地球科学进展 ›› 2021, Vol. 36 ›› Issue (5): 480 -489. doi: 10.11867/j.issn.1001-8166.2021.034

综述与评述 上一篇    下一篇

量子重力仪在地球科学中的应用进展
朱栋( ), 高世腾, 朱欣欣, 吴彬( ), 程冰, 林强   
  1. 浙江工业大学理学院,浙江省量子精密测量重点实验室,浙江 杭州 310023
  • 收稿日期:2020-12-29 修回日期:2021-02-04 出版日期:2021-06-18
  • 通讯作者: 吴彬 E-mail:zhukun10000@163.com;wubin@zjut.edu.cn
  • 基金资助:
    中国自然资源航空物探遥感中心项目“远洋航路搭载测量与保障技术研究及应用试验”(DD20189831)

Progress of Quantum Gravimeter Applied in the Fields of Earth Science

Dong ZHU( ), Shiteng GAO, Xinxin ZHU, Bin WU( ), Bing CHENG, Qiang LIN   

  1. College of Science,Zhejiang University of Technology,Key Laboratory of Quantum Precision Measurement of Zhejiang Province,Hangzhou 310023,China
  • Received:2020-12-29 Revised:2021-02-04 Online:2021-06-18 Published:2021-07-02
  • Contact: Bin WU E-mail:zhukun10000@163.com;wubin@zjut.edu.cn
  • About author:ZHU Dong (1993-), male, Jiuquan City, Gansu Province, Ph. D student. Research areas include quantum gravimeter and cold atom physics. E-mail: zhukun10000@163.com
  • Supported by:
    the China Aero Geophysical Survey and Remote Sensing Center for Natural Resources Program "Research and application test of carrying measurement and support technology on ocean route"(DD20189831)

量子重力仪是近30年来快速发展起来的一种新型绝对重力仪,目前对该新型重力仪的研究已进入小型化和实用化阶段。国内外基于量子重力仪的地球科学研究发展较快,应用研究包括火山活动监测、海洋绝对重力测绘和航空绝对重力测量等。由浙江省量子精密测量重点实验室研制的ZAG-E型量子重力仪具有体积小、易搬运和稳定性高等优点,其绝对重力测量精确度可以达到10 μGal。基于该量子重力仪,开展了地震台连续绝对重力测量的相关研究,着重介绍了在四川省甘孜藏族自治州燕子沟地震台进行的连续绝对重力测量,该研究有助于构建该地区的重力基准和分析地质地形构造以及地质活动所带来的影响。基于量子重力仪的精密重力测量为地球科学的研究提供了一种新型的技术手段,同时也提供了可靠的基础绝对重力数据。未来,量子重力仪有望被越来越广泛地应用于地球物理和地表绝对重力测绘等地球科学领域。

Quantum gravimeter is a new type of absolute gravimeter that has been rapidly developed in the past 30 years. At present, the research on this new type of gravimeter has entered the stage of miniaturization and practical applications. The applications in the fields of earth science research based on quantum gravimeters at home and abroad have been developed rapidly, including volcanic activity monitoring, marine absolute gravity measurement, and airborne absolute gravity measurement, etc. The ZAG-E type of quantum gravimeter developed by our laboratory has the advantages of small size, easy handling, and high stability. Its absolute gravity measurement accuracy can reach 10 μGal. Based on this quantum gravimeter, our team has carried out related research on continuous absolute gravity measurement at seismic stations, focusing on the continuous absolute gravity measurement performed at the Yanzigou Seismic Station in Ganzi Tibetan Autonomous Prefecture, Sichuan Province. These studies are helpful for the construction of the gravity data of the area and the analysis of the geological topography and the geological activities. The precision gravity measurement based on quantum gravimeters can provide a new method for the research of earth science, and it can also provide reliable absolute gravity data. In the future, quantum gravimeters are expected to be more and more widely used in geosciences such as geophysics and absolute gravity surveying and mapping on the surface.

