Please wait a minute...
img img
高级检索
地球科学进展  2016, Vol. 31 Issue (9): 885-893    DOI: 10.11867/j.issn.1001-8166.2016.09.0885
综述与评述     
7Be法估算土壤侵蚀速率若干问题的探讨
史忠林, 文安邦, 严冬春, 龙翼, 周萍
中国科学院山地表生过程与生态调控重点实验室,中国科学院水利部 成都山地灾害与环境研究所,四川 成都 610041
Discussion on the Use of 7Be to Estimate Soil Erosion Rates
Shi Zhonglin, Wen Anbang, Yan Dongchun, Long Yi, Zhou Ping
Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
 全文: PDF(995 KB)   HTML
摘要: 7Be是由宇宙射线撞击同温层和对流层大气中氮、氧原子核而生成的天然放射性核素。由于连续沉降、半衰期短(53.3天)以及在土层中分布深度浅(约2 cm)等特点,7Be在示踪单次暴雨或短期强降雨等短时间尺度的侵蚀产沙空间分布研究中具有独特优势。随着气候变化加剧和暴雨等极端天气增多,7Be法应用前景广阔。然而该技术目前处于探索阶段,一些重要基础假设尚未得到有效验证,限制了其在土壤侵蚀研究中的广泛应用。简要回顾了利用7Be法定量土壤侵蚀速率空间分布的历史和现状,介绍了其示踪原理和计算模型及其最新进展;重点评述了7Be法估算土壤侵蚀速率的关键基础假设及其不确定性,以及植被截留、侵蚀分选等对7Be法评价土壤侵蚀速率的影响;并对未来研究趋势进行了展望,包括基础假设的验证及不确定性分析、植被影响的定量评价、示踪时空尺度的扩展以及新模型的开发等方面。
关键词: 空间分布7Be植被截留土壤侵蚀颗粒分选    
Abstract: 7Be is a naturally occurring cosmogenic radionuclide produced in the stratosphere and troposphere as a result of cosmic ray spallation of nitrogen and oxygen. The constant fallout via precipitation and short half-life (53.3 days), coupled with shallow depth distribution in soil profile (~2 cm) provide the unique advantages for its application as a soil and sediment tracer over short timescales, such as a single storm or short period of extreme rainfall. With the climate change and increasing rainfall events, the 7Be tracing method will exhibit wide application prospect in future. To date, however, this technique is still in its infancy and some important assumptions have not yet been effectively validated. Consequently, the use of 7Be to document soil erosion rates has been limited. This contribution briefly reviews the history and current status relating to this tracing method. In addition, the basic principles and recent research progresses in conversion models for use of 7Be measurements to estimate soil redistribution rates are introduced. The key assumptions and uncertainties of the technique, as well as the effects of the vegetation interception and particle size selectivity are discussed. Additionally, some new investigation directions are provided, including the assumption validation and uncertainty analysis, the impact of vegetation interception, the extending of spatial and temporal scales, and the development of new conversion models.
Key words: 7Be    Sediment redistribution    Vegetation interception    Particle size selectivity.    Soil erosion
收稿日期: 2016-06-20 出版日期: 2016-09-20
:  P934  
基金资助: 国家自然科学基金项目“粒度效应对137Cs、7Be法测算紫色土农耕地土壤流失量的影响”(编号:41301293); 国家重点基础研究发展计划项目“横断山地水土作用失衡机制与灾害风险评价”(编号:2015CB452704)资助
作者简介: 史忠林(1984-),男,山西柳林人,助理研究员,主要从事侵蚀泥沙研究.E-mail:shizl@imde.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
史忠林
严冬春
文安邦
龙翼
周萍

引用本文:

史忠林, 文安邦, 严冬春, 龙翼, 周萍. 7Be法估算土壤侵蚀速率若干问题的探讨[J]. 地球科学进展, 2016, 31(9): 885-893.

