地球科学进展 ›› 2019, Vol. 34 ›› Issue (10): 1069 -1080. doi: 10.11867/j.issn.1001-8166.2019.10.1069

研究论文 上一篇    下一篇

南海北部中尺度涡的时空分布特征:基于卫星高度计资料的统计分析
王萌( ),张艳伟( ),刘志飞,吴家望   
  1. 同济大学海洋地质国家重点实验室,上海 200092
  • 收稿日期:2019-08-02 修回日期:2019-09-15 出版日期:2019-10-10
  • 通讯作者: 张艳伟 E-mail:wmeng_21212@163.com;ywzhang@tongji.edu.cn
  • 基金资助:
    国家自然科学基金面上项目“中尺度涡对南海东北部深层湍流混合的影响”(41576005);国家自然科学基金重点项目“南海中央海盆中新世以来深水沉积作用及其区域构造与环境演化意义”(41530964)

Temporal and Spatial Characteristics of Mesoscale Eddies in the Northern South China Sea: Statistics Analysis Based on Altimeter Data

Meng Wang( ),Yanwei Zhang( ),Zhifei Liu,Jiawang Wu   

  1. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
  • Received:2019-08-02 Revised:2019-09-15 Online:2019-10-10 Published:2019-12-09
  • Contact: Yanwei Zhang E-mail:wmeng_21212@163.com;ywzhang@tongji.edu.cn
  • Supported by:
    the National Natural Science Foundation of China “Influence of mesoscale eddies on the deepwater turbulent mixing in the South China Sea” (No.41576005) and “Deepwater sedimentation since the Miocene in the Central Basin of the South China Sea and its regional tectonic and environmental evolution significance” (No.41530964).First author: Wang Meng(1988-)

中尺度涡在南海活动频繁,尤其是持续时间长的强中尺度涡对海区内多尺度环流系统的能量输送和物质搬运具有重要调控作用。利用AVISO卫星高度计资料和最外层闭合等值线法,对2011—2018年南海北部的中尺度涡进行识别和追踪,重点讨论中尺度涡在最近几年的时空分布变化。统计结果显示,南海北部平均每年生成8.6个反气旋涡和4.5个气旋涡(持续时间大于28天),其中近1/3为强中尺度涡(持续时间大于45天),表现出较强的涡动能和非线性等动力特征,基本与前人统计的其他年份结果一致。南海北部中尺度涡的生成地点、传播路径以及活动频率分布具有显著的季节变化特征。对比发现,反气旋涡在秋季和冬季主要形成于吕宋海峡北侧,沿等深线向西南移动,最高活动频率超过30%;夏季主要在菲律宾吕宋岛西侧形成,平行于纬线向西移动。而气旋涡在冬季和春季主要形成于吕宋海峡西侧,向西南移动,最高活动频率约为26%。另外,台湾岛西南岸外易生成强中尺度涡涡对,综合黑潮指数进一步分析发现,黑潮入侵南海形成流套是促使该强涡对生成的主要机制。

Mesoscale eddies are active and energetic in the South China Sea (SCS), and play an important role in regulating the multi-scale circulation and mass transportation in the region, especially for those long-lived strong eddies. Using AVISO altimeter data and outermost closed contour sea level anomaly method, this study identified and tracked mesoscale eddies in the northern SCS during 2011-2018, and focused on the temporal and spatial characteristics of mesoscale eddies in recent years. Similarly to previous results in this region, statistical results show that about 8.6 anticyclonic eddies and 4.5 cyclonic eddies (lifetime > 28 days) were born per year. Among them, about 1/3 of the total number are strong eddies (lifetime > 45 days), showing relatively strong dynamic characteristics, such as strong Eddy Kinetic Energy (EKE) and highly nonlinear feature. Statistics also show significant seasonal variability in mesoscale eddies’ birth places, trajectories and distribution of frequency of occurrence. Specifically, anticyclonic eddies mainly form at the north part of Luzon Strait between autumn and winter, and then move southwestward along isobaths. During this period, the largest value of the frequency of occurrence is over 30%. In summer, most of them form in the west off Luzon Island, and then move westward paralleling to latitude lines. In contrast, cyclonic mainly form in the west off Luzon Strait, and then move westward in winter and spring. During this period, the largest value is about 26%. In addition, observation finds that the strong mesoscale eddy pair could generate off the southwest of Taiwan Island. Analysis of the Kuroshio SCS Index (KSI) implies that loop current caused by Kuroshio intrusion is the most important mechanism for the formation of eddy pair.

