地球科学进展 ›› 2021, Vol. 36 ›› Issue (5): 472 -479. doi: 10.11867/j.issn.1001-8166.2021.048

综述与评述 上一篇    下一篇

潮汐摩擦对月球轨道与地球自转影响的研究综述
刘清超 1( ), 陈晓东 1 , 2, 徐建桥 1( ), 孙和平 1 , 2   
  1. 1.中国科学院精密测量科学与技术创新研究院大地测量与地球动力学国家重点实验室,湖北 武汉 430077
    2.中国科学院大学,北京 100049
  • 收稿日期:2020-12-28 修回日期:2021-04-16 出版日期:2021-06-18
  • 通讯作者: 徐建桥 E-mail:liuqch1990@163.com;xujq@asch.whigg.ac.cn
  • 基金资助:
    中国科学院战略性先导科技专项(B类)“类地行星的形成演化及其宜居性”(XDB41000000);国家自然科学基金面上项目“月球固体潮理论推导及其数值计算”(41974023)

Review on the Effect of Tidal Friction on the Lunar Orbit and the Earth's Rotation

Qingchao LIU 1( ), Xiaodong CHEN 1 , 2, Jianqiao XU 1( ), Heping SUN 1 , 2   

  1. 1.State Key Laboratory of Geodesy and Earth's Dynamics,Innovation Academy for Precision Measurement Science and Technology,Chinese Academy of Sciences,Wuhan 430077,China
    2.University of Chinese Academy of Sciences,Beijing 100049,China
  • Received:2020-12-28 Revised:2021-04-16 Online:2021-06-18 Published:2021-07-02
  • Contact: Jianqiao XU E-mail:liuqch1990@163.com;xujq@asch.whigg.ac.cn
  • About author:LIU Qingchao (1990-), male, Dezhou City, Shandong Province, Postdoctor. Research areas include the analysis of earth gravity field data and its application in geodynamics. E-mail: liuqch1990@163.com
  • Supported by:
    the Strategic Priority Research Program of Chinese Academy of Sciences "Formation, evolution and habitability of terrestrial planets"(XDB41000000);The National Natural Science Foundation of China "Theoretical derivation and numerical calculation of the solid moon tides"(41974023)

潮汐摩擦导致月球轨道和地球自转产生长期变化,精密确定这些参数对了解地月系统的演化至关重要。阐述了求解这些参数的理论方法,回顾并对比了利用天文观测、近地卫星、数值潮汐模型和月球激光测距等资料的分析结果,发现近地卫星和月球激光测距数据比天文观测资料精度高,但可提供数据跨度较短。随观测资料的积累,可提供更可靠的月球轨道和地球自转的长期变化信息,提高对地月空间环境变化的认知。

Tidal friction leads to secular changes of lunar orbit and Earth's rotation. It is very important to accurately determine these parameters for understanding the evolution of the Earth-Moon system. The theoretical methods for solving these parameters are described. The analysis results of astronomical observations, low-Earth-orbit satellites observations, numerical tide models and Lunar Laser Range(LLR) data are reviewed and compared. It is found that low-Earth-orbit satellites and LLR data are more accurate than astronomical data, but the data span is shorter. With the accumulation of observational data, it can provide more reliable information about the long-term changes of the Lunar orbit and the Earth's rotation, improving the cognition of the changes of Earth-Moon space environment.

