1 |
CAMP M VAN, DE VIRON O, WATLET A, et al. Geophysics from terrestrial time-variable gravity measurements [J]. Reviews of Geophysics, 2017, 55(4): 938-992.
|
|
CAMP M VAN, DE VIRON O, WATLET A, et al. Geophysics from terrestrial time-variable gravity measurements [J]. Reviews of Geophysics, 2017, 55(4): 938-992.
|
2 |
FORES B, CHAMPOLLION C, LE MOIGNE N, et al. Assessing the precision of the iGrav superconducting gravimeter for hydrological models and karstic hydrological process identification [J]. Geophysical Journal International, 2017, 208(1): 269-280.
|
|
FORES B, CHAMPOLLION C, LE MOIGNE N, et al. Assessing the precision of the iGrav superconducting gravimeter for hydrological models and karstic hydrological process identification [J]. Geophysical Journal International, 2017, 208(1): 269-280.
|
3 |
KENNEDY J, FERRÉ T P A, CREUTZFELDT B. Time-lapse gravity data for monitoring and modeling artificial recharge through a thick unsaturated zone[J]. Water Resources Research, 2016, 52(9): 7 244-7 261.
|
|
KENNEDY J, FERRé T P A, CREUTZFELDT B. Time-lapse gravity data for monitoring and modeling artificial recharge through a thick unsaturated zone[J]. Water Resources Research, 2016, 52(9): 7 244-7 261.
|
4 |
CAMP M VAN, DE VIRON O, SCHERNECK H G, et al. Repeated absolute gravity measurements for monitoring slow intraplate vertical deformation in western Europe [J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B8): 148-227.
|
|
CAMP M VAN, DE VIRON O, SCHERNECK H G, et al. Repeated absolute gravity measurements for monitoring slow intraplate vertical deformation in western Europe [J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B8): 148-227.
|
5 |
ROMAIDES A J, BATTIS J C, SANDS R W, et al. A comparison of gravimetric techniques for measuring subsurface void signals [J]. Journal of Physics D: Applied Physics, 2001, 34(3): 433-443.
|
|
ROMAIDES A J, BATTIS J C, SANDS R W, et al. A comparison of gravimetric techniques for measuring subsurface void signals [J]. Journal of Physics D: Applied Physics, 2001, 34(3): 433-443.
|
6 |
WU Bin, WANG Zhaoying, CHENG Bing, et al. The investigation of a μGal-level cold atom gravimeter for field applications [J]. Metrologia, 2014, 51(5): 452-458.
|
|
WU Bin, WANG Zhaoying, CHENG Bing, et al. The investigation of a μGal-level cold atom gravimeter for field applications [J]. Metrologia, 2014, 51(5): 452-458.
|
7 |
CARBONE D, POLAND M P, DIAMENT M, et al. The added value of time-variable microgravimetry to the understanding of how volcanoes work[J]. Earth-Science Reviews, 2017, 169:146-179.
|
|
CARBONE D, POLAND M P, DIAMENT M, et al. The added value of time-variable microgravimetry to the understanding of how volcanoes work[J]. Earth-Science Reviews, 2017, 169:146-179.
|
8 |
CARBONE D, CANNAVÒ F, GRECO F, et al. The benefits of using a network of superconducting gravimeters to monitor and study active volcanoes[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(4): 4 035-4 050.
|
|
CARBONE D, CANNAVò F, GRECO F, et al. The benefits of using a network of superconducting gravimeters to monitor and study active volcanoes[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(4): 4 035-4 050.
|
9 |
RYMER H, BROWN G C. Gravity fields and the interpretation of volcanic structures: Geological discrimination and temporal evolution[J]. Journal of Volcanology and Geothermal Research, 1986, 27(3): 229-254.
|
|
RYMER H, BROWN G C. Gravity fields and the interpretation of volcanic structures: Geological discrimination and temporal evolution[J]. Journal of Volcanology and Geothermal Research, 1986, 27(3): 229-254.
|
10 |
FURUYA M, OKUBO S, SUN W, et al. Spatiotemporal gravity changes at Miyakejima Volcano, Japan: Caldera collapse, explosive eruptions and magma movement [J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B4): 148-227.
|
|
FURUYA M, OKUBO S, SUN W, et al. Spatiotemporal gravity changes at Miyakejima Volcano, Japan: Caldera collapse, explosive eruptions and magma movement [J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B4): 148-227.
