1 |
Yao Tandong, Chen Fahu, Cui Peng, et al. From Tibetan Plateau to Third Pole and Pan-Third Pole[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(9): 924-931.
|
|
姚檀栋, 陈发虎, 崔鹏, 等. 从青藏高原到第三极和泛第三极[J]. 中国科学院院刊, 2017, 32(9): 924-931.
|
2 |
Deng Wei, Zhao Wei, Liu Bintao, et al. Water security and the countermeasures in South Asia based on the “Belt and Road” initiative[J]. Advances in Earth Science, 2018, 33(7): 687-701.
|
|
邓伟, 赵伟, 刘斌涛, 等. 基于“一带一路”的南亚水安全与对策[J]. 地球科学进展, 2018, 33(7): 687-701.
|
3 |
Zhu Liping, Ju Jianting, Qiao Baojin, et al. Recent lake changes of the Asia Water Tower and their climate response: Progress, problems and prospects[J]. Chinese Science Bulletin, 2019, 64(27): 2 796-2 806.
|
|
朱立平, 鞠建廷, 乔宝晋, 等. “亚洲水塔”的近期湖泊变化及气候响应: 进展、问题与展望[J]. 科学通报, 2019, 64(27): 2 796-2 806.
|
4 |
Yang K, Wu H, Qin J, et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review[J]. Global and Planetary Change, 2014, 112: 79-91.
|
5 |
Sun Zhizhong, Ma Wei, Mu Yanhu, et al. Permafrost change under natural sites along the Qinghai-Tibet Railway during the years of 2006-2015[J]. Advances in Earth Science, 2018, 33(3): 248-256.
|
|
孙志忠, 马巍, 穆彦虎, 等. 青藏铁路沿线天然场地多年冻土变化[J]. 地球科学进展, 2018, 33(3): 248-256.
|
6 |
Liu Y, Chen H, Zhang G, et al. The advanced South Asian monsoon onset accelerates lake expansion over the Tibetan Plateau[J]. Science Bulletin, 2019, 64(20): 1 486-1 489.
|
7 |
Ding Yongjian, Zhang Shiqiang, Zhao Lin, et al. Global warming weakening the inherent stability of glaciers and permafrost[J]. Science Bulletin, 2019, 64(4): 245-253.
|
8 |
Wu Guoxiong, Zhuo Haifeng, Wang Ziqian, et al. Two types of summertime heating over the Asian large-scale orography and excitation of potential-vorticity forcing I. Over Tibetan Plateau[J]. Science China Earth Sciences, 2016, 46(9): 1 209-1 222.
|
|
吴国雄, 卓海峰, 王子谦, 等. 夏季亚洲大地形双加热及近对流层顶位涡强迫的激发(I): 青藏高原主体加热[J]. 中国科学: 地球科学, 2016, 46(9): 1 209-1 222.
|
9 |
Li G, Zhang F, Jing Y, et al. Response of evapotranspiration to changes in land use and land cover and climate in China during 2001-2013[J]. Science of the Total Environment, 2017, 596: 256-265.
|
10 |
Yu Tengfei, Feng Qi, Si Jianhua, et al. Estimating terrestrial ecosystems evapotranspiration: A review on methods of integrateing remote sensing and ground observations[J]. Advances in Earth Science, 2011, 26(12): 1 260-1 268.
|
|
鱼腾飞, 冯起, 司建华, 等. 遥感结合地面观测估算陆地生态系统蒸散发研究综述[J]. 地球科学进展, 2011, 26(12): 1 260-1 268.
|
11 |
Liu W, Sun F. Assessing estimates of evaporative demand in climate models using observed pan evaporation over China[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(14): 8 329-8 349.
|
12 |
Wang Jingfeng, Liu Yuanbo, Zhang Ke. The maximum entropy production approach for estimating evapotranspiration: Principle and applications[J]. Advances in Earth Science, 2019, 34(6): 596-605.
|
|
Wang Jingfeng, 刘元波, 张珂. 最大熵增地表蒸散模型: 原理及应用综述[J]. 地球科学进展, 2019, 34(6): 596-605.
|
13 |
Allen R G, Pereira L S, Raes D, et al. Crop evapotranspiration-guidelines for computing crop water requirements-FAO irrigation and drainage paper 56[J]. Fao, Rome, 1998, 300(9): D5109.