中图分类号: 

表1 不同文献中对南海中尺度涡活动及动力参数的统计结果
Table 1 Statistics of activities and dynamic parameters of mesoscale eddies in the South China Sea from previous studies
图1 南海北部表层中尺度涡识别结果
彩色图为2012年1月1日的海平面异常(SLA),灰色箭头为流场,绿色圆点和黑色实线分别为识别的中尺度涡涡心和边界
Fig.1 Identified mesoscale eddies in the northern SCS
Colormap is the SLA on January 1st, 2012; Grey arrows represent geostrophic currents; Green dots and black solid lines mark the cores and boundaries of the identified eddies, respectively
图2 中尺度涡动力参数统计分布
(a)~(c)分别为反气旋涡的平均振幅、平均半径、生命周期;(d)~(f)同上,但为气旋涡;实线为累积密度分布,灰色虚线标出95%置信区间位置
Fig.2 Statistics on the characteristics of mesoscale eddies
(a)~(c) Stand for amplitude, radius, and life duration of anticyclonic eddies, respectively; (d)~(f) are the same as (a)~(c) but for cyclonic eddies; The cumulative density is plotted as solid line, and grey dashed line indicates the 95% value for each parameter
表2 20111月至 201812月南海北部中尺度涡动力参数统计
Table 2 Statistics of dynamic parameters of mesoscale eddies in the northern South China Sea during 2011.01- 2018.12
图3 南海北部中尺度涡的活动频率及移动路径
彩图依次为反气旋涡(a)~(d)和气旋涡(e)~(h)在冬季、春季、夏季和秋季的出现频率;独立的中尺度涡事件分别用圆点(反气旋涡)和三角形(气旋涡)标出,其中黑色和粉色分别表示涡旋和强涡旋
Fig.3 The frequency of occurrence and moving path of mesoscale eddies in the northern SCS
Colormaps are frequency of occurrence for anticyclonic eddies (a)~(d) and cyclonic eddies (e)~(h) in winter (December-February), spring (March-May), summer (June-August), and autumn (September-November), respectively. Independent anticyclonic eddy and cyclonic eddy are marked as dot and triangle, respectively; Eddies and strong eddies are distinguished as black and pink colors
图4 空间平均后的动力指标时间序列
(a)AVISO SLA;(b)EKE;(c)黑潮南海指数(KSI),虚线为由均值( μ)和标准差( σ)确定的取值范围
Fig.4 Time series of spatial averaged dynamic parameters
(a) AVISO SLA; (b) EKE; (c) Kuroshio South China Sea Index (KSI), where dash lines represent the range value defined by the mean ( μ) and standard deviation ( σ) of KSI
图5 黑潮3种路径的发生概率
(a)月变化;(b)年变化;灰色、阴影和白色柱图分别代表Looping,Leaking和Leaping路径
Fig.5 Probabilities of occurrence for the three Kuroshio paths
(a) Monthly; (b) Annually. Grey, shadow and white boxes represent for Looping, Leaking and Leaping, respectively
图6 南海北部秋冬季(11月至次年1月)时间平均海表涡动能(EKE)和表层流场
(a)2011—2018年(除2014/2015年);(b)2014/2015年;黑色箭头表示平均流速
Fig.6 Temporal averaged EKE and surface currents in the northern SCS during autumn/winter (November-January)
(a) 2011-2018 (except 2014/2015); (b) 2014/2015. Black arrows indicate temporal averaged velocity
1 Rossby T, Flagg C, Ortner P, et al. A tale of two eddies: Diagnosing coherent eddies through acoustic remote sensing[J]. Journal of Geophysical Research: Oceans, 2011, 116(C12).DOI: 10.1029/2011JC007307.
doi: 10.1029/2011JC007307    
2 de Jong M F, Bower A S, Furey H H. Two years of observations of warm-core anticyclones in the Labrador Sea and their seasonal cycle in heat and salt stratification[J]. Journal of Physical Oceanography, 2014, 44(2): 427-444.
3 Chelton D B, Schlax M G, Samelson R M. Global observations of nonlinear mesoscale eddies[J]. Progress in Oceanography, 2011, 91(2): 167-216.
4 Sheen K L, Brearley J A, Naveira Garabato A C, et al. Modification of turbulent dissipation rates by a deep southern ocean eddy[J]. Geophysical Research Letters, 2015, 42(9): 3 450-3 457.