|
11 |
SUN Wenke. Progress and current situation of research on theory and observation of gravity change caused by seismicity and volcanism [J]. Journal of Geodesy and Grodynamics, 2008, 28(4): 44-53,71.
|
|
SUN Wenke. Progress and current situation of research on theory and observation of gravity change caused by seismicity and volcanism [J]. Journal of Geodesy and Grodynamics, 2008, 28(4): 44-53,71.
|
|
孙文科.地震火山活动产生重力变化的理论与观测研究的进展及现状[J].大地测量与地球动力学,2008(4):44-53,71.
|
|
孙文科.地震火山活动产生重力变化的理论与观测研究的进展及现状[J].大地测量与地球动力学,2008(4):44-53,71.
|
12 |
LIU Dongxun, LIU Wentai. Gravity predicts seismic behavior [J]. Earthquake Research in Sichuan, 1984(1): 27-31.
|
|
LIU Dongxun, LIU Wentai. Gravity predicts seismic behavior [J]. Earthquake Research in Sichuan, 1984(1): 27-31.
|
|
刘栋勋,刘文泰.重力预报地震动态[J].四川地震,1984(1):27-31.
|
|
刘栋勋,刘文泰.重力预报地震动态[J].四川地震,1984(1):27-31.
|
13 |
IMANISHI Y, SATO T, HIGASHI T, et al. A network of superconducting gravimeters detects submicrogal coseismic gravity changes [J]. Science, 2004, 306(5 695): 476-479.
|
|
IMANISHI Y, SATO T, HIGASHI T, et al. A network of superconducting gravimeters detects submicrogal coseismic gravity changes [J]. Science, 2004, 306(5 695): 476-479.
|
14 |
SASTRY R G, PANT A. Method for isolation of gravity signatures due to major earthquakes from satellite gravity date [M]//Symposium on the application of geophysics to engineering and environmental problems 2014. Society of Exploration Geophysicists and Environment and Engineering Geophysical Society, 2014: 174-180.
|
|
SASTRY R G, PANT A. Method for isolation of gravity signatures due to major earthquakes from satellite gravity date [M]//Symposium on the application of geophysics to engineering and environmental problems 2014. Society of Exploration Geophysicists and Environment and Engineering Geophysical Society, 2014: 174-180.
|
15 |
KIMURA M, KAME N, WATADA S, et al. Earthquake-induced prompt gravity signals identified in dense array data in Japan [J]. Earth, Planets and Space, 2019, 71(1): 27-38.
|
|
KIMURA M, KAME N, WATADA S, et al. Earthquake-induced prompt gravity signals identified in dense array data in Japan [J]. Earth, Planets and Space, 2019, 71(1): 27-38.
|
16 |
MÄKINEN J, AMALVICT M, SHIBUYA K, et al. Absolute gravimetry in Antarctica: Status and prospects [J]. Journal of Geodynamics, 2007, 43(3): 339-357.
|
|
M?KINEN J, AMALVICT M, SHIBUYA K, et al. Absolute gravimetry in Antarctica: Status and prospects [J]. Journal of Geodynamics, 2007, 43(3): 339-357.
|
17 |
KLIMESCH W, HANSLMAYR S, SAUSENG P, et al. Distinguishing the evoked response from phase reset: A comment to Mäkinenet al. [J]. NeuroImage, 2006, 29(3): 808-811.
|
|
KLIMESCH W, HANSLMAYR S, SAUSENG P, et al. Distinguishing the evoked response from phase reset: A comment to M?kinenet al. [J]. NeuroImage, 2006, 29(3): 808-811.
|
18 |
Quantum. Deployment of our quantum gravimeter on Mount Etna[EB/OL].(2020-07-31)[2020.10.12]..
|
|
Quantum. Deployment of our quantum gravimeter on Mount Etna[EB/OL].(2020-07-31)[2020.10.12]..