中图分类号: 

图1 法国MuQuans公司的商用量子重力仪 27
Fig.1 The commercial quantum gravimeter of MuQuans 27
图1 法国MuQuans公司的商用量子重力仪 27
Fig.1 The commercial quantum gravimeter of MuQuans 27
图2 野外定点车载绝对重力测量
(a)斯坦福大学的野外重力及重力梯度测量 32 ;(b)在伯利克山脉的绝对重力测量 33
Fig.2 Field fixed-point vehicle-mounted absolute gravity measurement
(a) Field gravity and gravity gradient measurements at Stanford University 32 ; (b) Absolute gravity survey in Berkeley Hills 33
图2 野外定点车载绝对重力测量
(a)斯坦福大学的野外重力及重力梯度测量 32 ;(b)在伯利克山脉的绝对重力测量 33
Fig.2 Field fixed-point vehicle-mounted absolute gravity measurement
(a) Field gravity and gravity gradient measurements at Stanford University 32 ; (b) Absolute gravity survey in Berkeley Hills 33
图3 机载惯性效应测量现场图 34
Fig.3 The picture of the airborne inertial effects measurement 34
图3 机载惯性效应测量现场图 34
Fig.3 The picture of the airborne inertial effects measurement 34
图4 基于量子重力仪的动态绝对重力测量
(a)船载量子重力仪测量系统 37 ;(b)机载量子重力仪测量系统 39
Fig.4 The dynamic absolute gravity measurement based on quantum gravimeters
(a) The measurement system of shipborne quantum gravimeter 37 ; (b) The measurement system of airborne quantum gravimeter 39
图4 基于量子重力仪的动态绝对重力测量
(a)船载量子重力仪测量系统 37 ;(b)机载量子重力仪测量系统 39
Fig.4 The dynamic absolute gravity measurement based on quantum gravimeters
(a) The measurement system of shipborne quantum gravimeter 37 ; (b) The measurement system of airborne quantum gravimeter 39
图5 基于量子重力仪的外场测量实验
(a)野外车载定点绝对重力测量 44 ;(b)船舶码头系泊状态下的绝对重力测量 45
Fig.5 The field measurement experiments based on quantum gravimeters
(a) Field vehicle-mounted fixed-point absolute gravity measurement 44 ; (b) Absolute gravity measurement in the moored state of ship wharf 45
图5 基于量子重力仪的外场测量实验
(a)野外车载定点绝对重力测量 44 ;(b)船舶码头系泊状态下的绝对重力测量 45
Fig.5 The field measurement experiments based on quantum gravimeters
(a) Field vehicle-mounted fixed-point absolute gravity measurement 44 ; (b) Absolute gravity measurement in the moored state of ship wharf 45
图6 原子干涉仪脉冲序列 49
Fig.6 The sequence of three pulse for atomic interferometer 49
图6 原子干涉仪脉冲序列 49
Fig.6 The sequence of three pulse for atomic interferometer 49
图7 ZAG-E型量子重力仪实物图
Fig.7 The picture of the ZAG-E quantum gravimeter
图7 ZAG-E型量子重力仪实物图
Fig.7 The picture of the ZAG-E quantum gravimeter
图8 测量得到的重力固体潮汐数据
Fig.8 The measured gravity data of solid tide
图8 测量得到的重力固体潮汐数据
Fig.8 The measured gravity data of solid tide
图9 修正完固体潮汐模型后的重力残差数据
Fig.9 The gravity residual data after correcting the solid tidal model
图9 修正完固体潮汐模型后的重力残差数据
Fig.9 The gravity residual data after correcting the solid tidal model
图10 雅安绝对重力基准点的测量结果
(a)测量到的重力固体潮数据;(b)修正固体潮汐模型后的残差数据
Fig.10 The experimental resultes measured at the gravity reference site of Yaan
(a) Measured gravity tide data; (b) The residual data after the modification of solid tidal model
图10 雅安绝对重力基准点的测量结果
(a)测量到的重力固体潮数据;(b)修正固体潮汐模型后的残差数据
Fig.10 The experimental resultes measured at the gravity reference site of Yaan
(a) Measured gravity tide data; (b) The residual data after the modification of solid tidal model
1 CAMP M VAN, DE VIRON O, WATLET A, et al. Geophysics from terrestrial time-variable gravity measurements [J]. Reviews of Geophysics, 2017, 55(4): 938-992.