Shi Zhonglin, Wen Anbang, Yan Dongchun, Long Yi, Zhou Ping. Discussion on the Use of 7Be to Estimate Soil Erosion Rates. Advances in Earth Science, 2016, 31(9): 885-893.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2016.09.0885        http://www.adearth.ac.cn/CN/Y2016/V31/I9/885

[1] Mabit L, Zapata F, Dercon G, et al . Assessment of Soil Erosion and Sedimentation: The Role of Fallout Radionuclides[R]. Guidelines for Using Fallout Radionuclides to Assess Erosion and Effectiveness of Soil Conservation Strategies. IAEA-TECDOC-1741. Vienna: IAEA, 2014: 3-26.
[2] Menzel R G. Transport of strontium-90 in runoff[J]. Science ,1960, 131(3 399): 499-500.
[3] Gonzalez-Hidalgo J C, de Luis M, Batalla R J. Effects of the largest daily events on total soil erosion by rainwater: An analysis of the USLE database[J]. Earth Surface Processes and Landforms , 2009, 34(15): 2 070-2 077.
[4] McBroom M, Beasley R S, Chang M, et al . Runoff and Sediment Losses from Annual and Unusual Storm Events from the Alto Experimental Watersheds, Texas: 23 Years after Silvicultural Treatments[C]. Benson,A2:Faculty Publications, 2003.
[5] Mabit L, Benmansour M, Walling D E. Comparative advantages and limitations of the fallout radionuclides 137 Cs, 210 Pb ex and 7 Be for assessing soil erosion and sedimentation[J]. Journal of Environmental Radioactivity ,2008, 99(12):1 799-1 807.
[6] Wan Guojiang, Zheng Xiangdong, Lee H N, et al . 210 Pb and 7 Be as tracers for aerosol transfers at center Guizhou, China: I. The explanation by weekly interval[J]. Advances in Earth Science ,2010, 25(5): 492-504.
. 地球科学进展, 2010, 25(5): 492-504.]
[7] Arnold J R, Al-Salih H A. Beryllium-7 produced by cosmic rays[J]. Science ,1955, 121(3 144): 451-453.
[8] Baskaran M. Handbook of Environmental Isotope Geochemistry[M]. Berlin Heidelberg: Springer, 2012.
[9] Murray A S, Olley J M, Wallbrink P J. Natural radionuclide behavior in the fluvial environment[J]. Radiation Protection Dosimetry ,1992, 45(1/4): 285-288.
[10] Wallbrink P J, Murray A S. Distribution and variability of 7 Be in soils under different surface cover conditions and its potential for describing soil redistribution processes[J]. Water Resources Research ,1996, 32(2): 467-476.
[11] Blake W H, Walling D E, He Q. Fallout beryllium-7 as a tracer in soil erosion investigations[J]. Applied Radiation and Isotopes ,1999, 51(5): 599-605.
[12] Walling D E, He Q, Blake W H. Use of 7 Be and 137 Cs measurements to document short-and medium-term rates of water-induced soil erosion on agricultural land[J]. Water Resources Research ,1999, 35(12): 3 865-3 874.
[13] Schuller P, Iroumé A, Walling D E, et al . Use of beryllium-7 to document soil redistribution following forest harvest operations[J]. Journal of Environmental Quality ,2006, 35(5): 1 756-1 763.
[14] Sepulveda A, Schuller P, Walling D E, et al . Use of 7 Be to document soil erosion associated with a short period of extreme rainfall[J]. Journal of Environmental Radioactivity ,2008, 99(1):35-49.
[15] Zhang Fengbao, Yang Mingyi, Wang Guangqian. Comparison of the models of using 7 Be to estimate soil erosion rate[J]. Journal of Soil and Water Conservation ,2010, 24(2): 52-56,78.
. 水土保持学报, 2010, 24(2): 52-56,78.]
[16] Shi Z L, Wen A B, Zhang X B, et al . Comparison of the soil losses from 7 Be measurements and the monitoring data by erosion pins and runoff plots in the Three Gorges Reservoir region, China[J]. Applied Radiation and Isotopes ,2011, 69(10): 1 343-1 348.
