地球科学进展 ›› 2017, Vol. 32 ›› Issue (3): 234 -244. doi: 10.11867/j.issn.1001-8166.2017.03.0234

所属专题: 青藏高原研究——青藏科考

上一篇    下一篇

低温热年代学在青藏高原构造地貌发育过程研究中的应用
王修喜( )   
  1. 兰州大学西部环境教育部重点实验室,资源环境学院,甘肃 兰州 730000
  • 收稿日期:2016-11-23 修回日期:2017-01-10 出版日期:2017-03-20
  • 基金资助:
    国家自然科学基金项目“低温热年代学重建贵德地区新生代构造地貌发育过程”(编号:41671001)资助

Applications of Low Temperature Thermochronology in the Tectonogeomorphology Evolution of the Tibetan Plateau

Xiuxi Wang( )   

  1. College of Earth and Environmental Sciences, MOE Key Laboratory of Western China’s Environmental Systems, Lanzhou University, Lanzhou 730000, China
  • Received:2016-11-23 Revised:2017-01-10 Online:2017-03-20 Published:2017-03-20
  • About author:

    First author:Wang Xiuxi(1980-),male,Gaomi City, Shandong Province,Associate professor. Research areas include geomorphology and low temperature thermochronology.E-mail:wangxiuxi@lzu.edu.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Cenozoic tectonogeomorphology evolution of the guide region determined by the low temperature thermochronology”(No.41671001)

构造地貌学被誉为揭开高原隆升历史的钥匙,但一直受困于年代学的制约。低温热年代学的成熟和进步可为构造地貌研究提供精确的年代学支持。综述了最近几年青藏高原隆起过程研究动态,重点讨论高原构造地貌学的发展问题。建议选取构造地貌发育过程中的直接信息载体(地质地貌岩体)以及相关沉积(新生代盆地沉积物、现代河流沉积物、阶地序列),采用多矿物(磷灰石、锆石等)裂变径迹和(U-Th)/He热年代学这些优势互补方法进行综合研究。通过对这些相互区别又相互联系的信号载体进行系统的年代学分析,据此可重建高原各块体的构造地貌发育过程。提出了几种可能的构造地貌发育模式,并指出低温热年代学信号解译中应当注意的问题。

The tectonogeomorphology is regarded as the key to understanding the uplift history of the Tibetan Plateau. But its research is blocked by the poor constrains of chronology. The low temperature thermochronology, the most fashions are the zircon and apatite fission-track and (U-Th)/He thermochronology (ZFT, AFT, ZHe and AHe), has thoroughly developed recently, become a sensitive and precise tool for this kind study, and was suggested in this paper. A metasynthesis study of the multiple low temperature thermochronology was proposed, including the bedrocks of high altitude mountains, on which low-relief and layered landscapes has developed and relicted, as well as the synorogenic deposits, such as the Cenozoic sediments, river terraces and modern river deposits. Thus, mutual compensation of advantages among ZFT, AFT, ZHe and AHe could be achieved to yield a whole exhumation and evolution history of regional tectonogeomorphology during the Cenozic. Accordingly, several conceptual growth models of the tectonogeomorphology terrane can be yielded. However, issues as pointed out in this study are still exist when conducting the relevant researches, and should be carefully addressed.

中图分类号: 

