - 17
q s = 0.00008 Ω - 0.00079 黄土

降雨强度:43.8、68.4、83.4、128.4、142.2 mm/h

坡度:10.5%、17.6%、26.8%

10.25%砂粒

72.10%粉粒

17.65%黏粒

0.907 - 19 18
T c = 0.213 Ω 1.25

泥沙

d50=0.28 mm

坡度:8.7%、17.4%、25.9%、34.2%、38.3%、42.3%

单宽流量:0.66×10-3、1.32×10-3、1.97×10-3、2.63×10-3、3.29×10-3、3.95×10-3、4.61×10-3、5.26×10-3 m2/s

- 0.975 0.968 64 19

G s = 10.245 ( Ω - 3.126 )

G s = 6.535 ( Ω - 2.496 )

G s = 5.168 ( Ω + 0.36 )

-

坡度:17.6%、36.4%、57.7%

流量:1.0、2.0、3.0、4.0、5.0、7.5、10 L/min

-

0.929

0.805

0.925

-

7

7

7

20
S E = 0.06 Ω - 0.0003

沙黄土

d50=0.0039 mm

坡度:12.23%、17.63%、26.8%、 36.4%、40.4%、46.63%

降雨强度:40、60、90、120、138、150 mm/h

70.09%砂粒

21.42%粉粒

8.49%黏粒

0.97 0.97 18 21
S E = 7.77 ( Ω - 0.008 ) 黄土

坡度:12.23%、17.63%、26.8%、 36.4%、40.4%、46.63%

降雨强度:40、60、90、120、138、150 mm/h

36.21%砂粒

55.3%粉粒

8.49%黏粒

0.87 0.87 35 22
表2 单位水流功率模型汇总 [ 11 , 15 ~ 17 , 21 , 26 ~ 30 ]
Table 2 The summation of unit stream power models [ 11 , 15 ~ 17 , 21 , 26 ~ 30 ]
模型 试验用土 试验方法 颗粒组成 R2 NSE n 参考文献
T c = 0.024 q γ s ω - 0.4 0.863 d50=0.28 mm

坡度:8.7%、17.6%、22.2%、26.8%、31.5%、36.4%、41.4%、46.6%

单宽流量:0.625×10-3、1.250×10-3、1.875×10-3、2.500×10-3、3.125×10-3、3.750×10-3、4.375×10-3、5.00×10-3 m2/s

- 0.92 0.92 64 11
SE=0.0148(ω-0.0003) -

坡度:12.3%、17.6%、26.8%、36.4%、46.6%

降雨强度:42、60、90、120、150 mm/h

植被覆盖率:30%、40%、50%、60%、70%

70.09%砂粒

21.42%粉粒

8.49%黏粒

0.93 0.89 50 16
T c = 2326.6 ω 2.89

4种砂粒

d50=0.233、0.536、0.719、1.022 mm

坡度:5.2%、8.7%、13.2%、17.6%

单宽流量:0.07×10-3~2.27×10-3 m2/s

- 0.87 - - 26
T c = ρ s q d 50 + 5 0.32 - 0.5 ω - ω u c r d 50 + 5 300 0.25

4种砂粒

d50=0.230、0.536、0.719、1.022 mm

坡度:1.7%、3.5%、8.7%、14.1%、21.0%

单宽流量:0.20×10-3~10.0×10-3 m2/s

- - - 436 27
S E = 4.45 ω + 2.54 沙壤土

降雨强度:38.2~56.3 mm/h

坡度:2.5%、11.5%、20.5%、30%、40%

50.0%砂粒

22.0%粉粒

28.0%黏粒

0.76 - - 28

T c = 20.648 ω 1.317

T c = 25.893 ω 1.555

T c = 23.388 ω 1.615

T c = 19.231 ω 1.601

T c = 15.311 ω 1.581

d50=0.10 mm

d50=0.22 mm

d50=0.41 mm

d50=0.69 mm

d50=1.16 mm

单宽流量:0.66×10-3、1.32×10-3、2.63×10-3、3.95×10-3、5.26×10-3 m2/s

坡度:8.7%、17.4%、25.9%、34.2%、42.3%

-

0.76

0.85

0.89

0.87

0.84

-

22

24

25

25

25

29
φ = 3.63 u * v s 1.64 u v s 0.62 ω v s - ω u c r v s

5种砂粒

d50=0.058、0.127、0.218、0.414、1.098 mm

单宽流量:0.07×10-3~2.27×10-3 m2/s

坡度:5.2%、8.7%、13.2%、17.6%

- - - 81 30
Φ = 0.0036 ω ` 2.4981

沙黄土

d50=0.095 mm)

绵黄土

d50=0.04 mm)

坡度:12.23%、17.63%、26.8%、36.4%、40.4%、46.63%

降雨强度:40、60、90、120、138、

150 mm/h

沙黄土:

0.30%粗砂粒

64.9%细砂粒

22.0%粗粉粒

2.8%中粉粒

3.2%细粉粒

5.8%黏粒

绵黄土:

36.58%细砂粒

48%粗粉粒

3.84%中粉粒

4.73%细粉粒

6.85%黏粒

0.6599 0.7561 436 15

Φ = 0.54 ω * 1.57

Φ = 6.26 ω * 2.46

细砂和粉砂

d50=0.17 mm

d50=0.53 mm

坡度:3.49%~20.9%

单宽流量0.0667×10-3~0.3333×10-3 m2/s

-

0.61

0.90

- - 17
S E = 8.06 ω - 0.0025 黄土

坡度:12.23%、17.63%、26.8%、 36.4%、40.4%、46.63%

降雨强度:40、60、90、120、138、

150 mm/h

36.21%砂粒

55.3%粉粒

8.49%黏粒

0.43 0.43 35 21
表3 水流剪切力模型汇总表 [ 11 , 14 , 16 , 17 , 20 ~ 22 , 29 , 31 , 32 ]
Table 3 The summation of shear stress models [ 11 , 14 , 16 , 17 , 20 ~ 22 , 29 , 31 , 32 ]
模型 试验用土 试验方法 颗粒组成 R2 NSE n 参考 文献
T c = 0.054 τ 1.982 d50=0.28 mm