[17] Shi Z L, Wen A B, Ju L, et al . A modified model for estimating soil redistribution on grassland by using 7 Be measurements[J]. Plant and Soil ,2013, 362(1/2): 279-286.
[18] Zhang Bo, Zhang Fengbao, Yang Mingyi. Using 7 Be to document soil erosion on the weed plots[J]. Journal of Nuclear Agricultural Sciences ,2013, 27(1): 93-98.
. 核农学报, 2013, 27(1): 93-98.]
[19] Li Z W, Lu Y M, Nie X D, et al . Variability of beryllium-7 and its potential for documenting soil and soil organic carbon redistribution by erosion[J]. Soil Science Society of America Journal ,2016, 80(3): 693-703.
[20] Walling D, Schuller P, Zhang Y, et al . Extending the timescale for using beryllium-7 measurements to document soil redistribution by erosion[J]. Water Resources Research ,2009, 45, W02418, doi:10.1029/2008WR007143.
[21] Schuller P, Walling D E, Iroumé A, et al . Use of beryllium-7 to study the effectiveness of woody trash barriers in reducing sediment delivery to streams after forest clearcutting[J]. Soil and Tillage Research ,2010, 110(1): 143-153.
[22] Porto P, Walling D E. Use of 7 Be measurements to estimate rates of soil loss from cultivated land: Testing a new approach applicable to individual storm events occurring during an extended period[J]. Water Resources Research ,2014, 50(10): 8 300-8 313.
[23] Porto P, Walling D E, Cogliandro V, et al . Validating a mass balance accounting approach to using 7 Be measurements to estimate event-based erosion rates over an extended period at the catchment scale[J]. Water Resources Research ,2016, 52(7): 5 285-5 300.
[24] Taylor A, Blake W H, Smith H G, et al . Assumptions and challenges in the use of fallout beryllium-7 as a soil and sediment trace in river basins[J]. Earth-Science Reviews ,2013, 126: 85-95,doi:10.1016/j.earscirev.2013.08.002.
[25] Parsons A J, Foster I D L. What can we learn about soil erosion from the use of 137 Cs?[J]. Earth-Science Reviews ,2011, 108(1/2): 101-113.
[26] Mabit L, Meusburger K, Fulajtar E, et al . The usefulness of 137 Cs as a tracer for soil erosion assessment: A critical reply to Parsons and Foster (2011)[J]. Earth-Science Reviews ,2013, 127: 300-307,doi:10.1016/j.earscirev.2013.05.008.
[27] Parsons A J, Foster I D L. The assumptions of science: A reply to Mabit et al . (2013)[J]. Earth-Science Reviews , 2013, 127: 308-310,doi:10.1016/j.earscirev.2013.05.011.
[28] Wilson C G, Matisoff G, Whiting P J. Short-term erosion rates from a 7 Be inventory balance[J]. Earth Surface and Landforms ,2003, 28(9): 967-977.
[29] Yang M Y, Walling D E, Tian J L, et al . Partitioning the contribution of sheet and rill erosion using Beryllium-7 and Cesium-137[J]. Soil Science Society of America Journal , 2006, 70(5): 1 579-1 590.
[30] Zhang Fengbao, Yang Mingyi, Wang Guangqian. A comprehensive review on soil erosion using 7 Be measurement[J]. Nuclear Techniques ,2009, 32(8): 596-600.
.核技术, 2009, 32(8): 596-600.]
[31] Shi Z H, Yue B J, Wang L, et al . Effects of mulch cover rate on interrill erosion processes and the size selectivity of eroded sediment on steep slopes[J]. Soil Science Society of America Journal , 2012, 77(1): 257-267.
[32] Taylor A, Blake W H, Keith-Roach M J. Estimating Be-7 association with soil particle size fractions for erosion and deposition modelling[J]. Journal of Soils and Sediments , 2014, 14(11): 1 886-1 893.
