地球科学进展 ›› 2021, Vol. 36 ›› Issue (5): 490 -499. doi: 10.11867/j.issn.1001-8166.2021.052

研究论文 上一篇    下一篇

连续重力观测站测定的中国大陆潮汐因子空间分布特征
韦进 1 , 2( ), 申重阳 1 , 2( ), 胡敏章 1 , 2, 江颖 1 , 2, 张晓彤 1 , 2, 刘子维 1 , 2   
  1. 1.中国地震局地震大地测量重点实验室,湖北 武汉 430071
    2.武汉引力与固体潮国家野外 科学观测研究站,湖北 武汉 430071
  • 收稿日期:2021-01-04 修回日期:2021-04-13 出版日期:2021-06-18
  • 通讯作者: 申重阳 E-mail:pierce212@163.com;scy907@163.com
  • 基金资助:
    国家自然科学基金项目“水负荷引起重力季节性扰动现象的区域特征研究”(41204058)

Preliminary Results of Spatial Distribution of Tidal Factors Measured by Recent Continuous Gravity Stations in Mainland China

Jin WEI 1 , 2( ), Chongyang SHEN 1 , 2( ), Minzhang HU 1 , 2, Ying JIANG 1 , 2, Xiaotong ZHANG 1 , 2, Ziwei LIU 1 , 2   

  1. 1.Key Laboratory of Earthquake Geodesy,China Earthquake Administration,Wuhan 430071,China
    2.Wuhan Gravitation and Solid Earth Tides National Observation and Research Station,Wuhan 430071,China
  • Received:2021-01-04 Revised:2021-04-13 Online:2021-06-18 Published:2021-07-02
  • Contact: Chongyang SHEN E-mail:pierce212@163.com;scy907@163.com
  • About author:WEI Jin (1981-), male, Wuhan City, Hubei Province, Associate professor. Research areas include analysis and application of continuous relative gravity observation data. E-mail: pierce212@163.com
  • Supported by:
    the National Natural Science Foundation of China "The regional features of the seasonal gravity disturbance caused by water load"(41204058)

潮汐变化空间分布可用于地球不同位置受外力响应及地球形状、地表变形的相关研究。受观测技术、仪器数量和观测精度等制约,中国大陆重力潮汐观测直到21世纪初才得到较大改善和发展。利用2015—2017年中国大陆运行较好的51个重力站潮汐观测数据,采用国际标准潮汐处理方法和软件,分析计算了中国大陆主要潮波潮汐因子的空间分布,同时,结合1′×1′的全球地形模型(ETOPO1)和全球重力场模型(WGM2012)讨论了中国大陆东西和南北向2个潮汐剖面的构造物理特征。研究结果表明: 90%以上重力站M2波潮汐因子中误差优于0.001,这已和20世纪80~90年代的超导重力仪的观测精度相当;沿海台站的O1和K1波潮汐因子大于其他地区,经Nao99b和Nao99jb海潮模型检验认为是海潮负荷引起的。 沿狮泉河—玉树—松潘—黄梅—上海佘山的东西向M2波潮汐剖面显示,当海拔高程差异超过4 500 m、布格重力异常差异600×10-5 m/s2时,重力站间M2波潮汐因子差异可达2%,且和高程呈正相关特征。 沿孟连—西昌—银川—乌加河的南北向M2波潮汐剖面站间潮汐因子差异为1.0%~1.5%。 重力站潮汐因子和高程的相关性分析表明,内陆站M2、O1波相关系数超过40%具有正相关特征。上述结果可为中国大陆地壳结构横向不均匀性和动力变形响应研究提供参考。