图1 青藏高原隆起过程主流观点
(a)整体隆升模式代表性观点综合(据参考文献[7]修改);(b)和(c)为代表性分块体隆起模式(分别据参考文献[8]和[9]修改)
Fig.1 Main viewpoints of the growth and uplift history of the Tibetan Plateau
(a) Representative viewpoints of synchronous surface uplift models of the Tibetan Plateau (modified after reference[7]);(b) and (c)are the two fashion models of stepwise growth(modified after references[8] and [9], respectively)
图2 低温热年代学在构造地貌学研究中的概念模型示意图
仅示意目前最为成熟和占据主流地位的锆石和磷灰石裂变径迹(ZFT,AFT)和(U-Th)/He(ZHe,AHe)热年代学;C-AHe和C-ZHe分别代表磷灰石和锆石(U-Th)/He的封闭温度等温面,C-AFT和C-ZFT分别代表磷灰石和锆石裂变径迹的封闭温度等温面;为了突出盆地演化过程,将盆地沉积物的厚度夸大,造山带封闭温度线相对间距缩小
Fig.2 Conceptual model to demonstrate the applications of low-temperature thermochronology in the study of tectonogeomorphology
Only to show the apatite and zircon fission-track and (U-Th)/He thermochronology (AFT, ZFT, ZHe, AHe), who are well studied and most popular;C-AHe and C-ZHe represent the isothermal surfaces of (U-Th)/He closure temperature of apatite and zircon,respectively, and C-AFT and C-ZFTrepresent the isothermal surfaces of fission-track closure temperature of apatite and zircon, respectively; In order to highlight the basin evolution,the thickness of basin sediments are exaggerated, and the interval of isothermal surfaces are condensed
图3 有关地质地貌岩体热历史的几种概念模型
理论上,变质沉积岩样品的热史应当从沉积年龄—地表温度开始分析,而花岗岩类样品应当从结晶或侵入时的年龄—温度开始;由于青藏高原的形成和演化一般认为发生在新生代,本图仅示意白垩纪晚期—新生代的剥露细节,更老年龄及其对应温度部分在图中以虚线表示省略;深度的换算以假设的区域地温梯度25 ℃/km为基础;Ⅰ,Ⅱ,Ⅲ,Ⅳ代表热史曲线分段:类型Ⅰ表示岩体快速剥露,处于“淬火”或加速隆升的建造状态 [ 5 , 47 , 56 ];类型Ⅱ表示岩体极低速剥露,构造相对静止而处于外力剥蚀/夷平状态 [ 40 , 41 ];类型Ⅲ表示岩体抬升和侵蚀速率相近,处于稳态剥露状态 [ 4 , 46 ];类型Ⅳ表示岩体处于加积埋藏阶段 [ 57 ]
Fig.3 The possible models of thermal history experienced by the tectonogeomorphology terrane
In principle, the modeling of metasedimentary and granitoids should be begun from their depostional ages-surface temperatures and intrusion ages-tepmperatures, respectively. The formation and evolution of Tibetan Plateau is generally proposed on the Cenozoic, therefore this figure only illustrates the exhumation details at the time interval of late Cretaceous-Cenozoic, the older time stages with their corresponding temperatures are marked by dotted lines represented for omitted. The depth is calculated given thermal gradient 25 ℃/km. Ⅰ,Ⅱ,Ⅲ,Ⅳ represent the segementation of thermal history:Type Ⅰ indicate fast exhumation of terrane, triggered by the quenching and/or accelerate tectonic uplift [ 5 , 47 , 56 ], type Ⅱ indicate low exhumation, pointing to tectonic stability and peneplanation [ 40 , 41 ], type Ⅲ indicate the equally rates of erosion and uplift, the terrane in the steady-states stage [ 4 , 46 ],type Ⅳ indicate the terrane in the stage of accretion burial [ 57 ]
[1] Li Jijun.Uplift of the Tibetan Plateau and the Evolution of the Asian Environment—The Paper Collection of Li Jijun[M]. Beijing: Science Press,2006.
[李吉均. 青藏高原隆升与亚洲环境演变——李吉均院士论文选集[M].北京:科学出版社,2006.]
[2] Cui Zhijiu, Li Dewen, Wu Yongqiu, et al.A review of planation surface[J]. Chinese Science Bulltin, 1998, 43(17): 1 794-1 804.
[崔之久,李德文,伍永秋,等.关于夷平面[J].科学通报,1998,43(17):1 794-1 804.]
[3] Rohrmann A, Kapp P, Carrapa B,et al.Thermochronologic evidence for plateau formation in central Tibet by 45 Ma[J]. Geology, 2012, 40(2): 187-190.
[4] Hetzel R, Dunkl I, Haider V,et al.Peneplain formation in southern Tibet predates the India-Asia collision and plateau uplift[J]. Geology, 2011, 39(10): 983-986.