[33] Yang M Y, Walling D E, Sun X J, et al . A wind tunnel experiment to explore the feasibility of using beryllium-7 measurements to estimate soil loss by wind erosion[J]. Geochimica et Cosmochimica Acta , 2013, 114: 81-93,doi:10.1016/j.gca.2013.03.033.
[34] He Q, Walling D E, Wallbrink P J. Alternative methods and radionuclides for use in soil-erosion and sedimentation investigations[C]∥Zapata F,ed. Handbook for the Assessment of Soil Erosion and Sedimentation Using Environmental Radionuclides. Dordrecht, Germany:Kluwer Academic Publishers, 2012:185-215.
[35] Mabit L, Chhem-Kieth S, Dornhofer P, et al . 137 Cs: A Widely Used and Validated Medium-term Soil Tracer[R]. Guidelines for Using Fallout Radionuclides to Assess Erosion and Effectiveness of Soil Conservation Strategies. IAEA-TECDOC-1741. Vienna: IAEA, 2014:27-77.
[36] Sutherland R A. Examination of Caesium-137 areal activity in control (uneroded) locations[J]. Soil Technology ,1991, 4(1): 33-50.
[37] Sutherland R A. Caesium-137 soil sampling and inventory variability in reference locations: A literature survey[J]. Hydrological Processes ,1996, 10(1): 43-53.
[38] Mabit L, Bernard C, Laverdiere M R. Quantification of soil redistribution and sediment budget in a Canadian watershed from fallout caesium-137 ( 137 Cs) data[J]. Canadian Journal of Soil Science ,2002,82(4):423-431.
[39] Zhang F B, Yang M Y, Walling D E, et al . Using 7 Be measurements to estimate the relative contributions of interrill and rill erosion[J]. Geomorphology ,2014, 206: 392-402,doi:10.106/j.geomorph.2013.10.012.
[40] Kaste J M, Norton S A, Hess C T. Environmental chemistry of Beryllium-7[J]. Reviews in Mineralogy and Geochemistry , 2002, 50(1):271-289.
[41] Taylor A, Blake W H, Couldrick L, et al . Sorption behaviour of Beryllium-7 and implications for its use as a sediment tracer[J]. Geoderma ,2012,(187/188):16-23.
[42] Ryken N, Al-Barri B, Taylor A, et al . Quantifying the spatial variation of 7 Be depth distributions towards improved erosion rate estimations[J]. Geoderma ,2016, 269: 10-18.
[43] Casey W H, Larsen I L, Olsen C R. The distribution of cosmogenic 7 Be in salt marsh sediments[J]. Geophysical Research Letters , 1986, 13(4): 322-325.
[44] Olsen C R, Larsen I L, Lowry P D, et al . Atmospheric fluxes and marsh-soil inventories of 7 Be and 210 Pb[J]. Journal of Geophysical Research-Atmospheres ,1985, 90(D6):10 487-10 495.
[45] Bundt M, Albrecht A, Froidevaux P, et al . Impact of preferential flow on radionuclide distribution in soil[J]. Environmental Science and Technology , 2000, 34(18): 3 895-3 899.
[46] Mabit L, Meusburger K, Iurian A R, et al . Sampling soil and sediment depth profiles at a fine resolution with a new device for determining physical, chemical and biological properties: The Fine Increment Soil Collector (FISC)[J]. Journal of Soils and Sediments ,2014, 14(3): 630-636.
[47] Iurian A R, Toloza A, Adu-Gyamfi J, et al . Spatial distribution of 7 Be in soils of Lower Austria after heavy rains[J]. Journal of Radioanalytical and Nuclear Chemistry ,2013, 298(3): 1 857-1 863.
[48] Pinto V M, Pires L F, Bacchi O O S, et al . Spatial variability of 7 Be fallout for erosion evaluation[J]. Radiation Physics and Chemistry ,2013, 83: 1-7,doi:10.1016/j.radphyschem.2012.09.010.