URL
|
19 |
FALLER J E, MARSON I. Ballistic methods of measuring g- the direct free-fall and symmetrical rise-and-fall methods compared [J]. Metrologia, 2005, 25(1): 49-55.
|
|
FALLER J E, MARSON I. Ballistic methods of measuring g- the direct free-fall and symmetrical rise-and-fall methods compared [J]. Metrologia, 2005, 25(1): 49-55.
|
20 |
NIEBAUER T M, SASAGAWA G S, FALLER J E, et al. A new generation of absolute gravimeters [J]. Metrologia, 1995, 32(3): 159-180.
|
|
NIEBAUER T M, SASAGAWA G S, FALLER J E, et al. A new generation of absolute gravimeters [J]. Metrologia, 1995, 32(3): 159-180.
|
21 |
OKUBO S, YOSHIDA S, SATO T, et al. Verifying the precision of a new generation absolute gravimeter FG5—Comparison with superconducting gravimeters and detection of oceanic loading tide [J]. Geophysical Research Letters, 1997, 24(4): 489-492.
|
|
OKUBO S, YOSHIDA S, SATO T, et al. Verifying the precision of a new generation absolute gravimeter FG5—Comparison with superconducting gravimeters and detection of oceanic loading tide [J]. Geophysical Research Letters, 1997, 24(4): 489-492.
|
22 |
NIEBAUER T M, BILLSON R, SCHIEL A, et al. The self-attraction correction for the FG5X absolute gravity meter [J]. Metrologia, 2013, 50(1): 1-8.
|
|
NIEBAUER T M, BILLSON R, SCHIEL A, et al. The self-attraction correction for the FG5X absolute gravity meter [J]. Metrologia, 2013, 50(1): 1-8.
|
23 |
PETERS A, CHUNG K Y, CHU S. High-precision gravity measurements using atom interferometry[J]. Metrologia, 2001, 38(1): 25-61.
|
|
PETERS A, CHUNG K Y, CHU S. High-precision gravity measurements using atom interferometry[J]. Metrologia, 2001, 38(1): 25-61.
|
24 |
KASEVICH M, CHU S. Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer [J]. Applied Physics B, 1992, 54(5): 321-332.
|
|
KASEVICH M, CHU S. Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer [J]. Applied Physics B, 1992, 54(5): 321-332.
|
25 |
SUGARBAKER A. Atom interferometry in a 10 m fountain [D]. California: Stanford University, 2014.
|
|
SUGARBAKER A. Atom interferometry in a 10 m fountain [D]. California: Stanford University, 2014.
|
26 |
HU Zhongkun, SUN Buliang, DUAN Xiaochun, et al. Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter [J]. Physical Review A, 2013, 88(4): 43 610.
|
|
HU Zhongkun, SUN Buliang, DUAN Xiaochun, et al. Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter [J]. Physical Review A, 2013, 88(4): 43 610.
|
27 |
MÉNORET V, VERMEULEN P, LE MOIGNE N, et al. Gravity measurements below 10-9 g with a transportable absolute quantum gravimeter [J]. Scientific Reports, 2018, 8(1): 12 300.
|
|
MéNORET V, VERMEULEN P, LE MOIGNE N, et al. Gravity measurements below 10-9 g with a transportable absolute quantum gravimeter [J]. Scientific Reports, 2018, 8(1): 12 300.
|
28 |
BELL R E, HANSEN R O. The rise and fall of early oil field technology: The torsion balance gradiometer [J]. The Leading Edge, 1998, 17(1): 81-83.
|
|
BELL R E, HANSEN R O. The rise and fall of early oil field technology: The torsion balance gradiometer [J]. The Leading Edge, 1998, 17(1): 81-83.
|
29 |
LEEUWEN E. BHP develops airborne gravity gradiometer for mineral exploration [J]. Geophysics, 2000, 19(12): 1 265-1 376.
|
|
LEEUWEN E. BHP develops airborne gravity gradiometer for mineral exploration [J]. Geophysics, 2000, 19(12): 1 265-1 376.
|
30 |
MALEKI L, YU N, KOHEL J. Quantum gravity gradiometer for sub-surface imaging [M]// Space 2004 Conference and Exhibit. American Institute of Aeronautics and Astronautics. 2004.
|
|
MALEKI L, YU N, KOHEL J. Quantum gravity gradiometer for sub-surface imaging [M]// Space 2004 Conference and Exhibit. American Institute of Aeronautics and Astronautics. 2004.
|
31 |
RUMMEL R. Gravity gradiometry: From Loránd Eötvös to modern space age [J]. Acta Geodaetica et Geophysica Hungarica, 2002, 37(4): 435-444.
|
|
RUMMEL R. Gravity gradiometry: From Loránd E?tv?s to modern space age [J]. Acta Geodaetica et Geophysica Hungarica, 2002, 37(4): 435-444.