[5] Van der Beek P, Van Melle J, Guillot S,et al. Eocene Tibetan Plateau remnants preserved in the northwest Himalaya[J]. Nature Geoscience, 2009, 2(5): 364-368.
[6] Yin An.Cenozoic tectonic evolution of Asia: A preliminary synthesis[J]. Tectonophysics, 2010, 488(1): 293-325.
[7] Wang Xiuxi, Zattin M, Li Jijun, et al.Cenozoic tectonic uplift history of Western Qinling: Evidence from sedimentary and fission-track data[J]. Journal of Earth Science, 2013, 24(4): 491-505.
[8] Tapponnier P, Xu Zhiqin, Roger F, et al.Oblique stepwise rise and growth of the Tibet plateau[J]. Science, 2001, 294(5 547): 1 671-1 677.
[9] Mulch A, Chamberlain C P.Earth Science:The rise and growth of Tibet[J]. Nature, 2006, 439: 670-671,doi:10.1038/439670a.
[10] Molnar P, Stock J M.Slowing of India’s convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics[J]. Tectonics, 2009, 28(3),doi: 10.1029/2008TC002271.
[11] Royden L H, Burchfiel B C, van der Hilst R D. The geological evolution of the Tibetan Plateau[J]. Science, 2008, 321(5 892): 1 054-1 058.
[12] Clark M K.Continental collision slowing due to viscous mantle lithosphere rather than topography[J]. Nature, 2012, 483(7 387): 74-77.
[13] Coleman M, Hodges K.Evidence for Tibetan Plateau uplift before 14 Myr ago from a new minimum age for east-west extension[J]. Nature, 1994, 374: 49-52,doi:10.1038/374049a0.
[14] Harrison T M, Copeland P, Kidd W S, et al.Raising Tibet[J]. Science, 1992, 255(5 052): 1 663-1 670.
[15] Styron R, Taylor M, Sundell K.Accelerated extension of Tibet linked to the northward underthrusting of Indian crust[J]. Nature Geoscience, 2015, (8): 131-134,doi:10.1038/ngeo2336.
[16] Molnar P.Mio-Pliocene growth of the Tibetan Plateau and evolution of East Asian climate[J]. Palaeontologia Electronica, 2005, 8(1): 1-23.
[17] Rea D K.Delivery of himalayan sediment to the Northern Indian Ocean and its relation to global climate, sea level, uplift, and seawater strontium[C]∥Duncan R A, et al, eds. Synthesis of Results from Scientific Drilling in the Indian Ocean. American Geophysics Union, Washington DC. Geophysical Monograph Series, 1992, 70: 387-402.
[18] Molnar P, Boos W R, Battisti D S.Orographic controls on climate and paleoclimate of Asia: Thermal and mechanical roles for the Tibet Plateau[J]. Annual Review of Earth and Planetary Sciences, 2010, 38: 77-102,doi:10.1146/annurev-earth-040809-152456.
[19] Clift P D, Hodges K V, Heslop D, et al.Correlation of Himalayan exhumation rates and Asian monsoon intensity[J]. Nature Geoscience, 2008, 1(12): 875-880.
[20] Li Jijun, Zhou Shangzhe, Zhao Zhijun, et al.The Qingzang movement: The major uplift of the Qinghai-Tibetan Plateau[J]. Science China Earth Sciences, 2015, 58(11): 2 113-2 122.
[21] Zheng Hongbo, Guo Zhengtang, Deng Tao.Evolution of topography, drainage and biogengraphy in East Asia during the Cenozoic: Summary of the thrid conference on Earth System Science[J]. Advances in Earth Science, 2014, 29(11): 1 280-1 286.
[郑洪波,郭正堂,邓涛.新生代东亚地形、水系与生物地理演变——第三届地球系统科学大会拾粹[J].地球科学进展,2014,29(11):1 280-1 286.]
[22] Wu Zhenhan, Wu Zhonghai, Hu Daogong,et al.Geological evidences for the Tibetan Plateau uplifted in late Oligocene[J]. Acta Geologica Sinica, 2007, 81(5): 577-587.
[吴珍汉,吴中海,胡道功,等.青藏高原渐新世晚期隆升的地质证据[J].地质学报,2007,81(5):577-587.]
[23] Licht A, Van Cappelle M, Abels H A, et al.Asian monsoons in a late Eocene greenhouse world[J]. Nature, 2014, 513(7 519): 501-506.
