地球科学进展 ›› 2007, Vol. 22 ›› Issue (6): 561 -572. doi: 10.11867/j.issn.1001-8166.2007.06.0561

综述与评述 上一篇    下一篇

世界著名深水油气盆地的构造特征及对我国南海北部深水油气勘探的启示
周蒂,孙珍,陈汉宗   
  1. 中国科学院南海海洋研究所,中国科学院边缘海地质重点实验室,广东 广州 510301
  • 收稿日期:2006-12-20 修回日期:2007-04-18 出版日期:2007-06-10
  • 通讯作者: 周蒂(1944-),女,江苏宜兴人,研究员,主要从事海洋地质和数学地质研究.E-mail: zhoudiscs@scsio.ac.cn E-mail:zhoudiscs@scsio.ac.cn
  • 基金资助:

    国家自然科学基金重点项目“南海深水扇系统及油气资源”(编号:40238060);国家自然科学基金项目“白云凹陷成盆机理的数学模拟研究”(编号:40576027)共同资助.

Tectonic Features of World's Major Deep-water Oil/Gas Fields and Their Enlightenment to Deep-water Exploration in Northern South China Sea

ZHOU Di, SUN Zhen, CHEN Han-zong   

  1. Key Laboratory of Marginal Sea Geology, South China Sea Institute of Oceanology,Chinese Academy of Sciences, Guangzhou 510301, China
  • Received:2006-12-20 Revised:2007-04-18 Online:2007-06-10 Published:2007-06-10

介绍世界著名深水油气盆地的主要特征,着重构造特征,并与南海北部深水区进行了对比。世界著名深水油气盆地产出的大地构造条件具多样性,虽然大多数位于开阔大洋被动陆缘(南大西洋裂谷系、北海、澳大利亚西北陆架盆地),但边缘海的被动陆缘(墨西哥湾盆地)、转换大陆边缘(洛杉矶盆地)、主动陆缘(南沙海槽盆地)也可形成极佳的深水含油气盆地。南海北部深水区具有世界某些重要深水含油气盆地类似的特征,如位于被动陆缘和大河出口下方,以裂陷期的湖相富有机质页岩为主要生油岩,白云凹陷发育上下叠置的6层深水扇等,这都是有利的石油地质条件。但南海北部深水区盐层和盐构造不发育,构造圈闭相对较不发育,使深水油气系统的研究更加困难,也更具开拓意义。

Major features, especially tectonic features of world's famous deep-water oil/gas fileds are outlined, which demonstrated the structural diversity of hydrocarbon accumulation in deep-water environment. Although majority of giant fields are discovered in the passive continental margins of open oceans (e.g. the South Atlantic rift system, the North Sea, the NW Australia shelf), giant and large fields have been found also in the passive continental margins of marginal seas (e.g. the Gulf of Mexico), transfer continental margins (e.g. the Los Angeles basin), and active convergent margins (e.g. the NW Borneo trough). In comparison, the deep-water region of northern South China Sea shares some favorite features with respective world's famous deep-water fields, such as being located in passive continental margin and feed by a major river system, having organic-rich lacustrine shale as major source rocks, having overlapped layers of deep-water fans,etc. On the other hand, in the deep-water region of northern South China Sea no salt and salt tectonics, and structural traps are less developed. These put forward new challenge to the hydrocarbon exploration in deep-water northern South China Sea.

中图分类号: 

