地球科学进展 ›› 2019, Vol. 34 ›› Issue (10): 1081 -1091. doi: 10.11867/j.issn.1001-8166.2019.10.1081

新学科 新技术 新发现 上一篇    下一篇

基于水下文物控制实验的海洋地球物理声学研究进展
胡毅 1( ),丁见祥 2,房旭东 1,王立明 1,刘伯然 1,李海东 1   
  1. 1. 自然资源部第三海洋研究所,福建 厦门 361005
    2. 国家文物局水下文化遗产保护中心,北京 100192
  • 收稿日期:2019-06-24 修回日期:2019-09-16 出版日期:2019-10-10
  • 基金资助:
    国家文物局项目“水下考古区域调查与物探技术方法研究”(2018300);海洋公益性行业科研专项“水下文物探测;保护技术体系研究与示范”(201305038)

Control Experiments for Underwater Cultural Relics Survey by Marine Geophysical of Acoustics

Yi Hu 1( ),Jianxiang Ding 2,Xudong Fang 1,Liming Wang 1,Boran Liu 1,Haidong Li 1   

  1. 1. Third Institute of Oceanography, Ministry of Natural Resources, Coast and Ocean Geology Laboratory, Xiamen 361005, China
    2. National Center of Underwater Cultural Heritage, Beijing 100192, China
  • Received:2019-06-24 Revised:2019-09-16 Online:2019-10-10 Published:2019-12-09
  • About author:Hu Yi (1976-), male, Xiangxiang City, Hunan Province, Professor of engineering. Research areas include marine geology and marine geophysics. E-mail: huyi@tio.org.cn
  • Supported by:
    the National Cultural Heritage Administration "Research on regional investigation and geophysical technology method"(2018300);The Ocean Public Welfare Scientific Research "Research and demonstration of detection and protection technology system in the underwater cultural"(201305038)

海洋地球物理声学方法是进行高分辨率、大范围水下考古调查与研究的利器。由于海洋环境与水下文物的保存状态、埋藏状况之间存在着复杂的耦合关系,导致仅根据地球物理声学探测数据推断水下文物是否存在以及分布情况具有较大的不确定性。近30年来基于水下文物声学探测方法的可控实验研究表明,不同侧扫声呐系统对出露于海底的水下文物遗址探测有不同的声学响应,而多波束声呐技术可用于水下文物遗址的时移变化研究,浅地层剖面探测对部分或全部嵌入海底沉积物中的遗址探测效果更为明显。水下文物的控制实验研究能提升对不同水下文物声学特征响应的认识,可以为探测成果与解译精度之间的关联研究提供借鉴,并有望为高效、大范围的水下文物探测与资源调查提供系统解决方案,从而更好地服务于水下文物保护与管理。

Marine geophysical acoustic methods are a powerful tool for high-precision, large-scale underwater archaeological relics investigations and research in the shallow water. There is a complex coupling relationship between the marine environment and the preservation of underwater cultural relics, which leads to great uncertainty based on the detection data to deduce the existence and distribution of underwater cultural relics. In the past 30 years, the controllable experiments of acoustic methods for underwater cultural relics show that different side-scan sonar systems have varied acoustic response. Multi-beam sonar can be used to study the temporal variation of underwater cultural relics, while shipwreck partially or totally embedded in seabed sediments can be detected by sub-bottom profile. The control experiment will increase the understanding of the acoustic response for different underwater cultural types. Control experiment on the underwater cultural relics can provide a reference for the correlation between detection results and interpretation accuracy, and hopefully provide a systematic solution for underwater cultural survey in an efficient way and on a wide-scale, thus better protecting and managing underwater cultural relics.

中图分类号: 