[24] Rowley D B, Currie B S.Palaeo-altimetry of the Late Eocene toMiocene Lunpola Basin, Central Tibet[J]. Nature, 2006, 439: 677-681,doi:10.1038/nature04506.
[25] Xu Ren.Vegetation changes in the past and the uplift of Qinghai-Xizang Plateau[M]∥Proceedings of Symposium of Qinghai-Xizang(Tibet) Plateau. Geology, Geological History and Origin of Qinghai-Xizang Plateau. Beijing: Science Press,1981: 8-18.
[徐仁. 大陆漂移与喜马拉雅山上升的古植物学证据[M]∥中国科学院青藏高原综合考察队编. 青藏高原隆升的时代、幅度和形式. 北京:科学出版社,1981: 8-18. ]
[26] Zhong Dalai, Ding Lin.Mechanism discuss and uplifting process of Tibet Plateau[J]. Science in China (Series D), 1996, 26(4): 289-295.
[钟大赉,丁林.青藏高原的隆起过程及其机制探讨[J].中国科学:D辑,1996,36(4):289-295.]
[27] Deng Tao, Wang Xiaoming, Wang Shiqi,et al.Evolution of the Chinese Neogene mammalian faunas and its relationship to uplift of the Tibetan Plateau[J]. Advances in Earth Science, 2015, 30(4): 407-415.
[邓涛,王晓鸣,王世骐,等.中国新近纪哺乳动物群的演化与青藏高原隆升的关系[J].地球科学进展,2015,30(4):407-415.]
[28] Molnar P, Tapponnier P.Cenozoic tectonics of Asia: Effects of a continental collision[J]. Science, 1975, 189(4 201): 419-426.
[29] Tapponnier P, Peltzer G, Armijo R.On the mechanics of the collision between India and Asia[J]. Geological Society London, Special Publications, 1986, 19: 115-157,doi:10.1144/GSL.SP.1986.019.
[30] Wang C S, Zhao X X, Liu Z F, et al.Constraints on the early uplift history of the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences, 2008, 105(13): 4 987-4 992.
[31] Zhang Kexin, Wang Guocan, Ji Junliang,et al.Paleogene-Neogene stratigraphic realm and sedimentary sequence of the Qinghai-Tibet Plateau and their to uplift of the Plateau[J]. Science in China (Series D), 2010, 40(12): 1 632-1 654.
[张克信,王国灿,季军良,等.青藏高原古近纪—新近纪地层分区与序列及其对隆升的响应[J].中国科学:D辑,2010,40(12):1 632-1 654.]
[32] Wang Guocan,Cao Kai, Zhang Kexin, et al.Spatio-temporal framework of tectonic uplift stages of the Tibetan Plateau in Cenozoic[J].Science in China (Series D), 2011, 41(3): 332-349.
[王国灿,曹凯,张克信,等.青藏高原新生代构造隆升阶段的时空格局[J].中国科学:D辑,2011,41(3):332-349.]
[33] Sun Jimin, Xu Qinghai, Liu Weiming, et al.Palynological evidence for the latest Oligocene-early Miocene paleoelevation estimate in the Lunpola Basin, central Tibet[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2014, 399: 21-30,doi:10.1016/j.palaeo.2014.02.004.
[34] Zhao Wenjin, Wu Zhenhan, Shi Danian,et al.Comprehensive deep profiling of Tibetan Plateau in the INDERTH Project[J]. Acta Geoscientica Sinica, 2008, 29(3): 328-342.
[赵文津,吴珍汉,史大年,等.国际合作INDEPTH 项目横穿青藏高原的深部探测与综合研究[J].地球学报,2008,29(3):328-342.]
[35] Liu Xiaodong, Shi Zhengguo, Guo Qingchun.Uplift of the northern Tibetan Plateau and evolutions of East Asian monsoon and Asian inland arid environments[J]. Chinese Journal of Nature, 2014, 36(3): 170-175.
[刘晓东,石正国,郭庆春.青藏高原北部隆升与东亚季风及亚洲内陆干旱化——来自气候数值模拟的启示[J].自然杂志,2014,36(3):170-175.]
[36] Teng Jiwen,Si Xiang, Wang Qianshen, et al.Collation and stipulation of the core science problems and theoretical concept in the geoscience study on the Tibetan Plateau[J]. Chinese Journal of Geophysics,2015,58(1): 103-124.
[滕吉文,司芗,王谦身,等.青藏高原地球科学研究中的核心问题与理念的厘定[J].地球物理学报,2015,58(1):103-124.]
[37] Clark M K, Royden L H, Whipple K X,et al.Use of a regional, relict landscape to measure vertical deformation of the eastern Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(F3), doi:10.1029/2005JF000294.
[38] Shi Xingmin, Du Zhongchao.Review and prospect of tectonic geomorphology in China[J]. Northwestern Seismological Journal, 2006, 28(3): 280-284.