5 Shu Y, Xue H, Wang D, et al. Persistent and energetic bottom-trapped topographic Rossby waves observed in the southern South China Sea[J]. Scientific Reports, 2016, 6: 24 338.
6 Yang Q, Zhou L, Tian J, et al. The roles of Kuroshio intrusion and mesoscale eddy in upper mixing in the northern South China Sea[J]. Journal of Coastal Research, 2013, 30(1): 192-198.
7 Mcwilliams J C. The nature and consequences of oceanic eddies[J]. Geophysical Monograph Series, 2008, 177: 5-15.
8 Spall M A. On the role of eddies and surface forcing in the heat transport and overturning circulation in marginal seas[J]. Journal of Climate, 2011, 24(18): 4 844-4 858.
9 Zhang Z, Wang W, Qiu B. Oceanic mass transport by mesoscale eddies[J]. Science, 2014, 345(6 194): 322-324.
10 Wu C, Chiang T. Mesoscale eddies in the northern South China Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54(14): 1 575-1 588.
11 Yuan D, Han W, Hu D. Surface Kuroshio path in the Luzon Strait area derived from satellite remote sensing data[J]. Journal of Geophysical Research: Oceans, 2006, 111(C11). DOI: 10.1029/2005JC003412.
doi: 10.1029/2005JC003412    
12 Metzger E J, Hurlburt H E. The nondeterministic nature of Kuroshio penetration and eddy shedding in the South China Sea[J]. Journal of Physical Oceanography, 2001, 31(7): 1 712-1 732.
13 Caruso M J, Gawarkiewicz G G, Beardsley R C. Interannual variability of the Kuroshio intrusion in the South China Sea[J]. Journal of Oceanography, 2006, 62(4): 559-575.
14 Chen G, Hou Y, Chu X, et al. Vertical structure and evolution of the Luzon warm eddy[J]. Chinese Journal of Oceanology and Limnology, 2010, 28(5): 955-961.
15 Li L, Nowlin Jr W D, Su J. Anticyclonic Rings from the Kuroshio in the South China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1998, 45(9): 1 469-1 482.
16 Xue H, Chai F, Pettigrew N, et al. Kuroshio Intrusion and the Circulation in the South China Sea[J]. Journal of Geophysical Research: Oceans, 2004, 109(C2).DOI: 10.1029/2002JC001724.
doi: 10.1029/2002JC001724    
17 Chen R, Flierl G R, Wunsch C. A description of local and nonlocal eddy-mean flow interaction in a global eddy-permitting state estimate[J]. Journal of Physical Oceanography, 2014, 44(9): 2 336-2 352.
18 Yuan D, Han W, Hu D. Anti-cyclonic eddies northwest of Luzon in summer-fall observed by satellite altimeters[J]. Geophysical Research Letters, 2007, 34(13): L13610. DOI: 10.1029/2007GL029401.
doi: 10.1029/2007GL029401    
19 Nan F, He Z, Zhou H, et al. Three long-lived anticyclonic eddies in the northern South China Sea[J]. Geophysical Research: Oceans, 2011, 116: C05002.DOI:10.1029/2010JC006790.
doi: 10.1029/2010JC006790    
20 Zheng Q, Hu J, Zhu B, et al. Standing wave modes observed in the South China Sea deep basin[J]. Journal of Geophysical Research: Oceans, 2014, 119(7): 4 185-4 199.
21 Liu Q, Kaneko A, Su J. Recent progress in studies of the South China Sea circulation[J]. Journal of Oceanography, 2008, 64(5): 753-762.
22 Tian Jiwei, Qu Tangdong. Advances in research on the deep South China Sea circulation[J]. Chinese Science Bulletin, 2012, 57(20): 1 827-1 832.
田纪伟, 曲堂栋. 南海深海环流研究进展[J]. 科学通报, 2012, 57(20): 1 827-1 832.