图1 侧扫声呐沿航向与垂直航向分辨率示意图[ 24 ]
β为掠射角, θh 为水平波束宽度
Fig.1 Resolution of Side Scan Sonar along and across tracks[ 24 ]
β is the local grazing angle, the horizontal beamwidth θh of the sonar
表1 控制实验中使用的侧扫声呐系统参数
Table 1 Parameters of side scan sonar system used in control experiments
图2 不同侧扫声呐系统的横向分辨率(tr,公式1)和距离分辨率(rr,公式2)对比图[ 32 ]
Fig.2 Transverse resolution (tr, formula 1) and range resolution (rr, formula 2) of three side-scan sonar systems used in control experiment[ 32 ]
图3 侧扫声呐影像对比图[ 32 ]
(a)系统1显示的侧扫声呐影像;(b) 系统2显示的侧扫声呐影像;(c) 系统3显示的侧扫声呐影像(同一测试地点)
Fig.3 Comparison of side scan sonar image[ 32 ]
(a) Side scan sonar image displayed in system 1; (b) Side scan sonar image displayed in system 2; (c) Side scan sonar image displayed in system 3 (the same test site)
图4 阿克洛海岸沉船遗址位置图[ 36 ]
Fig.4 Arklow Bank wreck ship site[ 36 ]
图5 阿克洛海岸沉船的声学影像图[ 37 ]
(a)来自阿克洛海岸沉船地点的侧扫声呐数据,显示船只以及相关的冲刷和隆起特征;(b)多波束得到的沉船地点DEM影像
Fig.5 Acoustic image of Arklow Bank wreck ship[ 37 ]
(a) Side-scan sonar data from the Arklow Bank wreck site showing the vessel and associated scour and ridge features; (b) DEM of the wreck site derived from the multibeam echo-sounder surveys
图6 阿克洛海岸沉船时移变化图[ 37 ]
蓝色净侵蚀面积和红色净沉积面积(左侧);蓝色和红色色调的增加分别对应于增加的侵蚀和沉积量(右侧)
Fig. 6 Time-lapse image of Arklow Bank wreck[ 37 ]
Show areas of net erosion in blue and areas of net deposition in red (left); Increases in blue and red tones correspond to increased erosion and deposition (right) respectively [ 37 ]
图7 桅杆在浅地层剖面上的影像[ 42 ]
(a)主频为2~7 kHz(a);(b)主频为8~23 kHz
Fig. 7 Sloping pole in the subbottom profile[ 42 ]
(a) Image 2~7 kHz; (b) Image 8~23 kHz
1 Jin Xianglong . The development of research in marine geophysics and acoustic technology for submarine exploration[J]. Progress in Geophysics, 2007, 22(4):1 243-1 249.
金翔龙 . 海洋地球物理研究与海底探测声学技术的发展[J]. 地球物理学进展, 2007, 22(4):1 243-1 249.
2 Odom R I . An introduction to underwater acoustics: Principles and applications[J]. Eos Transactions American Geophysical Union, 2003, 84(28):265-265.
3 Ding Jianxiang , Fan Yiran . Several questions on underwater archaeology[J]. China Cultural Heritage Scientific Research, 2013,1(2):1-4.
丁见祥, 范伊然 . 关于水下考古学的几个问题[J]. 中国文物科学研究, 2013,1(2):1-4.
4 Hu Yi , Xu Jiang , Yu Xingguang ,et al . Prospects of the research of detection and protection system for underwater archaeology[J]. Scinece in China,2013, 65(5):31-35.
胡毅,许江,余兴光,等 . 水下文物探测与保护技术体系研究[J]. 科学,2013,65(5):31-35.
5 Liu Baohua , Ding Jisheng , Pei Yanliang ,et al . Marine geophysical survey techniques and their applications to offshore engineering[J].Advance in Marine Science,2005,23(3):374-384.
刘保华,丁继胜,裴彦良,等 . 海洋地球物理探测技术及其在近海工程中的应用[J]. 海洋科学进展,2005,23(3):374-384.
6 Giuseppe P , Vardy M E , Henstock T J . Decimetric-resolution stochastic inversion of shallow marine seismic reflection data: Dedicated strategy and application to a geohazard case study[J]. Geophysical Journal International,2018,24(3):1 683-1 700.
7 Sar?ta? Hakan , Cifci G , Geli L ,et al . Gas occurrence and shallow conduit systems in the Western Sea of Marmara: A review and new acoustic evidence[J]. Geo-Marine Letters,2018,38(5):385-402.
8 Luo Junhai , Han Ying , Fan Liying . Underwater acoustic target tracking: A review[J]. Sensors,2018, 18(112):1-37.
9 Zhang Yinsheng . Underwater archaeology and exploration technology[J]. Southeast Culture,1996,1(4):32-36.
张寅生 . 水下考古与水下考古探测技术[J]. 东南文化,1996,1(4):32-36.
10 Zhao Yajuan , Zhang Liang . The perfection of underwater cultural heritage protection system in China from "Nanhai No.1"[J]. The Science of Law,2007,1(1):118-125.