中图分类号: 

图1 潮汐摩擦示意图
箭头表示地球自转或月球轨道运动方向;虚线表示无摩擦时的月球位置,而实线表示有摩擦时的月球位置
Fig.1 The diagram of tidal friction
Arrows indicate the direction of the earth's rotation or Lunar orbit. Solid line indicates the position of the moon when there is no friction, while dotted line indicates the position of the moon when there is friction
图1 潮汐摩擦示意图
箭头表示地球自转或月球轨道运动方向;虚线表示无摩擦时的月球位置,而实线表示有摩擦时的月球位置
Fig.1 The diagram of tidal friction
Arrows indicate the direction of the earth's rotation or Lunar orbit. Solid line indicates the position of the moon when there is no friction, while dotted line indicates the position of the moon when there is friction
表1 天文观测确定的月球轨道长期加速度和地球自转长期加速度
Table 1 The secular acceleration of Lunar orbit and Earth's rotation derived from astronomical observations
表1 天文观测确定的月球轨道长期加速度和地球自转长期加速度
Table 1 The secular acceleration of Lunar orbit and Earth's rotation derived from astronomical observations
表2 近地卫星确定的月球轨道长期加速度
Table 2 The secular acceleration of the Lunar orbit derived from close Earth satellites
表2 近地卫星确定的月球轨道长期加速度
Table 2 The secular acceleration of the Lunar orbit derived from close Earth satellites
表3 数值潮汐模型确定的 M2潮对月球轨道加速度的贡献
Table 3 The contribution of the M2 tide determined by the numerical tide model to the Lunar orbit acceleration
表3 数值潮汐模型确定的 M2潮对月球轨道加速度的贡献
Table 3 The contribution of the M2 tide determined by the numerical tide model to the Lunar orbit acceleration
表4 LLR确定的月球轨道和地球自转的潮汐加速度
Table 4 The tidal acceleration of the Lunar orbit and Earth's rotation derived from LLR
表4 LLR确定的月球轨道和地球自转的潮汐加速度
Table 4 The tidal acceleration of the Lunar orbit and Earth's rotation derived from LLR
1 MACDONALD G J F. Tidal friction[J]. Reviews of Geophysics, 1964, 2(3):467-541.
MACDONALD G J F. Tidal friction[J]. Reviews of Geophysics, 1964, 2(3):467-541.
2 WILLIAMS J G, TURYSHEV S G, BOGGS D H. The past and present Earth-Moon system: The speed of light stays steady as tides evolve[J]. Planetary Science, 2014, 3(1):2.
WILLIAMS J G, TURYSHEV S G, BOGGS D H. The past and present Earth-Moon system: The speed of light stays steady as tides evolve[J]. Planetary Science, 2014, 3(1):2.
3 YANG Donghong, YANG Xuexiang. Study and model on variation of Earth's rotation speed[J]. Progress in Geophysics, 2013, 28(1):58-70.
YANG Donghong, YANG Xuexiang. Study and model on variation of Earth's rotation speed[J]. Progress in Geophysics, 2013, 28(1):58-70.
杨冬红, 杨学祥. 地球自转速度变化规律的研究和计算模型[J]. 地球物理学进展, 2013, 28(1): 58-70.
杨冬红, 杨学祥. 地球自转速度变化规律的研究和计算模型[J]. 地球物理学进展, 2013, 28(1): 58-70.
4 LAMBECK K. Tidal dissipation in the oceans: Astronomical, geophysical and oceanographic consequences[J]. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences, 1977, 287(1 347):545-594.
LAMBECK K. Tidal dissipation in the oceans: Astronomical, geophysical and oceanographic consequences[J]. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences, 1977, 287(1 347):545-594.
5 KAULA W M. Tidal dissipation by solid friction and the resulting orbital evolution[J]. Reviews of Geophysics, 1964, 2(4):661-685.
KAULA W M. Tidal dissipation by solid friction and the resulting orbital evolution[J]. Reviews of Geophysics, 1964, 2(4):661-685.
6 DARWIN G H. On the precession of a viscous spheroid and on the remote history of the Earth[J]. Philosophical Transactions of the Royal Society of London, 1879(170):447-530.
DARWIN G H. On the precession of a viscous spheroid and on the remote history of the Earth[J]. Philosophical Transactions of the Royal Society of London, 1879(170):447-530.
7 UREY H C, ELSASSER W M, ROCHESTER M G. Note on the internal structure of the Moon[J]. Astrophysical Journal, 1959, 129(3):842-848.
UREY H C, ELSASSER W M, ROCHESTER M G. Note on the internal structure of the Moon[J]. Astrophysical Journal, 1959, 129(3):842-848.
8 GOLDREICH P. History of the lunar orbit[J]. Reviews of Geophysics, 1966, 4(4):411-439.
GOLDREICH P. History of the lunar orbit[J]. Reviews of Geophysics, 1966, 4(4):411-439.
9 STEPHENSON F R, MORRISON L V, HOHENKERK C Y. Measurement of the Earth's rotation: 720 BC to AD 2015[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 2016, 472(2 196):20160404.
STEPHENSON F R, MORRISON L V, HOHENKERK C Y. Measurement of the Earth's rotation: 720 BC to AD 2015[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 2016, 472(2 196):20160404.
10 SPENCER J H. The rotation of the Earth, and the secular accelerations of the Sun, Moon and Planets[J]. Monthly Notices of the Royal Astronomical Society, 1939, 99(7):541-558.