23 Wang G, Su J, Chu P. Mesoscale eddies in the South China Sea observed with altimeter data[J]. Geophysical Research Letters, 2003, 30(21). DOI:10.1029/2003GL018532.
doi: 10.1029/2003GL018532    
24 Xiu P, Chai F, Shi L, et al. A census of eddy activities in the South China Sea during 1993-2007[J]. Journal of Geophysical Research: Oceans, 2010, 115(C3). DOI: 10.1029/2009JC005657.
doi: 10.1029/2009JC005657    
25 Chen G, Hou Y, Chu X. Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure[J]. Journal of Geophysical Research: Oceans, 2011, 116(C6). DOI: 10.1029/2010JC006716.
doi: 10.1029/2010JC006716    
26 Lin Pengfei, Wang Fan, Chen Yongli, et al. Temporal and spatial variation characteristics on eddies in the South China Sea. I. Statistical analyses[J]. Acta Oceanologica Sinica, 2007, 29(3): 14-22.
林鹏飞, 王凡, 陈永利, 等. 南海中尺度涡旋的时空特征: I. 统计分析[J]. 海洋学报, 2007, 29 (3): 14-22.
27 Nan F, Xue H, Xiu P, et al. Oceanic eddy formation and propagation southwest of Taiwan[J]. Journal of Geophysical Research: Oceans, 2011, 116(C12). DOI:10.1029/2011JC007386.
doi: 10.1029/2011JC007386    
28 Wang X, Li W, Qi Y, et al. Heat, salt and volume transports by eddies in the vicinity of the Luzon Strait[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2012, 61: 21-33.
29 Feng B, Liu H, Lin P, et al. Meso-scale eddy in the South China Sea simulated by an eddy-resolving ocean model[J]. Acta Oceanologica Sinica, 2017, 36(5):9-25.
30 Wang L, Koblinsky C J, Howden S. Mesoscale variability in the South China Sea from the Topex/Poseidon altimetry data[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2000, 47(4): 681-708.
31 Du Y, Yi J, Wu D, et al. Mesoscale oceanic eddies in the South China Sea from 1992 to 2012:Evolution processes and statistical analysis[J]. Acta Oceanologica Sinica, 2014, 33(11): 36-47.
32 Lin X, Dong C, Chen D, et al. Three-dimensional properties of mesoscale eddies in the South China Sea based on eddy-resolving model output[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2015, 99: 46-64..
33 Souza J, de Boyer-Montégut C, Le Traon P-Y. Comparison between three implementations of automatic identification algorithms for the quantification and characterization of mesoscale eddies in the South Atlantic Ocean[J]. Ocean Science, 2011, 7(3): 317-334.
34 Chelton D B, de Szoeke R A, Schlax M G, et al. Geographical variability of the first baroclinic Rossby radius of deformation[J]. Journal of Physical Oceanography, 1998, 28(3): 433-460.
35 Ducet N, Le Traon P-Y. Reverdin G. Global high‐resolution mapping of ocean circulation from Topex/Poseidon and Ers-1 and-2[J]. Journal of Geophysical Research: Oceans, 2000, 105(C8): 19 477-19 498.
36 Chaigneau A, Gizolme A, Grados C. Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns[J]. Progress in Oceanography, 2008, 79(2): 106-119.
37 Fu L L. Pattern and velocity of propagation of the global ocean eddy variability[J]. Journal of Geophysical Research: Oceans, 2009, 114(C11). DOI: 10.1029/2009JC005349.
doi: 10.1029/2009JC005349    
38 Faghmous J H, Frenger I, Yao Y, et al. A daily global mesoscale ocean eddy dataset from satellite altimetry[J]. Scientific Data, 2015, 2: 150 028.
39 Zhang Y, Liu Z, Zhao Y, et al. Mesoscale eddies transport deep-sea sediments[J]. Scientific Reports, 2014, 4: 5 937.