坡度:8.7%、17.6%、22.2%、26.8%、31.5%、 36.4%、41.4%、46.6%

单宽流量:0.625×10-3、1.250×10-3、1.875×10-3、2.500×10-3、3.125×10-3、3.750×10-3、4.375×10-3、5.00×10-3 m2/s

- 0.98 0.97 64 11
S E = 0.0011 τ 1.601 -

坡度:12.3%、17.6%、26.8%、36.4%、46.6%

降雨强度:42、60、90、120、150 mm/h

植被覆盖率:30%、40%、50%、60%、70%

70.09%砂粒

21.42%粉粒

8.49%黏粒

0.79 0.55 50 16

G s = 137.2 τ - 0.642

G s = 197.56 τ - 12.9

G s = 286.81 τ - 10.91

-

坡度:17.6%、36.4%、57.7%

流量:1.0、2.0、3.0、4.0、5.0、7.5、10 L/min

-

0.925

0.805

0.929

-

7

7

7

20
S E = 0.011 τ - 0.01 沙黄土d50=0.0039 mm

坡度:12.23%、17.63%、26.8%、36.4%、40.4%、46.63%

降雨强度:40、60、90、120、138、150 mm/h

70.09%砂粒

21.42%粉粒

8.49%黏粒

0.88 0.88 18 21
S E = 1.26 ( τ - 0.12 ) 黄土

坡度:12.23%、17.63%、26.8%、36.4%、40.4%、46.63%

降雨强度:40、60、90、120、138、150 mm/h

36.21%砂粒

55.3%粉粒

8.49%黏粒

0.83 0.83 35 22

T c = 0.044 τ 2.065

T c = 0.022 τ 2.294

T c = 0.018 τ 2.309

T c = 0.015 τ 2.314

T c = 0.012 τ 2.320

d50=0.10 mm

d50=0.22 mm

d50=0.41 mm

d50=0.69 mm

d50=1.16 mm

单宽流量:0.66×10-3、1.32×10-3、2.63×10-3、 3.95×10-3、5.26×10-3 m2/s

坡度:8.7%、17.4%、25.9%、34.2%、42.3%

-

0.95

0.97

0.97

0.97

0.97

-

22

24

25

25

25

29
T c = η τ τ - τ c 1.92 沙土d50=0.35 mm

坡度:5.7%、10%、15%、20%、30%、40%

降雨强度:32、57、93、117 mm/h

90.0%砂粒

10.0%粉粒

- - - 31

Φ = 0.32 τ * 1.87

Φ = 0.071 τ * 1.97

细砂和粉砂

d50=0.17 mm

d50=0.53 mm

坡度:3.49%~20.9%

单宽流量:0.0667×10-3~0.3333×10-3 m2/s

-

0.67

0.75

- - 17
T c = 0.015 τ 1.86 -

坡度:12.3%、17.6%、26.8%、36.4%、40.4%、46.63%

降雨强度:24、60、90、120、138、150 mm/h

34.0%砂粒

56.1%粉粒

9.9%黏粒

0.53 0.32 155 14
S E = 0.0084 τ - 0.0184 -

单宽流量:0.25×10-3、0.50×10-3、1.0×10-3、 1.5×10-3、2.0×10-3 m2/s

坡度:8.7%、17.6%、26.8%、36.4%、46.6%

7.9%砂粒

66.7%粉粒

25.4%黏粒

0.89 - - 32
表4 片蚀模型汇总 [ 2 , 21 , 65 , 110 ~ 120 ]
Table 4 The summation of sheet erosion models [ 2 , 21 , 65 , 110 ~ 120 ]
模型 试验条件 颗粒组成 参数值 R2 NSE n 参考文献
D i = K i I 2 - - - - - - 110
D i = K i I S Q - - - - - - 111
S E = 7.5 × 10 - 12 S 1.43 I 3.04

试验用土:沙黄土d50=0.0039 mm

坡度:12.23%、17.63%、26.8%、36.4%、

40.4%、46.63%

降雨强度:40、60、90、120、138、150 mm/h

70.09%砂粒

21.42%粉粒

8.49%黏粒

- 0.950 0.87 18 21
D i = K i I Q 1 2 S 2 3

试验用土:Cecil沙壤土,Dyke黏土

坡度:8.7%、17.6%、26.8%、36.4%

降雨强度:42、62、78、90 mm/h

Cecil沙壤土:

69%砂粒

20%粉粒

11%黏粒

Ki=0.40 0.969 - - 112

Dyke黏土:

27%砂粒

33%粉粒

40%黏粒

Ki=0.27 0.692
D i = K i I Q S 2 3

试验用土:黄土

坡度:1.4%、6.1%

降雨强度:30、66、102、138、162、174 mm/h

- Ki:1 113.6~ 10 135.9 - - - 113
D i = K i R I 0.22 S f L - 0.25

试验用土:黄绵土

坡度:17%、27%、36%、47%、58%

降雨强度:48、62.4、102、149、170 mm/h

38.72%砂粒

45.59%粉粒

15.69%黏粒

0.53%有机质

Ki:221~1 049 - - - 114
D i = K i I Q S f

坡度:3.0%、6.0%、50.0%

降雨强度:63 mm/h

- - - - - 115
D i = K i I S f Q m L n

试验用土:黄绵土

坡度:17.6%、26.8%、36.4%、46.6%、57.7%

降雨强度:48、62、102、149、170 mm/h

39%沙粒

45%粉粒

16%黏粒

0.5%有机质

Ki=132.9

m=0.242,

n=-0.137

- - - 116
D i = K i I 0.91 S 0.91 Q 1.76 e P

试验条件:淋溶黏壤土

坡度:8.7%、17.6%

降雨强度:30、60、90 mm/h

沙粒:13.7%

粉粒:54.2%

黏粒:32.1%

Ki=2.59×10-2 0.920 0.92 219 117
D i = K i I 0.91 S 0.91 Q 1.76 e p L 1.62

试验用土:淋溶黏壤土

坡度:8.75%

降雨强度:30、60、90 mm/h

13.7%砂粒

54.2%粉粒

32.1%黏粒

Ki=0.03

(渗流状态)