The spatial characteristics of tidal variation can be used to study the influence of earth shape,surface deformation and the force characteristics of the different positions on the Earth. Restricted by the number of Continuous Relative Gravimeter (CRG),the accuracy of the tidal observation and theoretical models,the tidal observation conditions have not been improved until around the 21st century. In this paper,based on the data of 51 continuous relative gravimeters from 2015 to 2017,the spatial distribution of main tide waves' tidal factor has been calculated by international standard tidal processing software and methods. In order to discuss the relationship between the spatial feature of tidal factor,the topography and geophysics,the East-West and the North-South gravity tidal profiles in China have been analyzed with Global Relief Model (ETOPO1) of 1'×1' and World Gravity Model (WGM2012) of 2'×2'. It is shown that, More than 90% of the Root Mean Square (RMS) of M2 tidal factor is better than 0.001. The accuracy of CRG is comparable to that of the Superconducting Gravimeter (SG) in 1980s-1990s. The tidal factors of O1 and K1 waves in coastal stations are larger than those in inland stations,and corrected by same-sit atmosphere and Ocean Tidal Load (OTL) in Global Ocean Map (Nao99b) and Region Ocean Map (Nao99jb),the tidal factor feature at coastal stations is accounted for the OTL. The East-West M2 wave tidal profile of Shiquanhe,Yushu,Songpan,Huang-mei,Sheshan in Shanghai shows that,when the difference of evelation and Bouguer Gravity Anomaly (BGA) is more than 4 500 m and 600×10-5 m/s2,the difference of tidal factor in M2 can be larger than 2%. Moreover the tide factors are positively correlated with the elevation. About 1.0%~1.5% tidal factor variation of M2 also can be acquired in the North-South gravity tidal profile of Menglian,Yinchuan,Wujia River. Comparing the elevation and the tidal factors,it is found that the elevation of inland stations has more than 40% positive correlation with the tidal factor in M2 and O1. It is a useful reference for studying heterogeneity and dynamic deformation response in China.

中图分类号: 