SPENCER J H. The rotation of the Earth, and the secular accelerations of the Sun, Moon and Planets[J]. Monthly Notices of the Royal Astronomical Society, 1939, 99(7):541-558.
11 CHRISTODOULIDIS D C, SMITH D E, WILLIAMSON R G, et al. Observed tidal braking in the Earth/Moon/Sun system[J]. Journal of Geophysical Research: Solid Earth, 1988, 93(B6):6 216-6 236.
CHRISTODOULIDIS D C, SMITH D E, WILLIAMSON R G, et al. Observed tidal braking in the Earth/Moon/Sun system[J]. Journal of Geophysical Research: Solid Earth, 1988, 93(B6):6 216-6 236.
12 PAVLOV D A, WILLIAMS J G, SUVORKIN V V. Determining parameters of Moon's orbital and rotational motion from LLR observations using GRAIL and IERS-recommended models[J]. Celestial Mechanics & Dynamical Astronomy, 2016, 126(1/3):61-88.
PAVLOV D A, WILLIAMS J G, SUVORKIN V V. Determining parameters of Moon's orbital and rotational motion from LLR observations using GRAIL and IERS-recommended models[J]. Celestial Mechanics & Dynamical Astronomy, 2016, 126(1/3):61-88.
13 DICKEY J O, BENDER P L, FALLER J E, et al. Lunar laser ranging: A continuing legacy of the Apollo program[J]. Science, 1994, 265(5 171):482-490.
DICKEY J O, BENDER P L, FALLER J E, et al. Lunar laser ranging: A continuing legacy of the Apollo program[J]. Science, 1994, 265(5 171):482-490.
14 WILLIAMS J G, BOGGS D H. Secular tidal changes in lunar orbit and Earth rotation[J]. Celestial Mechanics & Dynamical Astronomy, 2016, 126(1/3):89-129.
WILLIAMS J G, BOGGS D H. Secular tidal changes in lunar orbit and Earth rotation[J]. Celestial Mechanics & Dynamical Astronomy, 2016, 126(1/3):89-129.
15 WU Weiren, LIU Jizhong, TANG Yuhua, et al. China lunar exploration program[J]. Journal of Deep Space Exploration, 2019, 6(5):405-416.
WU Weiren, LIU Jizhong, TANG Yuhua, et al. China lunar exploration program[J]. Journal of Deep Space Exploration, 2019, 6(5):405-416.
吴伟仁, 刘继忠, 唐玉华, 等. 中国探月工程[J]. 深空探测学报, 2019, 6(5):405-416.
吴伟仁, 刘继忠, 唐玉华, 等. 中国探月工程[J]. 深空探测学报, 2019, 6(5):405-416.
16 LAMBECK K. Effects of tidal dissipation in the oceans on the Moon's orbit and the Earth's rotation[J]. Journal of Geophysical Research: Solid Earth, 1975, 80(20): 2 917-2 925.
LAMBECK K. Effects of tidal dissipation in the oceans on the Moon's orbit and the Earth's rotation[J]. Journal of Geophysical Research: Solid Earth, 1975, 80(20): 2 917-2 925.
17 KAULA W M. An introduction to planetary physics[M]. New York: John Wiley & Sons, 1968.
KAULA W M. An introduction to planetary physics[M]. New York: John Wiley & Sons, 1968.
18 BROUWER D, CLEMENCE G M. Methods of celestial mechanics[M]. New York and London:Academic Press, 1961.
BROUWER D, CLEMENCE G M. Methods of celestial mechanics[M]. New York and London:Academic Press, 1961.
19 HALLEY E S. Some account of the ancient state of the city of Palmyra, with short remarks on the inscriptions found there[J]. Philosophical Transactions of the Royal Society B—Biological Sciences, 1695, 19:160-175.
HALLEY E S. Some account of the ancient state of the city of Palmyra, with short remarks on the inscriptions found there[J]. Philosophical Transactions of the Royal Society B—Biological Sciences, 1695, 19:160-175.
20 MORRISON L V. Rotation of the Earth from AD 1663-1972 and the Constancy of G[J]. Nature, 1973, 241(5 391):519-520.
MORRISON L V. Rotation of the Earth from AD 1663-1972 and the Constancy of G[J]. Nature, 1973, 241(5 391):519-520.