赵亚娟,张亮 . 从“南海一号”事件看我国水下文化遗产保护制度的完善[J]. 法学,2007,1(1):118-125.
11 Sun Jian . The discovery of the shipwreck of the Yuan Dynasty in Sandaogang,Suizhong[J]. Museum,2001,62(4):114-118.
孙键 .绥中三道岗元代沉船的发现[J]. 国际博物馆,2001,62(4):114-118.
12 Menna F , Agrafiotis P , Georgopoulos A . State of the art and application in archaeological underwater 3D recording and mapping [J]. Journal of Cultural Heritage,2018,33(1):231-248.
13 Isaacson J , Hollinger R E , Gundrum D , et al . A controlled archaeological test site facility in Illinois: Training and research in archaeogeophysics[J]. Journal of Field Archaeology,1999,26(2):227-236.
14 Fude Tie , Chen Jianli , Zhang Hai . Controlled archaeological test site: Concept and design[J]. Journal of National Museum of China,2012,1(7):134-145.
铁付德,陈建立,张海 . 可控考古试验场理念与设计研究[J]. 中国国家博物馆馆刊,2012,1(7):134-145.
15 Wang Miaoyue . Exploration Geophysics[M]. Beijing:Seismological Press,2003:121-133.
王妙月 . 勘探地球物理学[M].北京:地震出版社,2003:121-133.
16 Bull J M , Quinn R , Dix J K . Reflection coefficient calculation from marine high resolution seismic reflection (Chirp) data and application to an archaeological case study [J]. Marine Geophysical Researches,1998,20(1):1-11.
17 Arnott S H L , Dix J K , Best A I , et al . Imaging of buried archaeological materials: The reflection properties of archaeological wood[J]. Marine Geophysical Researches,2005,26(2/4):135-144.
18 Grimson W , Patil R . Characterization of buried inundated peat on seismic (Chirp) data, inferred from core information[J]. Archaeological Prospection,2010,14(4):261-272.
19 Hu Yi , Ding Jianxiang , Fang Xudong ,et al . Underwater archaeological area survey and marine geophysics[J]. Science in China,2016,68(6):32-35.
胡毅, 丁见祥, 房旭东,等 . 水下考古区域调查与海洋地球物理方法[J]. 科学,2016,68(6):32-35.
20 Ding Jianxiang . Shipwreck Archaeology and Maritime Silk Road[N]. China Cultural Relics News, 2017-07-14.
丁见祥 .沉船考古与海上丝绸之路[N].中国文物报,2017-07-14.
21 Barnhardt W A , Kelley J T , Dickson S M ,et al . Mapping the gulf of Maine with side-scan sonar: A new bottom-type classification for complex seafloors[J]. Journal of Coastal Research,1998,14(2):646-659.
22 Sakellariou D , Georgiou P , Mallios A ,et al . Searching for ancient shipwrecks in the Aegean Sea: The discovery of Chios and Kythnos Hellenistic Wrecks with the use of marine geological‐geophysical methods[J]. International Journal of Nautical Archaeology,2007,36(2):365-381.
23 Sonnenburg E P , Boyce J I . Data-fused digital bathymetry and side-scan sonar as a base for archaeological inventory of submerged landscapes in the Rideau Canal,Ontario,Canada[J]. Geoarchaeology,2008,23 (5): 654-674.
24 Blondel P . The Handbook of Sidescan Sonar[M]. Berlin Heidelberg: Springer,2009.
25 Wang Zhiguang , Sun Xinxuan , Liu Qiang ,et al . Application of side scan sonar in seabed target sweeping[J]. Hydrographic Surveying and Charting,2012,32(6):48-50.
王志光, 孙新轩, 刘强,等 . 侧扫声呐系统在海底障碍物扫测中的应用[J]. 海洋测绘,2012,32(6):48-50.
26 Liu Yonghu , Liu Min , Tian Tao ,et al . Application of side scan sonar system in volume estimation of artificial rock reef[J]. Journal of Fisheries of China,2017,41(7):1 158-1 167.
刘永虎,刘敏,田涛,等 . 侧扫声呐系统在石料人工鱼礁堆体积估算中的应用[J]. 水产学报,2017,41(7):1 158-1 167.
27 Wheeler A J . Environmental controls on shipwreck preservation: The Irish context[J]. Journal of Archaeological Science,2002,29(10):1 149-1 159.