CAMP M VAN, DE VIRON O, WATLET A, et al. Geophysics from terrestrial time-variable gravity measurements [J]. Reviews of Geophysics, 2017, 55(4): 938-992.
2 FORES B, CHAMPOLLION C, LE MOIGNE N, et al. Assessing the precision of the iGrav superconducting gravimeter for hydrological models and karstic hydrological process identification [J]. Geophysical Journal International, 2017, 208(1): 269-280.
FORES B, CHAMPOLLION C, LE MOIGNE N, et al. Assessing the precision of the iGrav superconducting gravimeter for hydrological models and karstic hydrological process identification [J]. Geophysical Journal International, 2017, 208(1): 269-280.
3 KENNEDY J, FERRÉ T P A, CREUTZFELDT B. Time-lapse gravity data for monitoring and modeling artificial recharge through a thick unsaturated zone[J]. Water Resources Research, 2016, 52(9): 7 244-7 261.
KENNEDY J, FERRé T P A, CREUTZFELDT B. Time-lapse gravity data for monitoring and modeling artificial recharge through a thick unsaturated zone[J]. Water Resources Research, 2016, 52(9): 7 244-7 261.
4 CAMP M VAN, DE VIRON O, SCHERNECK H G, et al. Repeated absolute gravity measurements for monitoring slow intraplate vertical deformation in western Europe [J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B8): 148-227.
CAMP M VAN, DE VIRON O, SCHERNECK H G, et al. Repeated absolute gravity measurements for monitoring slow intraplate vertical deformation in western Europe [J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B8): 148-227.
5 ROMAIDES A J, BATTIS J C, SANDS R W, et al. A comparison of gravimetric techniques for measuring subsurface void signals [J]. Journal of Physics D: Applied Physics, 2001, 34(3): 433-443.
ROMAIDES A J, BATTIS J C, SANDS R W, et al. A comparison of gravimetric techniques for measuring subsurface void signals [J]. Journal of Physics D: Applied Physics, 2001, 34(3): 433-443.
6 WU Bin, WANG Zhaoying, CHENG Bing, et al. The investigation of a μGal-level cold atom gravimeter for field applications [J]. Metrologia, 2014, 51(5): 452-458.
WU Bin, WANG Zhaoying, CHENG Bing, et al. The investigation of a μGal-level cold atom gravimeter for field applications [J]. Metrologia, 2014, 51(5): 452-458.
7 CARBONE D, POLAND M P, DIAMENT M, et al. The added value of time-variable microgravimetry to the understanding of how volcanoes work[J]. Earth-Science Reviews, 2017, 169:146-179.
CARBONE D, POLAND M P, DIAMENT M, et al. The added value of time-variable microgravimetry to the understanding of how volcanoes work[J]. Earth-Science Reviews, 2017, 169:146-179.
8 CARBONE D, CANNAVÒ F, GRECO F, et al. The benefits of using a network of superconducting gravimeters to monitor and study active volcanoes[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(4): 4 035-4 050.
CARBONE D, CANNAVò F, GRECO F, et al. The benefits of using a network of superconducting gravimeters to monitor and study active volcanoes[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(4): 4 035-4 050.
9 RYMER H, BROWN G C. Gravity fields and the interpretation of volcanic structures: Geological discrimination and temporal evolution[J]. Journal of Volcanology and Geothermal Research, 1986, 27(3): 229-254.
RYMER H, BROWN G C. Gravity fields and the interpretation of volcanic structures: Geological discrimination and temporal evolution[J]. Journal of Volcanology and Geothermal Research, 1986, 27(3): 229-254.