0.970(渗流状态) - 15(渗流状态) 118

Ki=0.04

(饱和状态)

0.810(饱和状态) - 30(渗流状态)
Di=0.34AsI2(1.05-0.85exp-4sinθ

坡度:10%~20%

降雨强度:31.2±1.4、61.2±2.2 mm/h

- - 0.870 - - 119
Di=0.34AsqI(1.05-0.85exp-4sinθ 0.890
M = 2.9405 E ` - 0.0574

试验用土:沙黄土d50=0.095 mm

坡度:15.8%、21.3%、26.8%、32.5%、38.4%

降雨强度:60、79.8、100.2、120、139.8 mm/h

65.2%砂粒

28%粉粒

5.8%黏粒

- 0.854 - 25 2
A = α k E m ( E p u ) n

试验用土:黄土母质性黄绵土

坡度:17.6%、26.8%、36.3%、

46.6%、57.7%、70.0%

-

松动表土:

αk=10.1432

m=0,n=1.290

松动表土:

R=0.866

- - 65

不松动表土:

αk=1.0931

m=0.39,n=0.812

不松动表土:R=0.792 - -
G 0 = K 1 S 2 + K 2 S + K 3

松动表土:

K1=-12.26

K2=762.43

K3=-3 991.90

松动表土:

R=0.982

- -

不松动表土:

K1=-2.03

K2=154.07

K3=214.67

不松动表土:R=0.968 - -
A = 0.074 K 0.78 K E 3.72

试验用土:黄绵土、黑土、红壤

坡度:17.6%

降雨强度:50、100 mm/h

黄土: 28.3%砂粒,58.1%粉粒,13.6%黏粒 - 0.860 - 80 120
黑土: 3.3%砂粒,76.4%粉粒,20.3%黏粒
红壤: 6.4%砂粒,76.6%粉粒,17.0%黏粒
1 SHI Deming. Influence of soil erosion on ecological environment and natural disasters[J]. Advances in Earth Science, 1990, 6(4):41-44.
史德明. 土壤侵蚀对生态环境与自然灾害的影响[J]. 地球科学进展, 1990, 6(4): 41-44.
2 LIU June, WANG Zhanli, GAO Sujuan, et al. Experimental study of sheet erosion process on loess hillslopes[J]. Journal of Soil Water Conservation, 2011, 25(3): 35-39.
刘俊娥, 王占礼, 高素娟, 等. 黄土坡面片蚀过程试验研究[J]. 水土保持学报, 2011, 25(3): 35-39.
3 CHEN Yongzong. Modern erosion and control in Loess Plateau[M]. Beijing: Science Press, 1988.
陈永宗. 黄土高原现代侵蚀与治理[M]. 北京:科学出版社, 1988.
4 ZHU Xianmo. Main types and related factors of water erosion in Loess Plateau[J]. Bulletin of Soil and Water Conservation, 1981(3): 1-9.
朱显谟. 黄土高原水蚀的主要类型及其有关因素[J]. 水土保持通报, 1981(3): 1-9.
5 WU Pute. Experimental study on dynamic water erosion[M]. Xi'an: Shannxi Science and Technology Press,1999.
吴普特. 动力水蚀实验研究[M]. 西安:陕西科学技术出版社,1999.
6 FOSTER G R, HUGGINS L F, MEYER L D. A laboratory study of rill hydraulics: I. velocity relationships[J]. Transactions of the ASAE, 1984, 27(3): 790-796.
7 FOSTER G R, HUGGINS L F, MEYER L D. A laboratory study of rill hydraulics: II. shear stress relationships[J]. Transactions of the ASAE, 1984, 27(3): 797-804.
8 WANG Guiping, LU Zhaoxiong. Research on slope soil erosion and forecast in loess hilly and gully area of Western Shanxi[J]. Soil and Water Conservation in China, 1992(5): 15-21.
王贵平, 陆兆熊. 晋西黄土丘陵沟壑区坡面土壤侵蚀及预报研究[J]. 中国水土保持, 1992(5): 15-21.
9 BAGNOLD R A. Deposition in process of hydraulic transport [J]. Sedimentology, 1968, 10(1): 45-56.
10 ABRAHAMS A D, LI G, KRISHNAN C, et al. A sediment transport equation for interrill overland flow on rough surfaces[J]. Earth Surface Processes and Landforms, 2001, 26(13): 1 443-1 449.
11 ZHANG G H, LIU Y M, HAN Y F, et al. Sediment transport and soil detachment on steep slopes: I. transport capacity estimation[J]. Soil Science Society of America Journal, 2009, 73(4):1 291-1 293.
12 YU B F, ZHANG G H, FU X D. Transport capacity of overland flow with high sediment concentration[J]. Journal of Hydrologic Engineering, 2014, 20(C4014001): 1-10.
13 ZHANG Q W, WANG Z L, WU B, et al. Identifying sediment transport capacity of raindrop-impacted overland flow within transport-limited system of interrill erosion processes on steep loess hillslopes of China[J]. Soil and Tillage Research,2018,184: 109-117.
14 ZHANG G H,WANG L L,TANG K M, et al. Effects of sediment size on transport capacity of overland flow on steep slopes[J]. Hydrological Sciences Journal, 2011, 56(7): 1 289-1 299.
15 GAO Chenye, ZHANG Kuandi, YANG Mingyi. Overland flow sediment transport capacity calculation method based on non-dimensional flow intensity index[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34 (17): 134-142.
高晨烨, 张宽地, 杨明义. 基于无量纲水流强度指标的坡面流输沙能力计算方法[J]. 农业工程学报, 2018, 34 (17): 134-142.
16 WANG D, WANG Z, ZHANG Q, et al. Sheet erosion rates and erosion control on steep rangelands in loess regions[J]. Earth Surface Processes and Landforms, 2018, 43(14): 2 926-2 934.
17 LI P, ZHUANG K, WANG J, et al. Nondimensional sediment transport capacity of sand soils and its response to parameter in the Loess Plateau of China[J]. Hydrological Processes, 2020, 34(3): 823-835.
18 CAO L, ZHANG K, DAI H, et al. Modeling interrill erosion on unpaved roads in the Loess Plateau of China[J]. Land Degradation & Development, 2015, 26(8): 825-832.
19 LUAN Lili, ZHANG Guanghui, WANG Lili, et al. Study on sediment transport capacity of overland flow based on stream power[J]. Journal of Sediment Research, 2016(2): 61-67.
栾莉莉, 张光辉, 王莉莉, 等. 基于水流功率的坡面流挟沙力模拟[J]. 2016(2): 61-67.
20 ZHAO Haibin, YAN Guoxin, YAO Wenyi, et al. Experimental study on sediment transport capacity of sheet flow over loess slope[J]. Journal of Soil and Water Conservation, 2009(6): 41-44.
赵海滨, 闫国新, 姚文艺, 等. 黄土坡面径流输沙能力试验研究[J]. 水土保持学报, 2009(6): 41-44.
21 WU B, WANG Z L, ZHANG Q W, et al. Modelling sheet erosion on steep slopes in the loess region of China[J]. Journal of Hydrology, 2017, 553: 549-558.
22 WU B, WANG Z L, ZHANG Q W, et al. Response of soil detachment rate by raindrop-affected sediment-laden sheet flow to sediment load and hydraulic parameters within a detachment-limited sheet erosion system on steep slopes on Loess Plateau, China[J]. Soil & Tillage Research, 2019, 185: 9-16.
23 YANG C T, MOLINAS A. Sediment transport and unit stream power function[J]. Journal of the Hydraulics Division—ASCE, 1982, 108(6): 774-793.
24 YANG C T, STALL J B. Applicability of unit stream power equation[J]. Journal of the Hydraulics Division—ASCE, 1976, 102(5): 559-568.
25 MOORE I D, BURCH G J. Sediment transport capacity of sheet and rill flow: application of unit stream power theory [J]. Water Resources Research, 1986, 22(8): 1 350-1 360.