|
32 |
WU Xinan. Gravity gradient survey with a mobile atom interferometer [D]. California: Stanford University, 2009.
|
|
WU Xinan. Gravity gradient survey with a mobile atom interferometer [D]. California: Stanford University, 2009.
|
33 |
WU Xuejian, PAGEL Z, MALEK B S, et al. Gravity surveys using a mobile atom interferometer [J]. Science Advances, 2019, 5(9): eaax0800.
|
|
WU Xuejian, PAGEL Z, MALEK B S, et al. Gravity surveys using a mobile atom interferometer [J]. Science Advances, 2019, 5(9): eaax0800.
|
34 |
GEIGER R, MENORET V, STERN G, et al. Detecting inertial effects with airborne matter-wave interferometry [J]. Nature Communications, 2011, 2:474-480.
|
|
GEIGER R, MENORET V, STERN G, et al. Detecting inertial effects with airborne matter-wave interferometry [J]. Nature Communications, 2011, 2:474-480.
|
35 |
ROURA A, ZELLER W, SCHLEICH W P. Overcoming loss of contrast in atom interferometry due to gravity gradients [J]. New Journal of Physics, 2014, 16(12): 123 012.
|
|
ROURA A, ZELLER W, SCHLEICH W P. Overcoming loss of contrast in atom interferometry due to gravity gradients [J]. New Journal of Physics, 2014, 16(12): 123 012.
|
36 |
CHEINEY P, FOUCHÉ L, TEMPLIER S, et al. Navigation-compatible hybrid quantum accelerometer using a kalman filter [J]. Physical Review Applied, 2018, 10(3): 034030.
|
|
CHEINEY P, FOUCHé L, TEMPLIER S, et al. Navigation-compatible hybrid quantum accelerometer using a kalman filter [J]. Physical Review Applied, 2018, 10(3): 034030.
|
37 |
BIDEL Y, ZAHZAM N, BLANCHARD C, et al. Absolute marine gravimetry with matter-wave interferometry [J]. Nature Communications, 2018, 9(1): 627-635.
|
|
BIDEL Y, ZAHZAM N, BLANCHARD C, et al. Absolute marine gravimetry with matter-wave interferometry [J]. Nature Communications, 2018, 9(1): 627-635.
|
38 |
BIDEL Y, ZAHZAM N, BRESSON A, et al. Absolute airborne gravimetry with a cold atom sensor [J]. Journal of Geodesy, 2020, 94(2): 20-29.
|
|
BIDEL Y, ZAHZAM N, BRESSON A, et al. Absolute airborne gravimetry with a cold atom sensor [J]. Journal of Geodesy, 2020, 94(2): 20-29.
|
39 |
ONERA. ONERA's cold atom don't get seasick[EB/OL].[2020-05-08]. ?page=85.
|
|
ONERA. ONERA's cold atom don't get seasick[EB/OL].[2020-05-08]. ?page=85.
URL
|
40 |
HUANG Panwei, TANG Biao, CHEN Xi, et al. Accuracy and stability evaluation of the 85Rb atom gravimeter WAG-H5-1 at the 2017 International Comparison of Absolute Gravimeters [J]. Metrologia, 2019, 56(4): 045012.
|
|
HUANG Panwei, TANG Biao, CHEN Xi, et al. Accuracy and stability evaluation of the 85Rb atom gravimeter WAG-H5-1 at the 2017 International Comparison of Absolute Gravimeters [J]. Metrologia, 2019, 56(4): 045012.
|
41 |
ZHOU Minkang, DUAN Xiaochun, CHEN Lele, et al. Micro-Gal level gravity measurements with cold atom interferometry [J]. Chinese Physics B, 2015, 24(5): 050401.
|
|
ZHOU Minkang, DUAN Xiaochun, CHEN Lele, et al. Micro-Gal level gravity measurements with cold atom interferometry [J]. Chinese Physics B, 2015, 24(5): 050401.
|
42 |
CHEN Bin, LONG Jinbao, XIE Hongtai, et al. Portable atomic gravimeter operating in noisy urban environments [J]. Chinese Optics Letters, 2020, 18(9): 090201.
|
|
CHEN Bin, LONG Jinbao, XIE Hongtai, et al. Portable atomic gravimeter operating in noisy urban environments [J]. Chinese Optics Letters, 2020, 18(9): 090201.