10 FURUYA M, OKUBO S, SUN W, et al. Spatiotemporal gravity changes at Miyakejima Volcano, Japan: Caldera collapse, explosive eruptions and magma movement [J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B4): 148-227.
FURUYA M, OKUBO S, SUN W, et al. Spatiotemporal gravity changes at Miyakejima Volcano, Japan: Caldera collapse, explosive eruptions and magma movement [J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B4): 148-227.
11 SUN Wenke. Progress and current situation of research on theory and observation of gravity change caused by seismicity and volcanism [J]. Journal of Geodesy and Grodynamics, 2008, 28(4): 44-53,71.
SUN Wenke. Progress and current situation of research on theory and observation of gravity change caused by seismicity and volcanism [J]. Journal of Geodesy and Grodynamics, 2008, 28(4): 44-53,71.
孙文科.地震火山活动产生重力变化的理论与观测研究的进展及现状[J].大地测量与地球动力学,2008(4):44-53,71.
孙文科.地震火山活动产生重力变化的理论与观测研究的进展及现状[J].大地测量与地球动力学,2008(4):44-53,71.
12 LIU Dongxun, LIU Wentai. Gravity predicts seismic behavior [J]. Earthquake Research in Sichuan, 1984(1): 27-31.
LIU Dongxun, LIU Wentai. Gravity predicts seismic behavior [J]. Earthquake Research in Sichuan, 1984(1): 27-31.
刘栋勋,刘文泰.重力预报地震动态[J].四川地震,1984(1):27-31.
刘栋勋,刘文泰.重力预报地震动态[J].四川地震,1984(1):27-31.
13 IMANISHI Y, SATO T, HIGASHI T, et al. A network of superconducting gravimeters detects submicrogal coseismic gravity changes [J]. Science, 2004, 306(5 695): 476-479.
IMANISHI Y, SATO T, HIGASHI T, et al. A network of superconducting gravimeters detects submicrogal coseismic gravity changes [J]. Science, 2004, 306(5 695): 476-479.
14 SASTRY R G, PANT A. Method for isolation of gravity signatures due to major earthquakes from satellite gravity date [M]//Symposium on the application of geophysics to engineering and environmental problems 2014. Society of Exploration Geophysicists and Environment and Engineering Geophysical Society, 2014: 174-180.
SASTRY R G, PANT A. Method for isolation of gravity signatures due to major earthquakes from satellite gravity date [M]//Symposium on the application of geophysics to engineering and environmental problems 2014. Society of Exploration Geophysicists and Environment and Engineering Geophysical Society, 2014: 174-180.
15 KIMURA M, KAME N, WATADA S, et al. Earthquake-induced prompt gravity signals identified in dense array data in Japan [J]. Earth, Planets and Space, 2019, 71(1): 27-38.
KIMURA M, KAME N, WATADA S, et al. Earthquake-induced prompt gravity signals identified in dense array data in Japan [J]. Earth, Planets and Space, 2019, 71(1): 27-38.
16 MÄKINEN J, AMALVICT M, SHIBUYA K, et al. Absolute gravimetry in Antarctica: Status and prospects [J]. Journal of Geodynamics, 2007, 43(3): 339-357.
M?KINEN J, AMALVICT M, SHIBUYA K, et al. Absolute gravimetry in Antarctica: Status and prospects [J]. Journal of Geodynamics, 2007, 43(3): 339-357.
17 KLIMESCH W, HANSLMAYR S, SAUSENG P, et al. Distinguishing the evoked response from phase reset: A comment to Mäkinenet al. [J]. NeuroImage, 2006, 29(3): 808-811.
KLIMESCH W, HANSLMAYR S, SAUSENG P, et al. Distinguishing the evoked response from phase reset: A comment to M?kinenet al. [J]. NeuroImage, 2006, 29(3): 808-811.