图1 51套重力仪的预处理数据列表信息
Fig.1 The information of the preprocessing data in 51 gravimeter
图1 51套重力仪的预处理数据列表信息
Fig.1 The information of the preprocessing data in 51 gravimeter
表1 DDW全球潮汐模型参数值
Table 1 The parameter of the Global Tidal Model in DDW
表1 DDW全球潮汐模型参数值
Table 1 The parameter of the Global Tidal Model in DDW
表2 DDW模型理论潮汐因子计算方法
Table 2 DDW model theoretical tidal factor calculation method
表2 DDW模型理论潮汐因子计算方法
Table 2 DDW model theoretical tidal factor calculation method
图2 观测和理论潮汐因子观测结果的比较
Fig.2 The comparsion between the observation tidal model and DDW/NHi model
图2 观测和理论潮汐因子观测结果的比较
Fig.2 The comparsion between the observation tidal model and DDW/NHi model
图3 51个台站潮汐观测模型的中误差和相对误差统计
Fig.3 The statistic result of the RMS and the related error of the observation model by 51 gravimeters
图3 51个台站潮汐观测模型的中误差和相对误差统计
Fig.3 The statistic result of the RMS and the related error of the observation model by 51 gravimeters
图4 中国大陆M2 O1 K1波潮汐因子观测空间分布结果
Fig.4 The spatial distribution of M2 O1 K1 tidal factors of mainland China
图4 中国大陆M2 O1 K1波潮汐因子观测空间分布结果
Fig.4 The spatial distribution of M2 O1 K1 tidal factors of mainland China
图5 潮汐剖面的海潮负荷改正前后及其和DDW模型结果的比较
L 1为1号重力潮汐剖面;L 2为2号重力潮汐剖面;N代表未进行任何改正;P代表进行了气压改正;+N代表进行了Nao99b全球海潮模型改正;+N+N代表进行了Nao99b全球的和Nao99jb区域的海潮模型组合改正;DDW代表理论潮汐因子值
Fig.5 Comparison between the tidal factors of DDW model and those of tidal profile before and after corrected by OTL
L 1 is No.1 gravity tide profile; L 2 is No.2 gravity tide profile; N represents no correction; P represents atmospheric pressure correction; +N represents Nao99b global tide model correction; +N +N represents Nao99b global and Nao99jb regional tide model combination correction; DDW represents theoretical tide factor value
图5 潮汐剖面的海潮负荷改正前后及其和DDW模型结果的比较
L 1为1号重力潮汐剖面;L 2为2号重力潮汐剖面;N代表未进行任何改正;P代表进行了气压改正;+N代表进行了Nao99b全球海潮模型改正;+N+N代表进行了Nao99b全球的和Nao99jb区域的海潮模型组合改正;DDW代表理论潮汐因子值
Fig.5 Comparison between the tidal factors of DDW model and those of tidal profile before and after corrected by OTL
L 1 is No.1 gravity tide profile; L 2 is No.2 gravity tide profile; N represents no correction; P represents atmospheric pressure correction; +N represents Nao99b global tide model correction; +N +N represents Nao99b global and Nao99jb regional tide model combination correction; DDW represents theoretical tide factor value
图6 中国大陆M2波潮汐因子空间分布
Fig.6 The spatial distribution of M2 tidal factor in mainland China
图6 中国大陆M2波潮汐因子空间分布
Fig.6 The spatial distribution of M2 tidal factor in mainland China
图7 中国大陆东西重力潮汐剖面高程、布格重力异常和M2波潮汐因子值的关系
Fig.7 The relationship among the altitude BGA and the tidal factor of M2 in east-west gravity tidal profile of mainland China
图7 中国大陆东西重力潮汐剖面高程、布格重力异常和M2波潮汐因子值的关系
Fig.7 The relationship among the altitude BGA and the tidal factor of M2 in east-west gravity tidal profile of mainland China
图8 中国大陆南北重力潮汐剖面高程、布格重力异常和M2波潮汐因子值的关系
Fig.8 The relationship among the altitude BGA and the tidal factor of M2 in east-west gravity tidal profile of mainland China
图8 中国大陆南北重力潮汐剖面高程、布格重力异常和M2波潮汐因子值的关系
Fig.8 The relationship among the altitude BGA and the tidal factor of M2 in east-west gravity tidal profile of mainland China
图9 重力站潮汐因子和高程以及布格重力异常的相关分析
Fig.9 Correlation analysis between tide factor and crustal thickness at gravity station
图9 重力站潮汐因子和高程以及布格重力异常的相关分析
Fig.9 Correlation analysis between tide factor and crustal thickness at gravity station
1 SUN Heping,Houtze HSU,XU Jianqiao,et al. Observation and study of the tidal variation in gravity field[J]. Advances in Earth Science,2000,15(1):53-57.
SUN Heping,Houtze HSU,XU Jianqiao,et al. Observation and study of the tidal variation in gravity field[J]. Advances in Earth Science,2000,15(1):53-57.
孙和平,许厚泽,徐建桥,等.重力场的潮汐变化观测及其研究[J]. 地球科学进展,2000,15(1):53-57.
孙和平,许厚泽,徐建桥,等.重力场的潮汐变化观测及其研究[J]. 地球科学进展,2000,15(1):53-57.