21 MORRISON L V, WARD C G. An analysis of the transits of mercury:1677-1973[J]. Monthly Notices of the Royal Astronomical Society, 1975(173):183-206.
MORRISON L V, WARD C G. An analysis of the transits of mercury:1677-1973[J]. Monthly Notices of the Royal Astronomical Society, 1975(173):183-206.
22 MULLER P M. Determination of the cosmological rate of change of G and the tidal accelerations of Earth and Moon from ancient and modern astronomical data[R]. Jet Propulsion Laboratory, Pasadena, California, 1976.
MULLER P M. Determination of the cosmological rate of change of G and the tidal accelerations of Earth and Moon from ancient and modern astronomical data[R]. Jet Propulsion Laboratory, Pasadena, California, 1976.
23 STEPHENSON F R, MORRISON L V. Long-term fluctuations in the Earth's rotation: 700 BC to AD 1990[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1995, 351(1 695):165-202.
STEPHENSON F R, MORRISON L V. Long-term fluctuations in the Earth's rotation: 700 BC to AD 1990[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1995, 351(1 695):165-202.
24 MORRISON L V, STEPHENSON F R. Historical eclipses and the variability of the Earth's rotation[J]. Journal of Geodynamics, 2001, 32(1):247-265.
MORRISON L V, STEPHENSON F R. Historical eclipses and the variability of the Earth's rotation[J]. Journal of Geodynamics, 2001, 32(1):247-265.
25 CAZENAVE A, DAILLET S. Lunar tidal acceleration from Earth satellite orbit analyses[J]. Journal of Geophysical Research: Solid Earth, 1981, 86(B3):1 659-1 663.
CAZENAVE A, DAILLET S. Lunar tidal acceleration from Earth satellite orbit analyses[J]. Journal of Geophysical Research: Solid Earth, 1981, 86(B3):1 659-1 663.
26 CAZENAVE A, DAILLET S, LAMBECK K. Tidal studies from the perturbations in satellite orbits[J]. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences, 1977, 284(1 326):595-606.
CAZENAVE A, DAILLET S, LAMBECK K. Tidal studies from the perturbations in satellite orbits[J]. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences, 1977, 284(1 326):595-606.
27 FELSENTREGER T L, MARSH J G, WILLIAMSON R G. M2 ocean tide parameters and the deceleration of the Moon's mean longitude from satellite orbit data[J]. Journal of Geophysical Research: Solid Earth, 1979, 84(B9):4 675-4 679.
FELSENTREGER T L, MARSH J G, WILLIAMSON R G. M2 ocean tide parameters and the deceleration of the Moon's mean longitude from satellite orbit data[J]. Journal of Geophysical Research: Solid Earth, 1979, 84(B9):4 675-4 679.
28 CAZENAVE A. Tidal friction parameters from satellite observations[M]// Brosche P, Sunderman J. Tidal Friction and the Earth's Rotation Ⅱ. Berlin: Springer-Verlag, 1982.
CAZENAVE A. Tidal friction parameters from satellite observations[M]// Brosche P, Sunderman J. Tidal Friction and the Earth's Rotation Ⅱ. Berlin: Springer-Verlag, 1982.
29 CHENG M K, EANES R J, TAPLEY B D. Tidal deceleration of the Moon's mean motion[J]. Geophysical Journal International, 1992, 108(2): 401-409.
CHENG M K, EANES R J, TAPLEY B D. Tidal deceleration of the Moon's mean motion[J]. Geophysical Journal International, 1992, 108(2): 401-409.
30 MARSH J G, LERCH F J, PUTNEY B H, et al. The GEM-T2 gravitational model[J]. Journal of Geophysical Research: Solid Earth, 1975,95(B13):22 043-22 071.
MARSH J G, LERCH F J, PUTNEY B H, et al. The GEM-T2 gravitational model[J]. Journal of Geophysical Research: Solid Earth, 1975,95(B13):22 043-22 071.
31 SHUM C K, TAPLEY B D, YUAN D N, et al. An improved model for the Earth's gravity field[M]. International Association of Geodesy Symposia103, Gravity, Gradiometry and Gravimetry. Berlin: Springer-Verlag, 1990.
SHUM C K, TAPLEY B D, YUAN D N, et al. An improved model for the Earth's gravity field[M]. International Association of Geodesy Symposia103, Gravity, Gradiometry and Gravimetry. Berlin: Springer-Verlag, 1990.