18 Quantum. Deployment of our quantum gravimeter on Mount Etna[EB/OL].(2020-07-31)[2020.10.12]..
Quantum. Deployment of our quantum gravimeter on Mount Etna[EB/OL].(2020-07-31)[2020.10.12]..
URL    
19 FALLER J E, MARSON I. Ballistic methods of measuring g- the direct free-fall and symmetrical rise-and-fall methods compared [J]. Metrologia, 2005, 25(1): 49-55.
FALLER J E, MARSON I. Ballistic methods of measuring g- the direct free-fall and symmetrical rise-and-fall methods compared [J]. Metrologia, 2005, 25(1): 49-55.
20 NIEBAUER T M, SASAGAWA G S, FALLER J E, et al. A new generation of absolute gravimeters [J]. Metrologia, 1995, 32(3): 159-180.
NIEBAUER T M, SASAGAWA G S, FALLER J E, et al. A new generation of absolute gravimeters [J]. Metrologia, 1995, 32(3): 159-180.
21 OKUBO S, YOSHIDA S, SATO T, et al. Verifying the precision of a new generation absolute gravimeter FG5—Comparison with superconducting gravimeters and detection of oceanic loading tide [J]. Geophysical Research Letters, 1997, 24(4): 489-492.
OKUBO S, YOSHIDA S, SATO T, et al. Verifying the precision of a new generation absolute gravimeter FG5—Comparison with superconducting gravimeters and detection of oceanic loading tide [J]. Geophysical Research Letters, 1997, 24(4): 489-492.
22 NIEBAUER T M, BILLSON R, SCHIEL A, et al. The self-attraction correction for the FG5X absolute gravity meter [J]. Metrologia, 2013, 50(1): 1-8.
NIEBAUER T M, BILLSON R, SCHIEL A, et al. The self-attraction correction for the FG5X absolute gravity meter [J]. Metrologia, 2013, 50(1): 1-8.
23 PETERS A, CHUNG K Y, CHU S. High-precision gravity measurements using atom interferometry[J]. Metrologia, 2001, 38(1): 25-61.
PETERS A, CHUNG K Y, CHU S. High-precision gravity measurements using atom interferometry[J]. Metrologia, 2001, 38(1): 25-61.
24 KASEVICH M, CHU S. Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer [J]. Applied Physics B, 1992, 54(5): 321-332.
KASEVICH M, CHU S. Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer [J]. Applied Physics B, 1992, 54(5): 321-332.
25 SUGARBAKER A. Atom interferometry in a 10 m fountain [D]. California: Stanford University, 2014.
SUGARBAKER A. Atom interferometry in a 10 m fountain [D]. California: Stanford University, 2014.
26 HU Zhongkun, SUN Buliang, DUAN Xiaochun, et al. Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter [J]. Physical Review A, 2013, 88(4): 43 610.
HU Zhongkun, SUN Buliang, DUAN Xiaochun, et al. Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter [J]. Physical Review A, 2013, 88(4): 43 610.
27 MÉNORET V, VERMEULEN P, LE MOIGNE N, et al. Gravity measurements below 10-9 g with a transportable absolute quantum gravimeter [J]. Scientific Reports, 2018, 8(1): 12 300.
MéNORET V, VERMEULEN P, LE MOIGNE N, et al. Gravity measurements below 10-9 g with a transportable absolute quantum gravimeter [J]. Scientific Reports, 2018, 8(1): 12 300.
28 BELL R E, HANSEN R O. The rise and fall of early oil field technology: The torsion balance gradiometer [J]. The Leading Edge, 1998, 17(1): 81-83.
BELL R E, HANSEN R O. The rise and fall of early oil field technology: The torsion balance gradiometer [J]. The Leading Edge, 1998, 17(1): 81-83.
29 LEEUWEN E. BHP develops airborne gravity gradiometer for mineral exploration [J]. Geophysics, 2000, 19(12): 1 265-1 376.
LEEUWEN E. BHP develops airborne gravity gradiometer for mineral exploration [J]. Geophysics, 2000, 19(12): 1 265-1 376.