28 Quinn R , Breen C , Forsythe W ,et al . Integrated geophysical surveys of the French Frigate La Surveillante (1797),Bantry Bay,Co. Cork,Ireland[J]. Journal of Archaeological Science,2002,29(4):413-422.
29 Ding Jianxiang . Deep-sea Archaeological Investigation and Consideration in the South China Sea in 2018[ N ]. China Cultural Relics News,2018-08-10.
丁见祥 .2018年南海海域深海考古调查与思考[N]. 中国文物报,2018-08-10.
30 Benjamin J , Bonsall C . A feasibility study for the investigation of submerged sites along the coast of Slovenia[J]. International Journal of Nautical Archaeology,2010,38(1):163-172.
31 Westley K , Mcneary R . Archaeological applications of low-cost integrated sidescan sonar/single-beam echosounder systems in Irish Inland waterways[J]. Archaeological Prospection,2017,24(1):37-57.
32 Quinn R , Dean M , Lawrence M ,et al . Backscatter responses and resolution considerations in archaeological side-scan sonar surveys: A control experiment[J]. Journal of Archaeological Science,2005, 32(8):1 252-1 264.
33 Bates C R , Lawrence M , Dean M ,et al . Geophysical methods for wreck‐site monitoring: The Rapid Archaeological Site Surveying and Evaluation (RASSE) program [J]. International Journal of Nautical Archaeology,2011,40(2):404-416.
34 Passaro S , Barra M , Saggiomo R ,et al . Multi-resolution morpho-bathymetric survey results at the Pozzuoli-Baia underwater archaeological site (Naples,Italy)[J]. Journal of Archaeological Science,2013, 40(2):1 268-1 278.
35 Xing Yuqing , Liu Zheng , Zheng Hongbo . Comprehensive comparisons between inteferometric and traditional multibeam systems[J]. Journal of Tropical Oceanography,2011,30(6):64-69.
邢玉清, 刘铮, 郑红波 . 相干声呐多波束与传统型多波束测深系统综合对比与实验分析[J]. 热带海洋学报, 2011, 30(6):64-69.
36 Quinn R , Boland D . The role of time-lapse bathymetric surveys in assessing morphological change at shipwreck sites[J]. Journal of Archaeological Science,2010,37(11):2 938-2 946.
37 Plets R , Quinn R , Forsythe W ,et al . Using multibeam echo‐sounder data to identify shipwreck sites: Archaeological assessment of the joint Irish bathymetric survey data[J]. International Journal of Nautical Archaeology,2011,40(1):87-98.
38 Gr?n O , Boldreel L O , Cvikel D ,et al . Detection and mapping of shipwrecks embedded in sea-floor sediments[J]. Journal of Archaeological Science,2015,1(4):242-251.
39 Wunderlich J , Wendt G , Sabine M . High-resolution echo-sounding and detection of embedded archaeological objects with nonlinear sub-bottom profilers[J]. Marine Geophysical Researches,2005, 26(2/4):123-133.
40 Li Ping , Du Jun . Review on the probing of sub-bottom profiler[J]. Marine Science Bulletin,2011, 30(3):344-350.
李平,杜军 .浅地层剖面探测综述[J]. 海洋通报,2011,30(3):344-350.
41 Felix C A , Martins T S , Soares C H C ,et al . Some limitations of shallow water geophysical devices imposed by different oceanographic and geological conditions[C]// Acoustics in Underwater Geosciences Symposium. IEEE,2013.
42 Gr?n O , Boldreel L O . Sub-bottom profiling for large-scale maritime archaeological survey an experience-based approach[C]//Proceedings of Oceans 2013 Marine Technology Society.Bergen,Norway,2013:1-8.
43 Ewing M , Embley R W , Shipley T H . Observations of shallow layering utilizing the Pingerprobe echo-sounding system [J]. Marine Geology,1973,14(5):55-63.
44 Jens S V D , Held P , Feldens P ,et al . Effects of using inclined parametric echosounding on sub-bottom acoustic imaging and advances in buried object detection[J]. Geo-Marine Letters,2016,36(2):113-119.
[1] 梁元博,卢博. 海洋沉积物声学物理和土力学[J]. 地球科学进展, 1991, 6(6): 42-43.
阅读次数
全文


摘要