40 Zhang Y, Liu Z, Zhao Y, et al. Effect of surface mesoscale eddies on deep-sea currents and mixing in the northeastern South China Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography,2015, 122: 6-14.
41 Wang M, Zhang Y, Liu Z, et al. Temporal and spatial evolution of a deep-reaching anticyclonic eddy in the South China Sea[J]. Scinece in China(Series D),2019, 62: 1 002-1 023.
42 Wang G, Chen D, Su J. Winter eddy genesis in the eastern South China Sea due to orographic wind jets[J]. Journal of Physical Oceanography, 2008, 38(3): 726-732.
43 Zu T, Gan J, Erofeeva S Y. Numerical study of the tide and tidal dynamics in the South China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2008, 55(2): 137-154.
44 Qu T. Upper-layer circulation in the South China Sea[J]. Journal of Physical Oceanography, 2000, 30(6): 1 450-1 460.
45 Wunsch C. The past and future ocean circulation from a contemporary perspective[M]// Ocean Circulation: Mechanisms and Impacts-past and Future Changes of Meridional Overturning. Washington D C: AGU, 2007: 53-74.
46 Jouanno J, Sheinbaum J, Barnier B, et al. Seasonal and interannual modulation of the eddy kinetic energy in the Caribbean Sea[J]. Journal of Physical Oceanography, 2012, 42(11): 2 041-2 055.
47 Nan F, Xue H, Chai F, et al. Identification of different types of Kuroshio intrusion into the South China Sea[J]. Ocean Dynamics, 2011, 61(9): 1 291-1 304.
48 Nan F, Xue H, Yu F. Kuroshio intrusion into the South China Sea: A review[J]. Progress in Oceanography, 2015, 137: 314-333.
49 Huang Z, Liu H, Hu J, et al. A double-index method to classify Kuroshio intrusion paths in the Luzon Strait [J]. Advances in Atmospheric Sciences, 2016, 33(6): 715-729.
50 Hu S, Fedorov A. Exceptionally strong easterly wind burst stalling El Ni?o of 2014[J]. Proceedings of the National Academy of Sciences, 2016, 113(8): 2 005-2 010.
51 Levine A, McPhaden M. How the July 2014 easterly wind burst gave the 2015-2016 El Ni?o a head start[J]. Geophysical Research Letters, 2016, 43(12): 6 503-6 510.
[1] 许丽晓, 刘秦玉. 海洋涡旋在模态水形成与输运中的作用[J]. 地球科学进展, 2021, 36(9): 883-898.
[2] 张永垂, 王宁, 周林, 刘科峰, 汪浩笛. 海洋中尺度涡旋表面特征和三维结构研究进展[J]. 地球科学进展, 2020, 35(6): 568-580.
[3] 刘秦玉,张苏平,贾英来. 冬季黑潮延伸体海域海洋涡旋影响局地大气强对流的研究[J]. 地球科学进展, 2020, 35(5): 441-451.
[4] 黎伟标, 刘昊亚, 方容. 大气对海洋中尺度涡响应的研究进展[J]. 地球科学进展, 2017, 32(10): 1039-1049.
[5] 卢汐, 宋金明, 袁华茂, 李宁. 黑潮与毗邻陆架海域的碳交换[J]. 地球科学进展, 2015, 30(2): 214-225.
[6] 段静, 陈朝晖, 吴立新. 黑潮源区海流季节内变化观测分析[J]. 地球科学进展, 2014, 29(4): 523-530.
[7] 汪一航,方国洪,魏泽勋,王永刚,王新怡. 基于卫星高度计的全球大洋潮汐模式的准确度评估[J]. 地球科学进展, 2010, 25(4): 353-362.
[8] 魏玉利,王 鹏,赵美训,张传伦. 黑潮源区沉积物微生物多样性初步研究[J]. 地球科学进展, 2010, 25(2): 212-219.
[9] 黄小慧,王汝建,翦知湣,王吉良. 全新世冲绳海槽北部表层海水温度和初级生产力对黑潮变迁的响应[J]. 地球科学进展, 2009, 24(6): 652-661.
[10] 高金耀,吴招才,王健,杨春国,张涛. 南海北部陆缘磁静区及与全球大洋磁静区对比的研究评述[J]. 地球科学进展, 2009, 24(6): 577-588.
[11] 金海燕,翦知湣. 南海北部ODP 1144站中更新世气候转型期有孔虫稳定同位素古气候意义[J]. 地球科学进展, 2007, 22(9): 914-921.
[12] 周蒂,孙珍,陈汉宗. 世界著名深水油气盆地的构造特征及对我国南海北部深水油气勘探的启示[J]. 地球科学进展, 2007, 22(6): 561-572.
[13] 何家雄,施小斌,夏斌,刘海龄,阎贫,姚永坚,张树林. 南海北部边缘盆地油气勘探现状与深水油气资源前景[J]. 地球科学进展, 2007, 22(3): 261-270.
[14] 吴立新,刘秦玉,胡敦欣,李崇银,左军成,俞永强,孙澈,王启. 北太平洋副热带环流变异及其对我国近海动力环境的影响[J]. 地球科学进展, 2007, 22(12): 1224-1230.
[15] 陈纪新,黄邦钦,刘媛,曹振锐,洪华生. 应用特征光合色素研究东海和南海北部浮游植物的群落结构[J]. 地球科学进展, 2006, 21(7): 738-746.
阅读次数
全文


摘要