[1]Wilson M, Guiraud R. Magmatism and rifting in Western and Central Africa, from Late Jurassic to recent times[J].Tectonophysics, 1992, 213: 203-225.
[2]Maurin J C, Guiraud R. Basement control in the development of the early cretaceous west and central African rift system[J].Tectonophysics, 1993, 238: 81-95.
[3]Peate D W. The Paraná-Etendeka province[C]//Mahoney J J, Coffin M F, eds. Large Igneous Provinces  American Geophysical Union Geophysical Monograph. 1997,100: 217-245.
[4]Filho P A P, Santos F L S G, Mansoori A. An update on the developments in petroleum production research in Brazil[J].Journal of Petroleum Science and Engineering, 2006, 51: 1-5.
[5]Chang H K, Kowsmann R O, Figueiredo A M F,et al. Tectonics and stratigraphy of the East Brazil rift system: An overview[J].Tectonophysics, 1992, 213: 97-138.
[6]Guardado L R, Gamboa L A P, Lucchesi C F. Petroleum geology of the Campos basin, Brazil:A model for a producing Atlantic-type basin[C]//Edwards, Santogrossi, eds. Divergent/Passive Margin Basins:AAPG Memoir 48,1990:3-79.
[7]Meisling K E, Cobbold P R, Mount V S. Segmentation of an obliquely rifted margin, Campos and Santos basins, southeastern Brazil[J].AAPG Bulletin,2001,85(11):1 903-1 924.
[8]Viana A F, Faugères A, Lima J C,et al. The Sao Tomé deep-sea turbidite system (southern Brazil Basin): Cenozoic seismic stratigraphy and sedimentary processes[J].AAPG Bulletin,2003, 87(5): 873-894.
[9]Demercian S, Szatmari P, Cobbold P R. Style and pattern of salt diapirs due to thin-skinned gravitational gliding, Campos and Santos basins, offshore Brazil[J].Tectonophysics,1993, 228(3/4): 393-422. 
[10]Ala M A, Selley R C. The west African coastal basins[C]//Selley R C, ed. African Basins. Amsterdam: Elsevier Science, 1997:173-186.
[11]Valle P J, Gjelberg J G, Helland-Hanse W. Tectonostratigraphic development in the eastern lower Congo Basin, offshore Angola, West Africa[J].Marine and Petroleum Geology, 2001, 18(8): 909-927.
[12]Jackson M P A, Talbot C J. A Glossary of Salt Tectonics[M]. Austin:University of Texas, 1991.
[13]Harris N B, Freeman K H, Pancost R D,et al. The character and origin of lacustrine source rocks in the Lower Cretaceous synrift section, Congo Basin, west Africa[J].AAPG Bulletin, 2004, 88(8): 1 163-1 184.
[14]Anderson J E, Cartwright J, Drysdall S J,et al. Controls on turbidite sand deposition during gravity-driven extension of a passive margin: Examples from Miocene sediments in Block 4, Angola[J].Marine and Petroleum Geology, 2000, 17(10): 1 165-1 203.
[15]Heini P I, Davies R J. Degradation of compressional fold belts: Deep-water Niger Delta[J].AAPG Bulletin, 2006, 90(5): 753-770.
[16]Doust H, Omatsola E. Nigeria delta[C]//Edwards, Santogrossi, eds. Divergent/Passive Margin Basins: AAPG Memoir 48, 1990:201-238.
[17]Corredor F, Shaw J H, Bilotti F. Structural styles in the deep-water fold and thrust belts of the Niger delta[J].AAPG Bulletin, 2005, 89(6): 753-780.
[18]Wu S, Bally A W. Slope tectonics-Comparisons and contrasts of structural styles of salt and shale tectonics of the northern Gulf of Mexico with shale tectonics of offshore Nigeria in Gulf of Guinea[C]//Mohriak W, Talwani M, eds. Atlantic Rifts and  Continental Margins. Washington DC:American Geophysical Union, 2000:151-172.
[19]Bird D E, Burke K, Hall S A,et al.Gulf of Mexico tectonic history: Hotspot tracks, crustal boundaries, and early salt distribution[J].AAPG Bulletin, 2005, 89(3): 311-328.
[20]Stover S C, Ge S, Weimer P,et al. The effects of salt evolution, structural development, and fault propagation on Late Mesozoic-Cenozoic oil migration: A two-dimensional fluid-flow study along a megaregional profile in the northern gulf of Mexico basin[J].AAPG Bulletin, 2001, 85(11): 1 945-1 966.
[21]Weimer P, Rowan M G,McBride B C,et al. Evaluating the petroleum systems of the northern deep gulf of Mexico through integrated basin analysis: An overview[J].AAPG Bulletin, 1998, 82(5B): 865-877.
[22]Grando G, McClay K. Structural evolution of the Frampton growth fold system, Atwater Valley-Southern Green Canyon area, deep water gulf of Mexico[J].Marine and Petroleum Geology, 2004, 21: 889-910.
[23]Biddle K T. The Los Angeles Basin: An overview[C]//Biddle K T, eds. Active Margin Basins. Tulsa: American Association of Petroleum Geologists, 1991:5-24.
[24]Redin T. Oil and gas production from submarine fans of the Los Angeles Basin[C]//Biddle K T, eds. Active Margin Basins:AAPG Memoir 52,1991:239-259. 
[25]Allman W P, Tromp J P, Abdullah I. Tectonostratigraphic controls on turbidite depositional processes in Brunei[J].AAPG Bulletin, 2000, 84(9): 1 397.
[26]Ingram G M, Chisholm T J, Grant C J,et al. Deepwater North West Borneo: Hydrocarbon accumulation in an active fold and thrust belt[J].Marine and Petroleum Geology,2004, 21: 879-887.
[27]Zhou Di, Wu Shimin, Chen Hanzong.Some remarks on the tectonic evolution of Nansha and its adjacent regions in South China Sea[J].Geotectonica et Metallogenica,2005,29(3): 339-345. [周蒂, 吴世敏,陈汉宗. 南沙海区及邻区构造演化动力学的若干问题[J]. 大地构造与成矿学, 2005, 29(3): 339-345.]
[28]Crevello P. Turbidite and deepwater depositional systems of Borneo; foredeep slope and basin floor fan systems[J].AAPG Bulletin,2001, 85(4): 762.
[29]Anuar A, Muhamad A J. Case study on source rock deposition and preservation; NW Borneo deep water areas[J].AAPG Bulletin, 2000, 84(9): 1 398.
[30]Pang Xiong, Yang Shaokun, Zhu Ming,et al. The deep-water fan systems and petroleum resource in the northern slope of south China Sea[J].Acta Geologica Sinica, 2004, 78(3): 626-631.
[31]Huang Chunju, Zhou Di, Sun Zhen,et al. Deep crustal structure of Beiyun Sag, northern South China Sea revealed from deep seismic reflection profile[J].Chinese Science Bulletin,2005, 50(11): 1 131-1 138.
[32]Sun Zhen, Pang Xiong, Zhong Zhihong,et al. Dynamics of Cenozoic tectonic evolution of the Baiyun Sag, Zhujiangkou Basin[J].Earth Science Frontiers,2005, 12(4): 489-498. [孙珍,庞雄,钟志洪,等. 珠江口盆地白云凹陷新生代构造演化动力学[J].地学前缘,2005,12(4): 489-498.]
[33]Pang Xiong, Chen Changmin, Shi Hesheng,et al. Relative sealevel changes and its response in the Zhujiang deep-water fan system, South China sea[J].Earth Science Frontiers,2005, 12(3): 167-177. [庞雄, 陈长民, 施和生, 等. 相对海平面变化与南海珠江深水扇系统的响应[J]. 地学前缘, 2005, 12(3): 167-177.]