[史兴民,杜忠潮.中国构造地貌学的回顾与展望[J].西北地震学报,2006,28(3):280-284.]
[39] Clark M K, Farley K A, Zheng D, et al.Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U-Th)/He ages[J]. Earth and Planetary Science Letters, 2010, 296(1/2): 78-88.
[40] Enkelmann E, Ratschbacher L, Jonckheere R, et al.Cenozoic exhumation and deformation of northeastern Tibet and the Qinling: Is Tibetan lower crustal flow deverging around the Sichuan Basin[J].Geological Society of America Bulletin, 2006, 118(5/6): 651-671.
[41] Zhang Huiping, Oskin M E, Zeng Jingliu, et al.Pulsed exhumation of interior eastern Tibet: Implications for relief generation mechanisms and the origin of high-elevation planation surfaces[J]. Earth and Planetary Science Letters, 2016, 449: 176-185,doi:10.1016/j.epsl.2016.05.048.
[42] Guo Jinjing, Han Wenfeng, Liang Shouyun,et al.Study and comparision on the terrance of Taohe River and Minjiang River in Minxian-Dangchang area of the Western Qinling—Discussion on geomorphological respones of the SN Tectonic Zone in China[J]. Geological Survey and Research, 2006, 29(4): 271-278.
[郭进京,韩文峰,梁收运,等.西秦岭岷县—宕昌地区洮河和岷江阶地特征对比研究——兼论中国南北构造带在西秦岭的地貌响应[J].地质调查与研究,2006,29(4):271-278.]
[43] Miao Qi, Qian Fang, Zhao Zhizhong,et al.Terraces and evolution of the Yellow River in the guide segment[J]. Geological Survey and Research, 2012, 35(1): 34-38.
[苗琦,钱方,赵志中,等.黄河贵德段河流阶地及演变研究[J].地质调查与研究,2012,35(1):34-38.]
[44] Wang Xiuxi, Song Chunhui, Zattin M, et al. Cenozoic pulse deformation history of northeastern Tibetan Plateau reconstructed from fission-track thermochronology[J]. Tectonophysics, 2016, 672/673: 212-227.
[45] Wang Xiuxi, Zattin M, Li Jijun, et al.Eocene to Pliocene exhumation history of the Tianshui-Huicheng region determined by apatite Fission-Track thermochronology: Implications for evolution of the Northeastern Tibetan Plateau Margin[J]. Journal of Asian Earth Sciences, 2011, 42(1/2): 97-110.
[46] Zhou Zuyi.Low Temperature Thermochronology: Principles and Applications[M]. Beijing: Science Press, 2014.
[周祖翼. 低温年代学:原理与应用[M].北京:科学出版社,2014.]
[47] Wang E, Kirby E, Furlong K P, et al.Two-phase growth of high topography in eastern Tibet during the Cenozoic[J]. Nature Geoscience, 2012, 5: 640-645,doi:10.1038/ngeo1538.
[48] Heberer B, Anzenbacher T, Neubauer F, et al.Polyphase exhumation in the western Qinling Mountains, China: Rapid Early Cretaceous cooling along a lithospheric-scale tear fault and pulsed Cenozoic uplift[J]. Tectonophysics, 2014, 617: 31-43,doi:10.1016/j.tecto.2014.01.011.
[49] Duvall A R, Clark M K, van der Pluijm B. Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault clays and low-temperature thermochronometry[J]. Earth and Planetary Science Letters, 2011, 304(3/4): 520-526.
[50] Jolivet M, Brunel M, Seward D.Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan Plateau: Fission-track constraints[J]. Tectonophysics, 2001, 343(1/2): 111-134.
[51] Liu Jinhui, Zhang Peizhen, Lease R O.Eocene onset and late Miocene acceleration of Cenozoic intracontinental extension in the North Qinling range-Weihe graben: Insights from apatite fission track thermochronology[J]. Tectonophysics, 2013, 584: 281-296,doi:10.1016/j.tecto.2012.01.025.
[52] Zhang Jin, Wang Yannan, Zhang Bihang, et al.Evolution of the NE Qinghai-Tibetan Plateau, constrained by the apatite fission track ages of the mountain ranges around the Xining Basin in NW China[J]. Journal of Asian Earth Sciences, 2015, 97(Part A): 10-23.