26 ALI M, STERK G, SEEGER M, et al. Effect of hydraulic parameters on sediment transport capacity in overland flow over erodible beds[J]. Hydrology and Earth System Sciences, 2012, 16(2): 591-601.
27 GOVERS G. Empirical relationships for the transport capacity of overland flow[J]. IAHS Publication, 1990, 189: 45-63.
28 FOX D M, BRYAN R B. The relationship of soil loss by interrill erosion to slope gradient[J]. Catena, 2000, 38(3): 211-222.
29 ZHANG G H, WANG L L, TANG K M, et al. Effects of sediment size on transport capacity of overland flow on steep slopes[J]. Hydrological Sciences Journal, 2011, 56(7):1 289-1 299.
30 ALI M, SEEGER M, STERK G, et al. A unit stream power based sediment transport function for overland flow[J]. Catena, 2013, 101: 197-204.
31 TAYFUR G. Applicability of sediment transport capacity models for nonsteady state erosion from steep slopes[J]. Journal of Hydrologic Engineering, 2002, 7(3): 252-259.
32 ZHANG G H, LIU B Y, LIU G B, et al. Detachment of undisturbed soil by shallow flow[J]. Soil Science Society of America Journal, 2003, 67(3): 713-719.
33 PROTODYAKONOV M M. Modern theoretical basis of surface runoff [M]. Beijing:China Railway Publishing House, 1958.
普罗托季亚科诺夫. 地面径流现代理论基础[M].北京:人民铁道出版社,1958.
34 GUY B, DICKINSON W, RUDRA R. The roles of rainfall and runoff in the sediment transport capacity of interrill flow[J]. Transactions of the ASAE, 1987, 30(5): 1 378-1 386.
35 JIANG Zhongshan, SONG Wenjing. An experimental study on the velocity of slope flow[J]. Research of Soil and Water Conservation, 1988(1): 46-52.
江忠善, 宋文经. 坡面流速的试验研究[J]. 水土保持研究, 1988(1): 46-52.
36 YAO Wenyi. Experiment study on hydraulic resistance laws of overland sheet flow[J]. Journal of Sediment Reasearch, 1996(1): 74-82.
姚文艺. 坡面流阻力规律试验研究[J]. 泥沙研究, 1996(1): 74-82.
37 LEI Alin, TANG Keli. Retrospect and prospect for soil erosion studies of ridge-hill-gully slope system[J]. Bulletin of Soil and Water Conservation,1997, 17(3): 37-43.
雷阿林, 唐克丽. 坡沟系统土壤侵蚀研究回顾与展望[J]. 水土保持通报, 1997, 17(3): 37-43.
38 LI Xiaoyu, WANG Wei, SHEN Yi, et al. Photoelectric velocity measuring system for slope flow based on virtual instrument technology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(6): 87-90.
李小昱, 王为, 沈逸, 等. 基于虚拟仪器技术的光电式坡面径流流速测量系统[J]. 农业工程学报, 2006, 22(6): 87-90.
39 ALI M, STERK G, SEEGER M, et al. Effect of flow discharge and median grain size on mean flow velocity under overland flow[J]. Journal of Hydrology, 2012, 452: 150-160.
40 SIRJANI E, MAHMOODABADI M. Effects of sheet flow rate and slope gradient on sediment load[J]. Arabian Journal of Geosciences, 2014, 7(1): 203-210.
41 WANG L, SHI Z H. Size Selectivity of eroded sediment associated with soil texture on steep slopes[J]. Soil Science Society of America Journal, 2015, 79(3): 917-929.
42 GUY B T, DICKINSON W T, RUDRA R P, et al. Hydraulics of sediment-laden sheetflow and the influence of simulated rainfall[J]. Earth Surface Processes and Landforms, 1990, 15(2): 101-118.
43 ZHANG Guanghui. Study on hydraulic properties of shallow flow[J]. Advanture of Water Science, 2002(2): 28-34.
张光辉. 坡面薄层流水动力学特性的实验研究[J]. 水科学进展, 2002(2): 28-34.
44 YANG Jin, Hongxing Lü, SHANGGUAN Zhouping. Experiment study on hydraulic properties of overland flow[J]. Journal of Irrigation Drainage, 2008, 27(4): 58-60.
杨锦, 吕宏兴, 上官周平. 薄层水流水力特性试验研究[J]. 灌溉排水学报, 2008, 27(4): 58-60.
45 WU Shufang, WU Pute, YUAN Lifeng. Hydraulic characteristics of sheet flow with slope runoff regulation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(3): 14-19.
吴淑芳, 吴普特, 原立峰. 坡面径流调控薄层水流水力学特性试验[J]. 农业工程学报, 2010, 26(3): 14-19.
46 KINNELL P I A. The impact of slope length on the discharge of sediment by rain impact induced saltation and suspension[J]. Earth Surface Processes and Landforms, 2009, 34(10): 1 393-1 407.
47 KINNELL P I A. Modeling of the effect of flow depth on sediment discharged by rain-impacted flows from sheet and interrill erosion areas: a review[J]. Hydrological Processes, 2013, 27 (18): 2 567-2 578.
48 GUO Zhonglu, MA Meijing, CAI Chongfa, et al. Soil erosion and flow hydraulics on red soil slope under simulated rainfall and runoff[J]. Resource and Environment in the Yangtze Basin, 2017, 26(1): 150-157.
郭忠录, 马美景, 蔡崇法, 等. 模拟降雨径流作用下红壤坡面侵蚀水动力学机制[J]. 长江流域资源与环境, 2017, 26(1): 150-157.
49 BAI Yujie, ZHANG Fengbao, YANG Mingyi, et al. Variation of hydraulic parameters of shallow flow on steep loess slope[J]. Acta Pedologica Sinica, 2018, 55(3): 641-649.
白玉洁, 张风宝, 杨明义, 等. 急陡黄土坡面薄层水流水力学参数变化特征[J].土壤学报, 2018, 55(3): 641-649.
50 WANG J G, YU B, NI S M, et al. Effects of sediment load on the abrasion of soil aggregate and hydraulic parameters in experimental overland flow[J]. Journal of Integrative Agriculture, 2020, 19(4): 1 117-1 126.
51 PARSONS A J, STONE P M. Effects of intra-storm variations in rainfall intensity on interrill runoff and erosion[J]. Catena, 2006, 67(1): 68-78.
52 ZHAI Juan, LU Xiaoning, XIONG Donghong, et al. Review on the research progress of hydrodynamic characteristics and their influencing factors for the runoff of erosion[J]. Safety and Environmental Engineering, 2012, 19(5): 1-5.