2 MELCHIOR P,BECKER M D. A discussion of world-wide measurements of tidal gravity with respect to oceanic interactions,lithosphere heterogeneities,Earth's flattening and inertial forces[J]. Physics of the Earth and Planetary Interiors,1983,31:27-53.
MELCHIOR P,BECKER M D. A discussion of world-wide measurements of tidal gravity with respect to oceanic interactions,lithosphere heterogeneities,Earth's flattening and inertial forces[J]. Physics of the Earth and Planetary Interiors,1983,31:27-53.
3 DEHANT Veronique,DUCARME Bemard. Comparison between the theoretical and observed tidal gravimeteric factors[J]. Physics of the Earth and Planetary Interiors,1987,49:192-212.
DEHANT Veronique,DUCARME Bemard. Comparison between the theoretical and observed tidal gravimeteric factors[J]. Physics of the Earth and Planetary Interiors,1987,49:192-212.
4 WAHR J M. Body tides on an elliptical,rotating,elastic and oceaniess Earth[J]. Geophysical Journal the Royal Astronomical Society,1981,64(3):677-703.
WAHR J M. Body tides on an elliptical,rotating,elastic and oceaniess Earth[J]. Geophysical Journal the Royal Astronomical Society,1981,64(3):677-703.
5 DEHANT Veronique,DEFRAIGNE P,WAHR J M. Tides for a convective Earth[J]. Journal of Geophysical Research,1999,104(B1):1 035-1 058.
DEHANT Veronique,DEFRAIGNE P,WAHR J M. Tides for a convective Earth[J]. Journal of Geophysical Research,1999,104(B1):1 035-1 058.
6 LI Ruihao,CHEN Dongsheng,FU Zhaozhu,et al. Investigation on the space distribution characteristic of tidal gravity vector in China[J]. Acta Seismologica Sinica,1984,6(2):223-240.
LI Ruihao,CHEN Dongsheng,FU Zhaozhu,et al. Investigation on the space distribution characteristic of tidal gravity vector in China[J]. Acta Seismologica Sinica,1984,6(2):223-240.
李瑞浩,陈冬升,傅兆珠,等. 中国固体潮向量空间分布特征的研究[J]. 地震学报,1984,6(2):223-240.
李瑞浩,陈冬升,傅兆珠,等. 中国固体潮向量空间分布特征的研究[J]. 地震学报,1984,6(2):223-240.
7 MAO Huiqin,Houtse HSU,SONG Xingli,et al. East-West gravity tidal profile of China[J]. Acta Geophysica Sinica,1989,32(1):62-69.
MAO Huiqin,Houtse HSU,SONG Xingli,et al. East-West gravity tidal profile of China[J]. Acta Geophysica Sinica,1989,32(1):62-69.
毛慧琴,许厚泽,宋兴黎,等. 中国东西重力潮汐剖面[J]. 地球物理学报,1989,32(1):62-69.
毛慧琴,许厚泽,宋兴黎,等. 中国东西重力潮汐剖面[J]. 地球物理学报,1989,32(1):62-69.
8 WEI Wangsheng,YU Jielin. Study on the gravity tide parameters and their characteristics in themainland of China[J]. Crustal Deformation and Earthquake,1995,15(4):77-85.
WEI Wangsheng,YU Jielin. Study on the gravity tide parameters and their characteristics in themainland of China[J]. Crustal Deformation and Earthquake,1995,15(4):77-85.
魏望生,喻节林. 中国大陆重力潮汐参数及其特征研究[J]. 地壳形变与地震,1995,15(4):77-85.
魏望生,喻节林. 中国大陆重力潮汐参数及其特征研究[J]. 地壳形变与地震,1995,15(4):77-85.
9 XU Jianqiao,SUN Heping,DUCARME Bemard. A global experimental model for gravity tides of the Earth[J]. Journal of Geodynamics,2004,38:293-306.
XU Jianqiao,SUN Heping,DUCARME Bemard. A global experimental model for gravity tides of the Earth[J]. Journal of Geodynamics,2004,38:293-306.
10 ZHOU Jiangcun,Xu Jianqiao,Sun Heping. Accurate correction models for tidal gravity in Chinese Continent[J]. Chinese Journal of Geophysics,2009,52(6):1 474-1 482.
ZHOU Jiangcun,Xu Jianqiao,Sun Heping. Accurate correction models for tidal gravity in Chinese Continent[J]. Chinese Journal of Geophysics,2009,52(6):1 474-1 482.
周江存,徐建桥,孙和平. 中国大陆精密重力潮汐改正模型[J]. 地球物理学报,2009,52(6):1 474-1 482.
周江存,徐建桥,孙和平. 中国大陆精密重力潮汐改正模型[J]. 地球物理学报,2009,52(6):1 474-1 482.
11 SUN Heping,LIU Qingchao,WU Shuqing,et al. The latest gravity tide results in Beijing and its application in detecting resonant effect of the fluid outer core[J]. Chinese Journal of Geophysics,2017,60(12):4 699-4 708.
SUN Heping,LIU Qingchao,WU Shuqing,et al. The latest gravity tide results in Beijing and its application in detecting resonant effect of the fluid outer core[J]. Chinese Journal of Geophysics,2017,60(12):4 699-4 708.
孙和平,刘清超,吴书清,等. 北京地区最新重力潮汐结果及其在检测液核共振效应中的应用[J].地球物理学报,2017,60(12):4 699-4 708.