32 REIGBER C H, SCHWINTZER P, BALMINO G, et al. GRIM-4: A new global Earth gravity model (status report)[R].Copenhagen: European Geophysical Society XV General Assembly, 1990.
REIGBER C H, SCHWINTZER P, BALMINO G, et al. GRIM-4: A new global Earth gravity model (status report)[R].Copenhagen: European Geophysical Society XV General Assembly, 1990.
33 CHENG M K, SHUM C K, EANES R J, et al. Long-period perturbations in Starlette orbit and tide solution[J]. Journal of Geophysical Research: Solid Earth, 1990, 95(B6):8 723-8 736.
CHENG M K, SHUM C K, EANES R J, et al. Long-period perturbations in Starlette orbit and tide solution[J]. Journal of Geophysical Research: Solid Earth, 1990, 95(B6):8 723-8 736.
34 ESTES R H. A computer software system for the generation of global ocean tides including self-gravitation and crustal loading effects[R]. Goddard Space Flight Center, Greenbelt, Maryland, 1977.
ESTES R H. A computer software system for the generation of global ocean tides including self-gravitation and crustal loading effects[R]. Goddard Space Flight Center, Greenbelt, Maryland, 1977.
35 ACCAD Y, PEKERIS C L. Solution of the tidal equations for the M2 and S2 tides in the world oceans from a knowledge of the tidal potential alone[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1978, 290(1 368):235-266.
ACCAD Y, PEKERIS C L. Solution of the tidal equations for the M2 and S2 tides in the world oceans from a knowledge of the tidal potential alone[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1978, 290(1 368):235-266.
36 SCHWIDERSKI E W. Detailed ocean tide models of M2, S2, K1 and O1[C]//The tidal interactions symposium, 17th General Assembly IUGG, Canberra, Australia, 1979.
SCHWIDERSKI E W. Detailed ocean tide models of M2, S2, K1 and O1[C]//The tidal interactions symposium, 17th General Assembly IUGG, Canberra, Australia, 1979.
37 PARKE M E, HENDERSHOTT M C. M2, S2, K1 models of the global ocean tide on an elastic Earth[J]. Marine Geodesy, 1980, 3(1/4):379-408.
PARKE M E, HENDERSHOTT M C. M2, S2, K1 models of the global ocean tide on an elastic Earth[J]. Marine Geodesy, 1980, 3(1/4):379-408.
38 ZHANG Shengkai, LEI Jintao, LI Fei. Advances in global ocean tide models[J]. Advances in Earth Science, 2015, 30(5):579-588.
ZHANG Shengkai, LEI Jintao, LI Fei. Advances in global ocean tide models[J]. Advances in Earth Science, 2015, 30(5):579-588.
张胜凯, 雷锦韬, 李斐. 全球海潮模型研究进展[J]. 地球科学进展, 2015, 30(5):579-588.
张胜凯, 雷锦韬, 李斐. 全球海潮模型研究进展[J]. 地球科学进展, 2015, 30(5):579-588.
39 PETIT G, LUZUM B. IERS Conventions (2010)[Z]. IERS Technical Note 36, 2010.
PETIT G, LUZUM B. IERS Conventions (2010)[Z]. IERS Technical Note 36, 2010.
40 LYARD F, LEFEVRE F, LETELLIER T, et al. Modelling the global ocean tides: Modern insights from FES2004[J]. Ocean Dynamics, 2006, 56(5/6):394-415.
LYARD F, LEFEVRE F, LETELLIER T, et al. Modelling the global ocean tides: Modern insights from FES2004[J]. Ocean Dynamics, 2006, 56(5/6):394-415.
41 BENDER P L, CURRIE D G, POULTNEY S K, et al. The lunar laser ranging experiment: Accurate ranges have given a large improvement in the lunar orbit and new selenophysical information [J]. Science, 1973, 182(4 109):229-238.
BENDER P L, CURRIE D G, POULTNEY S K, et al. The lunar laser ranging experiment: Accurate ranges have given a large improvement in the lunar orbit and new selenophysical information [J]. Science, 1973, 182(4 109):229-238.
42 STOZE P L, BENDER P L, FALLER J E, et al. Earth rotation measured by lunar laser ranging[J]. Science, 1976, 193(4 275):997-999.
STOZE P L, BENDER P L, FALLER J E, et al. Earth rotation measured by lunar laser ranging[J]. Science, 1976, 193(4 275):997-999.