[53] Zheng Dewen, Zhang Peizhen, Wan Jinglin, et al.Rapid exhumation at ~8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: Implications for growth of the northeastern Tibetan Plateau margin[J]. Earth and Planetary Science Letters, 2006, 248(1/2): 198-208.
[54] Zheng Dewen, Clark M K, Zhang Peizhen, et al.Erosion, fault initiation and topographic growth of the North Qilian Shan (northern Tibetan Plateau)[J]. Geosphere, 2010, 6(6): 937-941.
[55] Duvall A R, Clark M K, Kirby E K, et al.Low-temperature thermochronometry along the Kunlun and Haiyuan Faults, NE Tibetan Plateau: Evidence for kinematic change during late-stage orogenesis[J]. Tectonics, 2013, 21(5): 1 190-1 211.
[56] Lease R O, Burbank D W, Clark M K, et al.Middle Miocene reorganization of deformation along the northeastern Tibetan Plateau[J]. Geology, 2011, 39(4): 359-362.
[57] Qiu Nansheng, Chang Jian, Zuo Yinhui, et al.Thermal evolution and maturation of lower Paleozoic source rocks in the Tarim Basin, northewest China[J]. AAPG Bulletin, 2012, 96(5): 789-821.
[58] Cao Kai, Wang Guocan, Bernet M, et al.Exhumation history of the West Kunlun Mountains, northwestern Tibet: Evidence for a long-lived, rejuvenated orogeny[J]. Earth and Planetary Science Letters, 2015, 432: 391-403.
[59] Garver J I, Brandon M T, Roden-Tice M K,et al. Exhumation history of orogenic highlands determined by detrital fission track thermochronology[J]. Journal of the Geological Society, 1999, 154(1): 283-304.
[60] Ruiz G M H, Seward D, Winkler W. Detrital thermochronology-a new perspective on hinterland tectonics, an example from the Andean Amazon Basin, Ecuador[J]. Basin Research, 2004, 16: 413-430,doi:10.1016/j.epsl.2015.10.033.
[61] Lin Xu, Zheng Dewen, Sun Jimin, et al.Detrital apatite fission track evidence for provenance change in the Subei Basin and implications for the tectonic uplift of the Danghe Nan Shan (NW China) since the mid-Miocene[J]. Journal of Asian Earth Sciences, 2015, 111: 302-311,doi:10.1016/j.jseaes.2015.07.007.
[62] Carrapa B, Strecker M R, Sobel E R.Cenozoic orogenic growth in the Central Andes: Evidence from sedimentary rock provenance and apatite fission track thermochronology in theFiambal Basin, southernmost Puna Plateau margin (NW Argentina)[J]. Earth and Planetary Science Letters, 2006, 247(1): 82-100.
[63] Bernet M, Garver J I.Fission-track analysis of detrital zircon[J]. Reviews in Mineralogy and Geochemistry, 2005, doi: 10.2138/rmg.2005.58.8.
[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[3] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[4] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[5] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[6] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[7] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[8] 刘方斌, 聂军胜, 郑德文, 庞建章. 青藏高原东南缘新生代剥露历史及驱动机制探讨:以临沧花岗岩地区为例[J]. 地球科学进展, 2021, 36(4): 421-441.
[9] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[10] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[11] 吕红华,李有利. 不断融入新元素的我国构造地貌学研究:以天山为例[J]. 地球科学进展, 2020, 35(6): 594-606.
[12] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
[13] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[14] 苗毅, 刘海猛, 宋金平, 戴特奇. 青藏高原交通设施建设及影响评价研究进展[J]. 地球科学进展, 2020, 35(3): 308-318.
[15] 樊云龙, 潘保田, 胡振波, 任大银, 陈起伟, 刘芬良, 李宗盟. 云贵高原北盘江流域构造地貌特征分析[J]. 地球科学进展, 2018, 33(7): 751-761.
阅读次数
全文


摘要