30 MALEKI L, YU N, KOHEL J. Quantum gravity gradiometer for sub-surface imaging [M]// Space 2004 Conference and Exhibit. American Institute of Aeronautics and Astronautics. 2004.
MALEKI L, YU N, KOHEL J. Quantum gravity gradiometer for sub-surface imaging [M]// Space 2004 Conference and Exhibit. American Institute of Aeronautics and Astronautics. 2004.
31 RUMMEL R. Gravity gradiometry: From Loránd Eötvös to modern space age [J]. Acta Geodaetica et Geophysica Hungarica, 2002, 37(4): 435-444.
RUMMEL R. Gravity gradiometry: From Loránd E?tv?s to modern space age [J]. Acta Geodaetica et Geophysica Hungarica, 2002, 37(4): 435-444.
32 WU Xinan. Gravity gradient survey with a mobile atom interferometer [D]. California: Stanford University, 2009.
WU Xinan. Gravity gradient survey with a mobile atom interferometer [D]. California: Stanford University, 2009.
33 WU Xuejian, PAGEL Z, MALEK B S, et al. Gravity surveys using a mobile atom interferometer [J]. Science Advances, 2019, 5(9): eaax0800.
WU Xuejian, PAGEL Z, MALEK B S, et al. Gravity surveys using a mobile atom interferometer [J]. Science Advances, 2019, 5(9): eaax0800.
34 GEIGER R, MENORET V, STERN G, et al. Detecting inertial effects with airborne matter-wave interferometry [J]. Nature Communications, 2011, 2:474-480.
GEIGER R, MENORET V, STERN G, et al. Detecting inertial effects with airborne matter-wave interferometry [J]. Nature Communications, 2011, 2:474-480.
35 ROURA A, ZELLER W, SCHLEICH W P. Overcoming loss of contrast in atom interferometry due to gravity gradients [J]. New Journal of Physics, 2014, 16(12): 123 012.
ROURA A, ZELLER W, SCHLEICH W P. Overcoming loss of contrast in atom interferometry due to gravity gradients [J]. New Journal of Physics, 2014, 16(12): 123 012.
36 CHEINEY P, FOUCHÉ L, TEMPLIER S, et al. Navigation-compatible hybrid quantum accelerometer using a kalman filter [J]. Physical Review Applied, 2018, 10(3): 034030.
CHEINEY P, FOUCHé L, TEMPLIER S, et al. Navigation-compatible hybrid quantum accelerometer using a kalman filter [J]. Physical Review Applied, 2018, 10(3): 034030.
37 BIDEL Y, ZAHZAM N, BLANCHARD C, et al. Absolute marine gravimetry with matter-wave interferometry [J]. Nature Communications, 2018, 9(1): 627-635.
BIDEL Y, ZAHZAM N, BLANCHARD C, et al. Absolute marine gravimetry with matter-wave interferometry [J]. Nature Communications, 2018, 9(1): 627-635.
38 BIDEL Y, ZAHZAM N, BRESSON A, et al. Absolute airborne gravimetry with a cold atom sensor [J]. Journal of Geodesy, 2020, 94(2): 20-29.
BIDEL Y, ZAHZAM N, BRESSON A, et al. Absolute airborne gravimetry with a cold atom sensor [J]. Journal of Geodesy, 2020, 94(2): 20-29.
39 ONERA. ONERA's cold atom don't get seasick[EB/OL].[2020-05-08]. ?page=85.
ONERA. ONERA's cold atom don't get seasick[EB/OL].[2020-05-08]. ?page=85.
URL    
40 HUANG Panwei, TANG Biao, CHEN Xi, et al. Accuracy and stability evaluation of the 85Rb atom gravimeter WAG-H5-1 at the 2017 International Comparison of Absolute Gravimeters [J]. Metrologia, 2019, 56(4): 045012.
HUANG Panwei, TANG Biao, CHEN Xi, et al. Accuracy and stability evaluation of the 85Rb atom gravimeter WAG-H5-1 at the 2017 International Comparison of Absolute Gravimeters [J]. Metrologia, 2019, 56(4): 045012.