43 MURPHY T W, ADELBERGER E G, BATTAT J B R, et al. APOLLO: Millimeter lunar laser ranging[J]. Classical & Quantum Gravity, 2012, 29: 184005.
MURPHY T W, ADELBERGER E G, BATTAT J B R, et al. APOLLO: Millimeter lunar laser ranging[J]. Classical & Quantum Gravity, 2012, 29: 184005.
44 CALAME O, MULHOLLAND J. Lunar tidal acceleration determined from laser range measures[J]. Science, 1978, 199(4 332):977-978.
CALAME O, MULHOLLAND J. Lunar tidal acceleration determined from laser range measures[J]. Science, 1978, 199(4 332):977-978.
45 FOLKNER W M, WILLIAMS J G, BOGGS D H, et al. The planetary and lunar ephemeris DE430 and DE431[R]. Interplanetary Network Progress Report, 2014: 42-196.
FOLKNER W M, WILLIAMS J G, BOGGS D H, et al. The planetary and lunar ephemeris DE430 and DE431[R]. Interplanetary Network Progress Report, 2014: 42-196.
46 WILLIAMS J G, SINCLAIR W S, YODER C F. Tidal acceleration of the Moon[J]. Geophysical Research Letters, 1978, 5(11):943-946.
WILLIAMS J G, SINCLAIR W S, YODER C F. Tidal acceleration of the Moon[J]. Geophysical Research Letters, 1978, 5(11):943-946.
47 CHAPRONT J, CHAPRONT-TOUZÉ M, FRANCOU G. A new determination of lunar orbital parameters, precession constant and tidal acceleration from LLR measurements[J]. Astronomy & Astrophysics, 2002, 387(2):700-709.
CHAPRONT J, CHAPRONT-TOUZé M, FRANCOU G. A new determination of lunar orbital parameters, precession constant and tidal acceleration from LLR measurements[J]. Astronomy & Astrophysics, 2002, 387(2):700-709.
48 MULHOLLAND J D. Scientific achievements from ten years of lunar laser ranging[J]. Reviews of Geophysics, 1980, 18(3):549-564.
MULHOLLAND J D. Scientific achievements from ten years of lunar laser ranging[J]. Reviews of Geophysics, 1980, 18(3):549-564.
49 O'CONNELL R J. Pleistocene glaciation and the viscosity of the lower mantle[J]. Geophysical Journal International, 1971, 23(3):299-327.
O'CONNELL R J. Pleistocene glaciation and the viscosity of the lower mantle[J]. Geophysical Journal International, 1971, 23(3):299-327.
50 YUKUTAKE T. The effect of change in the geomagnetic dipole moment on the rate of the Earth's rotation[J]. Journal of Geomagnetism and Geoelectricity, 1972, 24(1):19-47.
YUKUTAKE T. The effect of change in the geomagnetic dipole moment on the rate of the Earth's rotation[J]. Journal of Geomagnetism and Geoelectricity, 1972, 24(1):19-47.
51 WU B, SCHUH H, BIBO P. New treatment of tidal braking of Earth rotation[J]. Journal of Geodynamics, 2003, 36(4):515-521.
WU B, SCHUH H, BIBO P. New treatment of tidal braking of Earth rotation[J]. Journal of Geodynamics, 2003, 36(4):515-521.
52 YODER C F, WILLIAMS J G, DICKEY J O, et al. Secular variation of Earth's gravitational harmonic J2 coefficient from Lageos and nontidal acceleration of Earth rotation[J]. Nature, 1983, 303(5 920):757-762.
YODER C F, WILLIAMS J G, DICKEY J O, et al. Secular variation of Earth's gravitational harmonic J2 coefficient from Lageos and nontidal acceleration of Earth rotation[J]. Nature, 1983, 303(5 920):757-762.
[1] 许厚泽,蒋福珍,张赤军. 我国动力大地测量学的进展[J]. 地球科学进展, 2000, 15(2): 127-133.
[2] 傅容珊,李力刚,郑大伟,薛霆啸. 核幔边界动力学——地球自转十年尺度波动[J]. 地球科学进展, 1999, 14(6): 541-548.
[3] 李金岭,郑大伟,傅容珊. 地球自转十年尺度波动与核幔耦合的可能机制[J]. 地球科学进展, 1997, 12(6): 514-518.
[4] 郑大伟. 天文地球动力学[J]. 地球科学进展, 1994, 9(2): 78-79.
阅读次数
全文


摘要