[49] Gourdin E, Evrard O, Huon S, et al . Spatial and temporal variability of 7 Be and 210 Pb wet deposition during four successive monsoon storms in a catchment of northern Laos[J]. Journal of Environmental Radioactivity ,2014, 136: 195-205,doi:10.1016/j.jenvrad.2014.06.008.
[50] Dalgleish H Y, Foster I D L. 137 Cs losses from a loamy surface water gleyed soil (Inceptisol): A laboratory simulation experiment[J]. Catena ,1996, 26(3/4): 227-245.
[51] Zhang Fengbao, Yang Mingyi. 7 Be distribution in runoff and sediment and tis influence factor[J]. Bulletin of Soil and Water Conservation ,2007, 27(1): 20-23.
. 水土保持通报,2007, 27(1): 20-23.]
[52] Wallbrink P J, Murray A S. Fallout of 7 Be in south eastern Australia[J]. Journal of Environmental Radioactivity ,1994, 25(3): 213-228.
[53] Ioannidou A, Papastefanou C. Precipitation scavenging of 7 Be and 137 Cs radionuclides in air[J]. Journal of Environmental Radioactivity , 2006, 85(1): 121-136.
[54] Shaw G, Scott L K, Kinnersley R P. Sorption of caesium, iodine and sulphur in solution to the adaxial leaf surface of broad bean ( Vicia faba L .)[J]. Environmental and Experimental Botany ,2007, 59: 361-370.
[55] Bettoli M, Cantelli L, Degetto S, et al . Preliminary investigations on 7 Be as a tracer in the study of environmental processes[J]. Journal of Radioanalytical and Nuclear Chemistry , 1995, 190(1): 137-147.
[56] Kaste J M, Elmore A J, Vest K R, et al . Beryllium-7 in soils and vegetation along an arid precipitation gradient in Owens Valley, California[J]. Geophysical Research Letters ,2011, 38(9):120-130.
[57] Iurian A R, Dercon G, Adu-Gyamfi J, et al . The interception and wash-off fraction of 7 Be by bean plants in the context of its use as a soil radiotracer[J]. Journal of Radioanalytical and Nuclear Chemistry ,2015, 306(1): 301-308.
[58] Papastefanou C, Manolopoulou M, Stoulos S, et al . Soil-to-plant transfer of 137 Cs, 40 K and 7 Be[J]. Journal of Environmental Radioactivity ,1999, 45(1): 59-65.
[59] Zhang F B, Yang M Y, Zhang B. Beryllium-7 activity concentration in maize during the growth period[J]. Journal of Radioanalytical and Nuclear Chemistry , 2012, 292(1): 75-79.
[60] Walling D E. Beryllium-7: The Cinderella of fallout radionuclide sediment tracers?[J]. Hydrological Processes ,2013, 27(6): 830-844.
[61] Pröhl G. Interception of dry and wet deposited radionuclides by vegetation[J]. Journal of Environmental Radioactivity , 2009, 100(9): 675-682.
[62] Zhang Fengbao, Yang Mingyi, Li Zhanbin, et al . 7 Be in fallout interception and absorption by slope plants and the impact factors[J]. Journal of Nuclear Agricultural Sciences ,2008, 22(2): 213-217.
. 核农学报, 2008, 22(2): 213-217.]
[63] Voigt G, Müller H, Pröhl G. Experiments on the seasonality of the cesium translocation in cereals, potatoes and vegetables[J]. Radiation and Environmental Biophysics ,1991, 30(4): 295-303.
[64] Kinnersley R P, Goddard A J M, Minski M J, et al . Interception of cesium-contaminated rain by vegetation[J]. Atmospheric Environment ,1997, 31(8): 1 137-1 145.
[65] Kang Y, Wang Q G, Liu H J. Winter wheat canopy interception and its influence factors under sprinkler irrigation[J]. Agricultural Water Management ,2005, 74(3): 189-199.