41 ZHOU Minkang, DUAN Xiaochun, CHEN Lele, et al. Micro-Gal level gravity measurements with cold atom interferometry [J]. Chinese Physics B, 2015, 24(5): 050401.
ZHOU Minkang, DUAN Xiaochun, CHEN Lele, et al. Micro-Gal level gravity measurements with cold atom interferometry [J]. Chinese Physics B, 2015, 24(5): 050401.
42 CHEN Bin, LONG Jinbao, XIE Hongtai, et al. Portable atomic gravimeter operating in noisy urban environments [J]. Chinese Optics Letters, 2020, 18(9): 090201.
CHEN Bin, LONG Jinbao, XIE Hongtai, et al. Portable atomic gravimeter operating in noisy urban environments [J]. Chinese Optics Letters, 2020, 18(9): 090201.
43 WU Bin, WANG Zhaoying, CHENG Bing, et al. A study of the μ-Gal-level cold atom gravimeter [J]. Geophysical and Geochemical Exploration, 2015, 39(): 47-52.
WU Bin, WANG Zhaoying, CHENG Bing, et al. A study of the μ-Gal-level cold atom gravimeter [J]. Geophysical and Geochemical Exploration, 2015, 39(): 47-52.
吴彬,王兆英,程冰,等.微伽级冷原子重力仪研究[J].物探与化探,2015,39():47-52.
吴彬,王兆英,程冰,等.微伽级冷原子重力仪研究[J].物探与化探,2015,39():47-52.
44 WU Bin, ZHOU Yin, CHENG Bing, et al. Static measurement of absolute gravity in truck based on atomic gravimeter [J]. Acta Physica Sinica, 2020, 69(6): 25-32.
WU Bin, ZHOU Yin, CHENG Bing, et al. Static measurement of absolute gravity in truck based on atomic gravimeter [J]. Acta Physica Sinica, 2020, 69(6): 25-32.
吴彬,周寅,程冰,等.基于原子重力仪的车载静态绝对重力测量[J].物理学报,2020,69(6):25-32.
吴彬,周寅,程冰,等.基于原子重力仪的车载静态绝对重力测量[J].物理学报,2020,69(6):25-32.
45 CHENG Bing, WU Bin, LIN Qiang, et al. Absolute gravity measurement based on atomic gravimeter under mooring state of a ship [J]. Acta Physica Sinica,2021,70(4):040304.
CHENG Bing, WU Bin, LIN Qiang, et al. Absolute gravity measurement based on atomic gravimeter under mooring state of a ship [J]. Acta Physica Sinica,2021,70(4):040304.
程冰,吴彬,林强,等.船载系泊状态下基于原子重力仪的绝对重力测量[J].物理学报,2021,70(4):040304.
程冰,吴彬,林强,等.船载系泊状态下基于原子重力仪的绝对重力测量[J].物理学报,2021,70(4):040304.
46 JIANG Z, PÁLINKÁŠ V, FRANCIS O, et al. Relative gravity measurement campaign during the 8th international comparison of absolute gravimeters (2009)[J]. Metrologia, 2011, 49(1): 95-107.
JIANG Z, PáLINKá? V, FRANCIS O, et al. Relative gravity measurement campaign during the 8th international comparison of absolute gravimeters (2009)[J]. Metrologia, 2011, 49(1): 95-107.
47 WU Shuqing, FENG Jinyang, LI Chunjian, et al. The results of CCM.G-K2.2017 key comparison [J]. Metrologia, 2020, 57(1A): 07002.
WU Shuqing, FENG Jinyang, LI Chunjian, et al. The results of CCM.G-K2.2017 key comparison [J]. Metrologia, 2020, 57(1A): 07002.
48 DUAN Xiaochun, ZHOU Minkang, MAO Dekai, et al. Operating an atom-interferometry-based gravity gradiometer by the dual-fringe-locking method [J]. Physical Review A, 2014, 90(2): 023617.