翟娟, 卢晓宁, 熊东红, 等. 土壤侵蚀径流水动力学特性及其影响因素的研究进展[J]. 安全与环境工程, 2012, 19(5): 1-5.
53 MAHMOODABADI M, SAJJADI S A. Effects of rain intensity, slope gradient and particle size distribution on the relative contributions of splash and wash loads to rain-induced erosion[J]. Geomorphology, 2016, 253(15): 159-167.
54 VALMIS S, DIMOYIANNIS D, DANALATOS N G. Assessing interrill erosion rate from soil aggregate instability index, rainfall intensity and slope angle on cultivated soils in central Greece[J]. Soil & Tillage Research, 2005, 80(1/2): 139-147.
55 TIAN P, XU X, PAN C, et al. Impacts of rainfall and inflow on rill formation and erosion processes on steep hillslopes[J]. Journal of Hydrology, 2017, 548: 24-39.
56 JIA Shaofeng, LIANG Jiyang. The correlation among rainfall, runoff and sediment generation in the Loess Plateau[J]. Journal of Soil and Water Conservation, 1992, 6(3): 42-42.
贾绍凤, 梁季阳. 黄土高原降雨、径流、产沙相互关系的研究[J]. 水土保持学报, 1992, 6(3): 42-42.
57 MOHAMADI M A, KAVIAN A. Effects of rainfall patterns on runoff and soil erosion in field plots[J]. International Soil & Water Conservation Research, 2015, 3(4): 273-281.
58 WEN L, ZHENG F, SHEN H, et al. Rainfall intensity and inflow rate effects on hillslope soil erosion in the Mollisol region of Northeast China[J]. Natural Hazards, 2015, 79(1): 381-395.
59 SHEN H O, WEN L L, HE Y F, et al. Rainfall and inflow effects on soil erosion for hillslopes dominated by sheet erosion or rill erosion in the Chinese Mollisol region[J]. Journal of Mountain Science, 2018, 15(10): 2 182-2 191.
60 GUO Zhonglu, MA Meijing, CAI Chongfa, et al. Combined effects of simulated rainfall and overland flow on sediment and solute transport in hillslope erosion[J]. Journal of Soil & Sediments, 2018(18): 1 120-1 132.
61 DEFERSHA M B, MELESSE A M. Effect of rainfall intensity, slope and antecedent moisture content on sediment concentration and sediment enrichment ratio[J]. Catena, 2012, 90: 47-52.
62 WU X, WEI Y, WANG J, et al. Effects of erosion degree and rainfall intensity on erosion processes for Ultisols derived from quaternary red clay[J]. Agriculture Ecosystems & Environment, 2017, 249: 226-236.
63 ASADI H, GNADIRI H, ROSE C W, et al. Interrill soil erosion processes and their interaction on low slopes[J]. Earth Surface Processes and Landforms, 2007, 32(5): 711-724.
64 ARMSTRONG A, QUINTON J N, HENG B C P, et al. Variability of interrill erosion at low slopes[J]. Earth Surface Processes and Landforms, 2011, 36(1): 97-106.
65 LIU Zhi, JIANG Zhongshan. Study on the effect of natural rainfall factors and slopes on sheet erosion[J]. Bulletin of Soil and Water Conservation, 1994(6): 19-22.
刘志, 江忠善. 降雨因素和坡度对片蚀影响的研究[J]. 水土保持通报, 1994(6): 19-22.
66 FU S, LIU B, LIU H, et al. The effect of slope on interrill erosion at short slopes[J]. Catena, 2011, 84(1/2): 29-34.
67 ZIADAT F M, TAIMEH A Y. Effect of rainfall intensity, slope, land use and antecedent soil moisture on soil erosion in an arid environment [J]. Land Degradation & Development, 2013, 24(6): 582-590.
68 FOX D M, BRYAN R B, PRICE A G. The influence of slope angle on final infiltration rate for interrill conditions[J]. Geoderma, 1997, 80(1/2): 181-194.
69 AUERSWALD K, FIENER P, DIKAU R. Rates of sheet and rill erosion in Germany—a meta-analysis[J]. Geomorphology, 2009, 111(3/4): 182-193.
70 LIU June, WANG Zhanli, GAO Sujuan, et al. Experimental study on sheet erosion process on down slope segment of loess hillslopes[J]. Bulletin of Soil and Water Conservation, 2011, 31(5): 23-27.
刘俊娥, 王占礼, 高素娟, 等. 黄土坡面下坡位片蚀过程试验研究[J]. 水土保持通报, 2011, 31(5): 23-27.
71 SHENG Hewei, ZHENG Fenli, CAI Qiangguo, et al. Effects of rainfall intensity and slope gradient on sheet erosion at the clay loess hillslope[J]. Journal of Soil Water Conservation, 2016, 30(6): 13-23.
盛贺伟, 郑粉莉, 蔡强国, 等. 降雨强度和坡度对粘黄土坡面片蚀的影响[J]. 水土保持学报, 2016, 30(6): 13-23.
72 LI P, MU X, HOLDEN J, et al. Comparison of soil erosion models used to study the Chinese Loess Plateau[J]. Earth-Science Reviews, 2017, 170: 17-30.
73 SUN W, SHAO Q, LIU J, et al. Assessing the effects of land use and topography on soil erosion on the Loess Plateau in China[J]. Catena, 2014, 121: 151-163.
74 CERDA A. The influence of geomorphological position and vegetation cover on the erosional and hydrological processes on a Mediterranean hillslope[J]. Hydrological Processes, 1998, 12(4): 661-671.
75 YANG Chunxia, WANG Dan, WANG Lingling, et al. Influence of grass cover degree to hydrodynamic parameters of slope water[J]. Soil and Water Conservation in China, 2018(9): 36-38.
杨春霞, 王丹, 王玲玲, 等. 草被覆盖度对坡面流水动力学参数的影响[J]. 中国水土保持, 2008(9): 36-38.
76 ZHU Huixin, HU Xiaojing, CHENG Jinhua, et al. Hydrodynamic characteristics of soil erosion in overland flow under grass coverage[J]. Journal of Northeast Agricaltural University, 2018, 49(7): 48-57.
朱慧鑫, 胡晓静, 程金花, 等. 草被覆盖下坡面流土壤侵蚀水动力学特征[J]. 东北农业大学学报, 2018, 49(7): 48-57.