[1] 吴晓川,欧阳黎明,郭晓中,黄焱羚,黄振华,李伟. 海域沉积物蠕动地貌的研究现状与展望[J]. 地球科学进展, 2021, 36(7): 763-772.
[2] 杨安,相松,黄金水. 金星内部结构与动力学研究进展[J]. 地球科学进展, 2020, 35(9): 912-923.
[3] 张玉祥,曾志刚,王晓媛,陈帅,殷学博,陈祖兴. 冲绳海槽地质构造对热液活动的控制机理[J]. 地球科学进展, 2020, 35(7): 678-690.
[4] 吕红华,李有利. 不断融入新元素的我国构造地貌学研究:以天山为例[J]. 地球科学进展, 2020, 35(6): 594-606.
[5] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[6] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[7] 白玲,宋博文,李国辉,江勇. 喜马拉雅造山带地震活动及其相关地质灾害[J]. 地球科学进展, 2019, 34(6): 629-639.
[8] 王萌,张艳伟,刘志飞,吴家望. 南海北部中尺度涡的时空分布特征:基于卫星高度计资料的统计分析[J]. 地球科学进展, 2019, 34(10): 1069-1080.
[9] 田自强, 王勇生, 胡召齐, 白桥. 大别造山带内部变沉积岩锆石LA-ICP MS U-Pb定年及其大地构造意义[J]. 地球科学进展, 2018, 33(9): 945-957.
[10] 樊云龙, 潘保田, 胡振波, 任大银, 陈起伟, 刘芬良, 李宗盟. 云贵高原北盘江流域构造地貌特征分析[J]. 地球科学进展, 2018, 33(7): 751-761.
[11] 刘江艳, 张昌民, 尹太举, 朱锐, 侯国伟. 涌潮沉积研究现状及进展[J]. 地球科学进展, 2018, 33(1): 66-74.
[12] 王斌, 常宏, 段克勤. 秦岭新生代构造隆升与环境效应:进展与问题[J]. 地球科学进展, 2017, 32(7): 707-715.
[13] 王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展, 2017, 32(3): 234-244.
[14] 王佳, 谭先锋, 曾春林, 陈青, 冉天, 薛伟伟, 李霞, 陈岑. 泥质岩成岩系统过程及其对SiO 2赋存状态的制约——以渝东南地区龙马溪组为例[J]. 地球科学进展, 2017, 32(3): 292-306.
[15] 张虎才.