DUAN Xiaochun, ZHOU Minkang, MAO Dekai, et al. Operating an atom-interferometry-based gravity gradiometer by the dual-fringe-locking method [J]. Physical Review A, 2014, 90(2): 023617.
49 WENG Kanxing, ZHOU Yin, ZHU Dong, et al. High-accuracy gravity measurement with miniaturized quantum gravimeter [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2020, 50(1): 123 456-123 456.
WENG Kanxing, ZHOU Yin, ZHU Dong, et al. High-accuracy gravity measurement with miniaturized quantum gravimeter [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2020, 50(1): 123 456-123 456.
翁堪兴,周寅,朱栋,等. 小型化量子重力仪高精度重力测量[J]. 中国科学:物理学,力学&天文学,2020,50(1):123 456-123 456.
翁堪兴,周寅,朱栋,等. 小型化量子重力仪高精度重力测量[J]. 中国科学:物理学,力学&天文学,2020,50(1):123 456-123 456.
[1] 程惠红,孙长青,王聪. 2020年度地球物理学和空间物理学学科基金项目评审与资助成果分析[J]. 地球科学进展, 2020, 35(11): 1163-1170.
[2] 郭进义,程惠红,杨昉. 2019年度地球物理学和空间物理学学科基金项目评审与成果分析[J]. 地球科学进展, 2019, 34(11): 1185-1188.
[3] 胡毅,丁见祥,房旭东,王立明,刘伯然,李海东. 基于水下文物控制实验的海洋地球物理声学研究进展[J]. 地球科学进展, 2019, 34(10): 1081-1091.
[4] 郭进义, 程惠红, 杨昉. 2018年度地球物理学和空间物理学学科报告 *[J]. 地球科学进展, 2018, 33(12): 1292-1296.
[5] 张平松, 孙斌杨. 煤层回采工作面底板破坏探查技术的发展现状[J]. 地球科学进展, 2017, 32(6): 577-588.
[6] 向杰, 陈建平, 胡彬, 胡桥, 杨伟. 基于三维地质—地球物理模型的三维成矿预测——以安徽铜陵矿集区为例[J]. 地球科学进展, 2016, 31(6): 603-614.
[7] 华文剑, 陈海山, 李兴. 中国土地利用/覆盖变化及其气候效应的研究综述[J]. 地球科学进展, 2014, 29(9): 1025-1036.
[8] 于晟,马晓冰,张冬丽. 2012年度地球物理与空间物理学科项目评审与资助成果[J]. 地球科学进展, 2012, 27(12): 1399-1402.
[9] 于晟,马晓冰,张冬丽. 2011年度地球物理与空间物理学科项目评审与资助成果[J]. 地球科学进展, 2011, 26(12): 1330-1332.
[10] 于晟,马晓冰,蔡晓刚. 2010年度地球物理与空间物理学科项目评审与资助成果[J]. 地球科学进展, 2010, 25(12): 1398-1401.
[11] 于晟,马晓冰,查剑锋. 2009年度地球物理与空间物理学科项目评审与资助成果[J]. 地球科学进展, 2009, 24(12): 1380-1382.
[12] 于晟,于贵华,马晓冰. 2008年度地球物理与空间物理学科项目受理与资助成果[J]. 地球科学进展, 2008, 23(12): 1317-1320.
[13] 于晟,于贵华. 2006 年度地球物理与空间物理学科项目受理与资助成果[J]. 地球科学进展, 2007, 22(2): 201-209.
[14] 于贵华,于晟. 2007年度地球物理与空间物理学科项目受理与资助成果[J]. 地球科学进展, 2007, 22(12): 1303-1307.
[15] 于贵华;于晟. 2005年度地球物理与空间物理学科项目受理与资助成果——科学家是学科发展的基础,青年科学家是学科发展的希望[J]. 地球科学进展, 2005, 20(12): 1354-1360.
阅读次数
全文


摘要