|
14 |
Ramírez J A, Hobbins M T, Brown T C. Observational evidence of the complementary relationship in regional evaporation lends strong support for Bouchet's hypothesis[J]. Geophysical Research Letters, 2005, 32(15): L15401.
|
15 |
Hansen J, Rind D, Goldberg R, et al. Potential evapotranspiration and the likelihood of future drought[J]. Journal of Geophysical Research: Atmospheres, 1990, 95(D7): 9 983-10 004.
|
16 |
Peterson T C, Golubev V S, Groisman P Y. Evaporation losing its strength[J]. Nature, 1995, 377(6 551): 687-688.
|
17 |
Cong Z T, Yang D W, Ni G H. Does evaporation paradox exist in China?[J]. Hydrology and Earth System Sciences, 2009, 13(3): 357-366.
|
18 |
Chen S, Liu Y, Thomas A. Climatic change on the Tibetan Plateau: Potential evapotranspiration trends from 1961-2000[J]. Climatic Change, 2006, 76(3/4): 291-319.
|
19 |
Zhang X, Ren Y, Yin Z, et al. Spatial and temporal variation patterns of reference evapotranspiration across the Qinghai-Tibetan Plateau during 1971-2004[J]. Journal of Geophysical Research: Atmospheres, 2009, 114: D15105.
|
20 |
Wang Buwei, Zhang Xueqin. Change and attribution of reference evapotranspiration over the Tibetan Plateau during the period of 1971-2014[J]. Arid Zone Research, 2019, 36(2): 269-279.
|
|
汪步惟, 张雪芹. 1971—2014年青藏高原参考蒸散变化及其归因[J]. 干旱区研究, 2019, 36(2): 269-279.
|
21 |
Zhang H, Ding M, Li L, et al. Continuous wetting on the Tibetan Plateau during 1970-2017[J]. Water, 2019, 11(12): 2 605.
|
22 |
Zhang Yili, Li Bingyuan, Zheng Du. A discussion on the boundary and area of the Tibetan Plateau in China[J]. Geographical Research, 2002, 21(1): 1-8.
|
|
张镱锂, 李炳元, 郑度. 论青藏高原范围与面积[J]. 地理研究, 2002, 21(1): 1-8.
|
23 |
Zheng Du. Study on the Eco-geographical Region System of China[M]. Beijing: The Commercial Press, 2008.
|
|
郑度. 中国生态地理区域系统研究[M]. 北京: 商务图书馆, 2008.
|
24 |
Roderick M L, Rotstayn L D, Farquhar G D, et al. On the attribution of changing pan evaporation[J]. Geophysical Research Letters, 2007, 34(17). DOI:10.1029/2007GL031166.
doi: 10.1029/2007GL031166
|
25 |
Yin Y, Wu S, Zheng D, et al. Radiation calibration of FAO56 Penman-Monteith model to estimate reference crop evapotranspiration in China[J]. Agricultural Water Management, 2008, 95(1): 77-84.
|
26 |
Mallakpour I, Villarini G. A simulation study to examine the sensitivity of the Pettitt test to detect abrupt changes in mean[J]. Hydrological Sciences Journal, 2016, 61(2): 245-254.
|
27 |
Tomé A R, Miranda P M A. Piecewise linear fitting and trend changing points of climate parameters[J]. Geophysical Research Letters, 2004, 31(2). DOI:10.1029/2003GL019100.
doi: 10.1029/2003GL019100
|
28 |
Yao T, Lu H, Feng W, et al. Evaporation abrupt changes in the Qinghai-Tibet Plateau during the last half-century[J]. Scientific Reports, 2019, 9(1): 1-13.
|
29 |
Mandelbrot B B, Wallis J R. Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical dependence[J]. Water Resources Research, 1969, 5(5): 967-988.
|
30 |
Shi Neng, Chen Jiaqi, Tu Qipu. 4-phase climate change features in the last 100years over China[J]. Acta Meteorologica Sinica, 1995, 53(4): 431-439.
|
|
施能, 陈家其, 屠其璞. 中国近100年来4个年代际的气候变化特征[J]. 气象学报, 1995, 53(4): 431-439.
|
31 |
Zhao X, Li Z, Zhu Q. Change of precipitation characteristics in the water-wind erosion crisscross region on the Loess Plateau, China, from 1958 to 2015[J]. Scientific Reports, 2017, 7(1): 1-16.
|
32 |
Niu Tao, Chen Longxun, Wang Wen. REOF analysis of climatic characteristics of winter temperature and humidity on Xizang-Qinghai Plateau[J]. Journal of Applied Meteorological Science, 2002, 13(5): 560-570.