[66] Walling D E, He Q. Improved models for estimating soil erosion rates from cesium-137 measurements[J]. Journal of Environmental Quality ,1999, 28(2): 611-622.
[67] He Q, Walling D E. Interpreting particle size effects in the adsorption of 137 Cs and unsupported 210 Pb by mineral soils and sediments[J]. Journal of Environmental Radioactivity ,1996, 30(2): 117-137.
[68] Fang Jian, Du Juan, Xu Wei, et al . Advances in the study of climate change impacts on flood disaster[J]. Advances in Earth Science ,2014, 29(9): 1 085-1 093.
. 地球科学进展, 2014, 29(9): 1 085-1 093.]
[69] Jha A, Schkade U, Kirchner G. Estimating short-term soil erosion rates after single and multiple rainfall events by modelling the vertical distribution of cosmogenic 7 Be in soils[J]. Geoderma ,2015, 243/244: 149-156.
[1] 张琪琳, 王占礼, 王栋栋, 刘俊娥. 黄土高原草地植被对土壤侵蚀影响研究进展[J]. 地球科学进展, 2017, 32(10): 1093-1101.
[2] 段金龙, 张学雷, 李卫东, 李滨. 土壤多样性理论与方法在中国的应用与发展[J]. 地球科学进展, 2014, 29(9): 995-1002.
[3] 刘希林,张大林,贾瑶瑶. 崩岗地貌发育的土体物理性质及其土壤侵蚀意义——以广东五华县莲塘岗崩岗为例[J]. 地球科学进展, 2013, 28(7): 802-811.
[4] 戴海伦, 金复鑫, 张科利. 国内外风蚀监测方法回顾与评述[J]. 地球科学进展, 2011, 26(4): 401-408.
[5] 万国江,郑向东,Lee H N,Bai Z G,万恩源,王仕禄,杨伟,苏菲,汤洁,王长生,黄荣贵,刘鹏. 黔中气溶胶传输的210Pb和7Be示踪:Ⅰ.周时间尺度的解释[J]. 地球科学进展, 2010, 25(5): 492-504.
[6] 陈仁升,韩春坛. 高山寒漠带水文、生态和气候意义及其研究进展[J]. 地球科学进展, 2010, 25(3): 255-263.
[7] 宋敦江,赵作权. 长江主干流的球面重心计算及其尺度效应分析[J]. 地球科学进展, 2010, 25(3): 373-283.
[8] 邱新法,仇月萍,曾燕. 重庆山地月平均气温分布式模拟研究[J]. 地球科学进展, 2009, 24(6): 621-628.
[9] 马乐宽,李天宏,刘国彬. 基于水土保持的流域生态环境需水研究[J]. 地球科学进展, 2008, 23(10): 1102-1110.
[10] 谢国辉,李晓东,周立平,王润元,武鹏飞. 气候因子影响天山北坡植被指数时空分布研究[J]. 地球科学进展, 2007, 22(6): 618-624.
[11] 杨勤科,李锐,曹明明. 区域土壤侵蚀定量研究的国内外进展[J]. 地球科学进展, 2006, 21(8): 849-856.
[12] 张风宝;杨明义;赵晓光;刘普灵. 磁性示踪在土壤侵蚀研究中的应用进展[J]. 地球科学进展, 2005, 20(7): 751-756.
[13] 王兆印;郭彦彪;李昌志;王费新. 植被—侵蚀状态图在典型流域的应用[J]. 地球科学进展, 2005, 20(2): 149-157.
[14] 李立青;杨明义;刘普灵;王晓燕;田均良. 137 Cs示踪农耕地土壤侵蚀速率模型的比较研究[J]. 地球科学进展, 2004, 19(1): 32-037.
[15] 江东,杨小唤,王乃斌,刘红辉. 基于RS、GIS的人口空间分布研究[J]. 地球科学进展, 2002, 17(5): 734-738.