|
43 |
WU Bin, WANG Zhaoying, CHENG Bing, et al. A study of the μ-Gal-level cold atom gravimeter [J]. Geophysical and Geochemical Exploration, 2015, 39(): 47-52.
|
|
WU Bin, WANG Zhaoying, CHENG Bing, et al. A study of the μ-Gal-level cold atom gravimeter [J]. Geophysical and Geochemical Exploration, 2015, 39(): 47-52.
|
|
吴彬,王兆英,程冰,等.微伽级冷原子重力仪研究[J].物探与化探,2015,39():47-52.
|
|
吴彬,王兆英,程冰,等.微伽级冷原子重力仪研究[J].物探与化探,2015,39():47-52.
|
44 |
WU Bin, ZHOU Yin, CHENG Bing, et al. Static measurement of absolute gravity in truck based on atomic gravimeter [J]. Acta Physica Sinica, 2020, 69(6): 25-32.
|
|
WU Bin, ZHOU Yin, CHENG Bing, et al. Static measurement of absolute gravity in truck based on atomic gravimeter [J]. Acta Physica Sinica, 2020, 69(6): 25-32.
|
|
吴彬,周寅,程冰,等.基于原子重力仪的车载静态绝对重力测量[J].物理学报,2020,69(6):25-32.
|
|
吴彬,周寅,程冰,等.基于原子重力仪的车载静态绝对重力测量[J].物理学报,2020,69(6):25-32.
|
45 |
CHENG Bing, WU Bin, LIN Qiang, et al. Absolute gravity measurement based on atomic gravimeter under mooring state of a ship [J]. Acta Physica Sinica,2021,70(4):040304.
|
|
CHENG Bing, WU Bin, LIN Qiang, et al. Absolute gravity measurement based on atomic gravimeter under mooring state of a ship [J]. Acta Physica Sinica,2021,70(4):040304.
|
|
程冰,吴彬,林强,等.船载系泊状态下基于原子重力仪的绝对重力测量[J].物理学报,2021,70(4):040304.
|
|
程冰,吴彬,林强,等.船载系泊状态下基于原子重力仪的绝对重力测量[J].物理学报,2021,70(4):040304.
|
46 |
JIANG Z, PÁLINKÁŠ V, FRANCIS O, et al. Relative gravity measurement campaign during the 8th international comparison of absolute gravimeters (2009)[J]. Metrologia, 2011, 49(1): 95-107.
|
|
JIANG Z, PáLINKá? V, FRANCIS O, et al. Relative gravity measurement campaign during the 8th international comparison of absolute gravimeters (2009)[J]. Metrologia, 2011, 49(1): 95-107.
|
47 |
WU Shuqing, FENG Jinyang, LI Chunjian, et al. The results of CCM.G-K2.2017 key comparison [J]. Metrologia, 2020, 57(1A): 07002.
|
|
WU Shuqing, FENG Jinyang, LI Chunjian, et al. The results of CCM.G-K2.2017 key comparison [J]. Metrologia, 2020, 57(1A): 07002.
|
48 |
DUAN Xiaochun, ZHOU Minkang, MAO Dekai, et al. Operating an atom-interferometry-based gravity gradiometer by the dual-fringe-locking method [J]. Physical Review A, 2014, 90(2): 023617.
|
|
DUAN Xiaochun, ZHOU Minkang, MAO Dekai, et al. Operating an atom-interferometry-based gravity gradiometer by the dual-fringe-locking method [J]. Physical Review A, 2014, 90(2): 023617.
|
49 |
WENG Kanxing, ZHOU Yin, ZHU Dong, et al. High-accuracy gravity measurement with miniaturized quantum gravimeter [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2020, 50(1): 123 456-123 456.
|
|
WENG Kanxing, ZHOU Yin, ZHU Dong, et al. High-accuracy gravity measurement with miniaturized quantum gravimeter [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2020, 50(1): 123 456-123 456.
|
|
翁堪兴,周寅,朱栋,等. 小型化量子重力仪高精度重力测量[J]. 中国科学:物理学,力学&天文学,2020,50(1):123 456-123 456.
|
|
翁堪兴,周寅,朱栋,等. 小型化量子重力仪高精度重力测量[J]. 中国科学:物理学,力学&天文学,2020,50(1):123 456-123 456.
|