|
|
牛涛, 陈隆勋, 王文. 青藏高原冬季平均温度、湿度气候特征的REOF分析[J]. 应用气象学报, 2002, 13(5): 560-570.
|
33 |
Lu Longhua, Zhang De’er. Spatio-temporal variation of annual precipitation in China and its relationship with the east Asian summer monsoon[J]. Quaternary Sciences, 2013, 33(1): 97-107.
|
|
陆龙骅, 张德二. 中国年降水量的时空变化特征及其与东亚夏季风的关系[J]. 第四纪研究, 2013, 33(1): 97-107.
|
34 |
Yao Shibo, Jiang Dabang, Fan Guangzhou. Seasonality of precipitation over China[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(6): 1 191-1 203.
|
|
姚世博, 姜大膀, 范广洲. 中国降水的季节性[J]. 大气科学, 2017, 41(6): 1 191-1 203.
|
35 |
Yao Huiru. Characteristics of Wind Speed and Atmospheric Kinetic Energy over the Tibetan Plateau in Spring and Their Relationship with Vegetation Coverage[D]. Nanjing: Nanjing University of Information Science and Technology, 2018.
|
|
姚慧茹. 青藏高原春季风速和大气动能的变化特征及其与植被覆盖的关系[D]. 南京: 南京信息工程大学, 2018.
|
36 |
Wang T, Zhang J, Sun F, et al. Pan evaporation paradox and evaporative demand from the past to the future over China: A review[J]. Wiley Interdisciplinary Reviews: Water, 2017, 4(3): e1207.
|
37 |
Wang L, Chen W. A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China[J]. International Journal of Climatology, 2014, 34(6): 2 059-2 078.
|
38 |
Yao T, Wu F, Ding L, et al. Multispherical interactions and their effects on the Tibetan Plateau’s Earth system: A review of the recent researches[J]. National Science Review, 2015, 2(4): 468-488.
|
39 |
Liu B. A spatial analysis of pan evaporation trends in China, 1955-2000[J]. Journal of Geophysical Research, 2004, 109: D15102.
|
40 |
Wang J, Wang Q, Zhao Y, et al. Temporal and spatial characteristics of pan evaporation trends and their attribution to meteorological drivers in the Three-River Source region, China[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(13): 6 391-6 408.
|
41 |
Lu H, Guan Y, He L, et al. Patch aggregation trends of the global climate landscape under future global warming scenario[J]. International Journal of Climatology, 2019. DOI: 10.1002/joc.6358.
doi: 10.1002/joc.6358
|
42 |
Tian P, Lu H, Feng W, et al. Large decrease in streamflow and sediment load of Qinghai-Tibetan Plateau driven by future climate change: A case study in Lhasa River Basin[J]. CATENA, 2020, 187: 104340.
|
43 |
Feng Song, Tang Maocang, Wang Dongmei. New evidence for the Qinghai-Xizang (Tibet) Plateau as a pilot region of climatic fluctuation in China[J]. Chinese Science Bulletin, 1998, 43(6): 633-636.
|
|
冯松, 汤懋苍, 王冬梅. 青藏高原是我国气候变化启动区的新证据[J]. 科学通报, 1998, 43(6): 633-636.
|
44 |
Cai Ying, Li Dongliang, Tang Maocang, et al. Decadal temperature changes over Qinghai-Xizang Plateau in recent 50 years[J]. Plateau Meteorology, 2003, 22(5): 464-470.
|
|
蔡英, 李栋梁, 汤懋苍, 等. 青藏高原近50年来气温的年代际变化[J]. 高原气象, 2003, 22(5): 464-470.
|
45 |
Ding Yihui, Zhang Li. Intercomparison of the time for climate abrupt change between the Tibetan Plateau and other regions in China[J]. Chinese Journal of Atmospheric Sciences, 2008, 32(4): 794-805.
|
|
丁一汇, 张莉. 青藏高原与中国其他地区气候突变时间的比较[J]. 大气科学, 2008, 32(4): 794-805.
|
46 |
Liang Xiaowen, Yang Meixue, Wan Guoning, et al. Research on the homogeneity of air temperature series over Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2015, 37(2): 275-285.
|
|
梁小文, 杨梅学, 万国宁, 等. 青藏高原气温序列的均一性研究[J]. 冰川冻土, 2015, 37(2): 275-285.
|