孙和平,刘清超,吴书清,等. 北京地区最新重力潮汐结果及其在检测液核共振效应中的应用[J].地球物理学报,2017,60(12):4 699-4 708.
12 YANG Jinling,GUAN Yumei,ZHONG Jimao,et al. Study on ocean tidal loading correction of tidal gravity at Xiamen Station[J]. Progress in Geophysics,2016,31(3):992-998.
YANG Jinling,GUAN Yumei,ZHONG Jimao,et al. Study on ocean tidal loading correction of tidal gravity at Xiamen Station[J]. Progress in Geophysics,2016,31(3):992-998.
杨锦玲,关玉梅,钟继茂,等. 厦门重力固体潮海潮负荷改正研究[J]. 地球物理学进展,2016,31(3):992-998.
杨锦玲,关玉梅,钟继茂,等. 厦门重力固体潮海潮负荷改正研究[J]. 地球物理学进展,2016,31(3):992-998.
13 MELCHIOR P,FANG Tsun,DUCARME B,et al. Studies on the Earth tidal observations in China[J]. Chinese Journal of Geophysics,1985,28(2):142-154.
MELCHIOR P,FANG Tsun,DUCARME B,et al. Studies on the Earth tidal observations in China[J]. Chinese Journal of Geophysics,1985,28(2):142-154.
MELCHIOR P,方俊,DUCARME B,等. 中国固体潮观测研究[J]. 地球物理学报,1985,28(2):142-154.
MELCHIOR P,方俊,DUCARME B,等. 中国固体潮观测研究[J]. 地球物理学报,1985,28(2):142-154.
14 BALMINO Georges,VALES N,BONVALOT Sylvain,et al. Spherical harmonic modeling to ultra-high degree of bouguer and isostatic anomalies[J]. Journal of Geodesy,2012,86(7): 499-520.
BALMINO Georges,VALES N,BONVALOT Sylvain,et al. Spherical harmonic modeling to ultra-high degree of bouguer and isostatic anomalies[J]. Journal of Geodesy,2012,86(7): 499-520.
15 TRABANT C,HUTKO A R,BAHAVAR M,et al. Data products at the IRIS DMC: Stepping stones for research and other applications[J]. Seismological Research Letters,2012,83(5):846-854.
TRABANT C,HUTKO A R,BAHAVAR M,et al. Data products at the IRIS DMC: Stepping stones for research and other applications[J]. Seismological Research Letters,2012,83(5):846-854.
16 MING Feng,ZENG Anmin,JING Yifan. A new method of outlier detection for GNSS position time series based on the combination of L1-Norm and IQR statistic[J]. Journal of Geomatics Science and Technology,2016,33(2):127-132.
MING Feng,ZENG Anmin,JING Yifan. A new method of outlier detection for GNSS position time series based on the combination of L1-Norm and IQR statistic[J]. Journal of Geomatics Science and Technology,2016,33(2):127-132.
明锋,曾安敏,景一帆.L1范数与IQR统计量组合的GNSS坐标序列粗差探测算法[J].测绘科学技术学报,2016,33(2):127-132.
明锋,曾安敏,景一帆.L1范数与IQR统计量组合的GNSS坐标序列粗差探测算法[J].测绘科学技术学报,2016,33(2):127-132.
17 WEI Jin,LI Hui,LIU Ziwei,et al. Observation of superconducting gravimeter at Jiufeng seismic station[J]. Chinese Journal of Geophysics,2012,55(6): 1 894-1 902.
WEI Jin,LI Hui,LIU Ziwei,et al. Observation of superconducting gravimeter at Jiufeng seismic station[J]. Chinese Journal of Geophysics,2012,55(6): 1 894-1 902.
韦进,李辉,刘子维,等. 武汉九峰地震台超导重力仪观测分析研究[J]. 地球物理学报,2012,55(6):1 894-1 902.
韦进,李辉,刘子维,等. 武汉九峰地震台超导重力仪观测分析研究[J]. 地球物理学报,2012,55(6):1 894-1 902.
18 LIU Ziwei,LI Hui,WEI Jin,et al. Accurate determination of calibration factor of gPhone spring gravimeters by using M2 Tidal wave amplitude factor[J]. Journal of Geodesy and Geodynamics,2011,31(5):146-150.
LIU Ziwei,LI Hui,WEI Jin,et al. Accurate determination of calibration factor of gPhone spring gravimeters by using M2 Tidal wave amplitude factor[J]. Journal of Geodesy and Geodynamics,2011,31(5):146-150.
刘子维,李辉,韦进,等. 利用M2潮波振幅因子精密测定gPhone弹簧重力仪的标定因子[J].大地测量与地球动力学,2011,31(5):146-150.
刘子维,李辉,韦进,等. 利用M2潮波振幅因子精密测定gPhone弹簧重力仪的标定因子[J].大地测量与地球动力学,2011,31(5):146-150.
19 HABEL B,MEURERS B. A new tidal analysis of superconducting gravity observations in Western and Central Europe[J]. Contributions to Geophysics and Geodesy,2014,44(1):1-24.
HABEL B,MEURERS B. A new tidal analysis of superconducting gravity observations in Western and Central Europe[J]. Contributions to Geophysics and Geodesy,2014,44(1):1-24.
[1] 马成龙,陈晓东,江利明,孙和平,徐建桥,董景龙,李德伟. 月基 InSAR观测地球大尺度形变能力的初步研究[J]. 地球科学进展, 2019, 34(2): 164-174.
[2] 邢德钊,全海燕. 基于 ICA的引潮力互相关谱分析[J]. 地球科学进展, 2019, 34(1): 103-112.
[3] 全海燕, 刘艳. EMD模态分量的谱相关分析法及其对重力固体潮信号的解调分析[J]. 地球科学进展, 2016, 31(9): 919-925.
阅读次数
全文


摘要