77 DING W, LI M. Effects of grass coverage and distribution patterns on erosion and overland flow hydraulic characteristics[J]. Environmental Earth Sciences, 2016, 75(6): 1-14.
78 PAN C, SHANGGUAN Z. Runoff hydraulic characteristics and sediment generation in sloped grassplots under simulated rainfall conditions[J]. Journal of Hydrology, 2006, 331(1/2): 178-185.
79 MA Chunyan. Study of main slope erosion dynamic processes on project area of Banduo hydropower station of Yellow River[D]. Yangling: Northwest A&F University, 2009.
马春艳. 黄河班多水电站工程区主要地类坡面侵蚀动力学过程试验研究[D]. 杨凌:西北农林科技大学, 2009.
80 OAKES E G M, HUGHES J C, JEWITT G P W, et al. Controls on a scale explicit analysis of sheet erosion[J]. Earth Surface Processes and Landforms, 2012, 37(8): 847-854.
81 ZHAO Longshan. Laboratory study on soil surface roughness effect on soil infiltration, runoff and sediment production at the loess hillslope[D]. Yangling: Northwest A&F University, 2015.
赵龙山. 黄土坡地地表糙度特征及其对入渗、产流产沙的影响研究[D]. 杨陵:西北农林科技大学, 2015.
82 ZHENG Zicheng. Study on the effect and change characteristic of soil surface roughness during the course of water erosion[D]. Yangling: Northwest A&F University, 2007.
郑子成. 坡面水蚀过程中地表糙度的作用及变化特征研究[D].杨凌:西北农林科技大学, 2007.
83 KUIPERS H. A reliefmeter for soil cultivation studies[J]. Netherlands Journal of Agricultural Science, 1957, 5(4): 255-262.
84 HUANG C, GASCUEL-ODOUX C, CROS-CAYOT S. Hillslope topographic and hydrologic effects on overland flow and erosion[J]. Catena, 2002, 46(2): 177-188.
85 DARBOUX F, DAVY P, GASUEL-ODOUX C, et al. Evolution of soil surface roughness and flowpath connectivity in overland flow experiments[J]. Catena, 2002, 46(2/3): 125-139.
86 GILLEY J E, FINKNER S C. Hydraulic roughness coefficients as affected by random roughness[J]. Transactions of the ASAE, 1991, 34(3): 897.
87 RTUZZI P BE, RAUWS G, COURAULT D. Testing roughness indices to estimate soil surface roughness changes due to simulated rainfall[J]. Soil & Tillage Research, 1990, 17(1/2): 87-99.
88 BORSELLI L. Segmentation of soil roughness profiles[J]. Earth Surface Processes and Landforms, 1999, 24(1): 71-90.
89 BRYAN R B. The influence of slope angle on soil entrainment by sheetwash and rainsplash[J]. Earth Surface Processes, 2010, 4(1): 43-58.
90 GUAN Xinjian. Study on experimental simulation and modeling of slope erosin process of different soils[D]. Xi'an: Xi'anUniversity of Technology, 2009.
管新建. 不同土质坡面水蚀过程模拟试验及建模研究[D]. 西安:西安理工大学, 2009.
91 GENG Xiaodong. Comparative study on hillslope soil erosion processes and mechanismchanismss in main water erosion regions of China[D]. Beijing: University of Chinese Academy of Sciences, 2010.
耿晓东. 主要水蚀区坡面土壤侵蚀过程与机理对比研究[D]. 北京:中国科学院研究生院, 2010.
92 WISCHMEIER W H, MANNERING J V. Relation of soil properties to its erodibility[J]. Soil Science Society of America Journal, 1969, 33(1): 131-137.
93 KIRKBY M. Modelling the interactions between soil surface properties and water erosion[J]. Catena, 2002, 46(2/3): 89-102.
94 BRYAN R B. Soil erodibility and processes of water erosion on hillslope[J]. Geomorphology, 2000, 32(3): 385-415.
95 LAI Yika. Research progress on influencing factors of slope soil erosion[J]. Subtropical Soil and Water Conservation, 2008, 20 (1): 12-16.
赖奕卡. 坡面土壤侵蚀影响因子研究进展[J]. 亚热带水土保持, 2008, 20(1): 12-16.
96 WISCHMEIER W H, SMITH D D. Rainfall energy and its relationship to soil loss[J]. Transactions American Geophysical Union, 1958, 39(2): 285-291.
97 RIENZI E, FOX J, GROVE J, et al. Interrill erosion in soils with different land uses: the kinetic energy wetting effect on temporal particle size distribution[J]. Catena, 2013, 107: 130-138.
98 REZA V A, FATEMEH E S, SASKIA K. Interrill erodibility in relation to aggregate size class in a semi-arid soil under simulated rainfalls[J]. Catena, 2018, 167: 385-398.
99 WANG L, SHI Z, WANG J, et al. Rainfall kinetic energy controlling erosion processes and sediment sorting on steep hillslopes: a case study of clay loam soil from the Loess Plateau, China[J]. Journal of Hydrology, 2014, 512: 168-176.
100 GRISMER M. Standards vary in studies using rainfall simulators to evaluate erosion[J]. California Agriculture, 2012, 66(3): 102-107.
101 RAN Q, SU D, LI P, et al. Experimental study of the impact of rainfall characteristics on runoff generation and soil erosion[J]. Journal of Hydrology, 2012, 424: 99-111.
102 RAN Q, WANG F, LI P, et al. Effect of rainfall moving direction on surface flow and soil erosion processes on slopes with sealing[J]. Journal of Hydrology, 2018, 567: 478-488.
103 DE LIMA J L, SINGH V P, DE LIMA M I P. The influence of storm movement on water erosion: storm direction and velocity effects[J]. Catena, 2003, 52(1): 39-56.
104 DE LIMA J L M P, TAVARES P, SINGH V P, et al. Investigating the nonlinear response of soil loss to storm direction using a circular soil flume[J]. Geoderma, 2009, 152(1/2): 9-15.
105 FOSTER G R, MEYER L, ONSTAD C. An erosion equation derived from basic erosion principles[J]. Transactions of the ASAE, 1977, 20(4): 678-682.
106 ANGULO-MARTINEZ M, BEGUERRIA S, NAVAS A, et al. Splash erosion under natural rainfall on three soil types in NE Spain[J]. Geomorphology, 2012, 175: 38-44.
107 XIA Yanhua, ZHANG Pingcang. Study on watershed soil erosion models based on erosion mechanics mechanism—taking Yangtze River Three Gorges Reservoir area as an example[J]. Journal of Soil Water Conservation, 2003, 17(1): 152-154.
夏艳华, 张平仓. 基于侵蚀力学机制的流域土壤侵蚀模型研究——以长江三峡库区王家桥流域为例[J]. 水土保持学报, 2003, 17(1): 152-154.
108 FU Y, LI G, ZHENG T, et al. Impact of raindrop characteristics on the selective detachment and transport of aggregate fragments in the Loess Plateau of China[J]. Soil Science Society of America Journal, 2016, 80(4): 1 071-1 077.
109 WU Guangyan, HAO Minli, LIU Chaoqun, et al. Study on characteristics of natural rainfall and artificial rainfall[J]. Pearl River, 2013, 34(2): 5-7.
吴光艳, 郝民利, 刘超群, 等. 天然降雨与人工降雨特性的研究[J]. 人民珠江, 2013, 34(2): 5-7.
110 NEARING M A, FOSTER G R, LANE L J, et al. A process-based soil erosion model for USDA-water erosion prediction project technology[J]. Transactions of the ASAE, 1989, 32(5): 1 587-1 593.
111 KINNELL P I A. Runoff as a factor influencing experimentally determined interrill erodibilities [J]. Australian Journal of Soil Research, 1993, 31(3): 333-342.
112 ZHANG X C, NEARING M A, NORTON L D, et al. Modeling interrill sediment delivery[J]. Soil Science Society of America Journal, 1998, 62(2): 438.
113 BULYGIN S Y, NEARING M A, ACHASOV A B. Parameters of interrill erodibility in the WEPP model[J]. Eurasian Soil Science, 2002, 35(11): 1 237-1 242.
114 ZHANG F B, WANG Z L, YANG M Y. Validating and improving interrill erosion equations[J]. PLoS ONE, 2014, 9(2): 1-11.
115 LIEBENOW M, ELLIOT W, LAFLEN J, et al. Interrill erodibility: collection and analysis of data from cropland soils[J]. Transactions of the ASAE, 1990, 33(6): 1 882-1 888.
116 ZHANG X C, WANG Z L. Interrill soil erosion processes on steep slopes[J]. Journal of Hydrology, 2017, 548: 652-664.
117 WANG C F, WANG B, WANG Y Q, et al. Improved interrill erosion prediction by considering the impact of the near-surface hydraulic gradient[J]. Soil & Tillage Research, 2020, 203: 13.
118 WANG C F, WANG B, WANG Y Q, et al. Rare earth elements tracing interrill erosion processes as affected by near-surface hydraulic gradients[J]. Soil & Tillage Research, 2020, 202: 104673.
119 YAN F L, SHI Z H, LI Z X, et al. Estimating interrill soil erosion from aggregate stability of Ultisols in subtropical China[J]. Soil & Tillage Research, 2008, 100(1/2): 34-41.
120 HU Wei. Characteristics and mechanisms of splash eroison and sheet erosion on hillslope of main typical eroded soils in China[D]. Beijing: University of Chinese Academy of Sciences, 2016.
胡伟. 我国主要侵蚀土壤溅蚀和片蚀特征与机理研究[D]. 北京:中国科学院研究生院, 2016.
121 MEYER L D. How rain intensity affects interrill erosion [J]. Transactions of the ASAE, 1981, 24(6): 1 472-1 475.
122 ZHENG Fenli. Study on interrill erosion and rill erosion on slope farmland of loess area[J]. Acta Pedologica Sinica, 1998(1): 95-101.
郑粉莉. 黄土区坡耕地细沟间侵蚀和细沟侵蚀的研究[J]. 土壤学报, 1998(1): 95-101.
123 KINNELL P I A. Particle travel distances and bed and sediment compositions associated with rain-impacted flows[J]. Earth Surface Processes and Landforms, 2001, 26(7): 749-758.
124 GILLEY J, WOOLHISER D, WHORTER D MC. Interrill soil erosion-Part I: development of model equations[J]. Transactions of the ASAE, 1985, 28(1): 147-153.
125 ASSOULINE S, BEN-HUR M. Effects of rainfall intensity and slope gradient on the dynamics of interrill erosion during soil surface sealing[J]. Catena, 2006, 66(3): 211-220.
126 WU B, WANG Z, ZHANG Q, et al. Distinguishing transport-limited and detachment-limited processes of interrill erosion on steep slopes in the Chinese Loessial Region[J]. Soil & Tillage Research, 2018, 177: 88-96.
[1] 马芊红, 张科利. 西南喀斯特地区土壤侵蚀研究进展与展望 *[J]. 地球科学进展, 2018, 33(11): 1130-1141.
[2] 张翔, 陈能成, 胡楚丽, 彭小婷. 1983—2015年我国农业区域三类骤旱时空分布特征分析[J]. 地球科学进展, 2018, 33(10): 1048-1057.
[3] 张琪琳, 王占礼, 王栋栋, 刘俊娥. 黄土高原草地植被对土壤侵蚀影响研究进展[J]. 地球科学进展, 2017, 32(10): 1093-1101.
[4] 史忠林, 文安邦, 严冬春, 龙翼, 周萍. 7Be法估算土壤侵蚀速率若干问题的探讨[J]. 地球科学进展, 2016, 31(9): 885-893.
[5] 刘波, 王晓蕾, 康钊菁, 苏腾, 翟东力, 袁靖. 降雨发生装置空间均匀性的研究[J]. 地球科学进展, 2016, 31(8): 820-828.
[6] 吴曼. 海水中过氧化氢的研究进展[J]. 地球科学进展, 2014, 29(7): 765-773.
[7] 刘希林,张大林,贾瑶瑶. 崩岗地貌发育的土体物理性质及其土壤侵蚀意义——以广东五华县莲塘岗崩岗为例[J]. 地球科学进展, 2013, 28(7): 802-811.
[8] 刘斌涛,陶和平,宋春风,郭兵,史展. 我国西南山区降雨侵蚀力时空变化趋势研究[J]. 地球科学进展, 2012, 27(5): 499-509.
[9] 徐则民,黄润秋. 山区流域高盖度斜坡对极端降雨事件的地下水响应[J]. 地球科学进展, 2011, 26(6): 598-607.
[10] 戴海伦, 金复鑫, 张科利. 国内外风蚀监测方法回顾与评述[J]. 地球科学进展, 2011, 26(4): 401-408.
[11] 殷水清,谢云,陈德亮,林小鹃,李维京. 日以下尺度降雨随机模拟研究进展[J]. 地球科学进展, 2009, 24(9): 981-989.
[12] 谭俊磊,马明国,车涛,白云洁. 基于不同郁闭度的青海云杉冠层截留特征研究[J]. 地球科学进展, 2009, 24(7): 825-833.
[13] 马乐宽,李天宏,刘国彬. 基于水土保持的流域生态环境需水研究[J]. 地球科学进展, 2008, 23(10): 1102-1110.
[14] 杨勤科,李锐,曹明明. 区域土壤侵蚀定量研究的国内外进展[J]. 地球科学进展, 2006, 21(8): 849-856.
[15] 张风宝;杨明义;赵晓光;刘普灵. 磁性示踪在土壤侵蚀研究中的应用进展[J]. 地球科学进展, 2005, 20(7): 751-756.
阅读次数
全文


摘要