地球科学进展 ›› 2020, Vol. 35 ›› Issue (5): 534 -546. doi: 10.11867/j.issn.1001-8166.2020.031

生态水文学理论与实践 上一篇    

50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验
姚天次 1, 2( ),卢宏玮 1( ),于庆 1, 2,冯玮 1, 2   
  1. 1.中国科学院地理科学与资源研究所 陆地水循环及地表过程重点实验室,北京 100101
    2.中国科学院大学,北京 100190
  • 收稿日期:2020-01-10 修回日期:2020-03-06 出版日期:2020-05-10
  • 通讯作者: 卢宏玮 E-mail:tianciyao2015@163.com;luhw@igsnrr.ac.cn
  • 基金资助:
    中国科学院A类战略性先导科技专项“泛第三极环境变化与绿色丝绸之路建设”(XDA20040301);第二次青藏高原综合科学考察研究专题“工矿区地表系统健康诊断与绿色发展考察研究”(2019QZKK1003)

Potential Evapotranspiration Characteristic and Its Abrupt Change Across the Qinghai-Tibetan Plateau and Its Surrounding Areas in the Last 50 Years

Tianci Yao 1, 2( ),Hongwei Lu 1( ),Qing Yu 1, 2,Wei Feng 1, 2   

  1. 1.Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    2.University of Chinese Academy of Sciences, Beijing 100190, China
  • Received:2020-01-10 Revised:2020-03-06 Online:2020-05-10 Published:2020-06-05
  • Contact: Hongwei Lu E-mail:tianciyao2015@163.com;luhw@igsnrr.ac.cn
  • About author:Yao Tianci (1992-), male, Yueyang City, Hu'nan Province, Ph.D student. Research areas include hydrology and water resources. E-mail: tianciyao2015@163.com
  • Supported by:
    the Strategic Priority Research Program of the Chinese Academy of Sciences “Pan-Third Pole Environment Study for a Green Silk Road (Pan-TPE)”(XDA20040301);The Second Tibetan Plateau Scientific Expedition and Research Program "Green development pathway in Tibetan Plateau: Industry and mining"(2019QZKK1003)

利用FAO Penman-Monteith方程和青藏高原及周边地区274个气象站逐日常规观测资料,结合中国生态地理分区方案,对1970—2017年高原及周边地区潜在蒸散发的空间格局及突变特征进行分析。结果表明: 除夏季和冬季外,研究区多年平均年和季节潜在蒸散发都呈现南北高、中部低的空间分布;月潜在蒸散发最大值和最小值发生时间表现出南早北晚的纬向差异。 研究区潜在蒸散发均值和趋势突变显著,但突变时间在区域间以及年和不同季节间均存在较大差异。其中,均值突变以正向突变为主,高原突变时间春季最早、冬季最晚;趋势突变主要表现为先降后升,高原年、春季、秋季和冬季潜在蒸散发的趋势转折时间由东北向西南推迟,至西南地区分别推迟约20、10、20和5年。比较而言,高原总体潜在蒸散发趋势转折时间较其周边地区滞后,年和四季分别推迟约5、1、12、5和4年。 显著的蒸发悖论只离散地存在于研究区内,主要发生在趋势转折(2007年)之前。研究结果可为进一步认识全球变暖背景下青藏高原及周边地区气候变化和生态水文过程提供科学依据。

Daily routine observation data from 274 meteorological stations in the Qinghai-Tibetan Plateau and its surrounding areas from 1970 to 2017 were utilized to examine the spatial patterns and abrupt changes of potential evapotranspiration with the formula of FAO Penman-Monteith, in consideration of China’s eco-geographical divisions. The results showed that annual and seasonal average potential evapotranspiration, except for summer and winter, displayed a distinct spatial pattern in the Qinghai-Tibetan Plateau and its surrounding areas, with higher values in the north and south but lower values in the middle; the time when monthly potential evapotranspiration reached its maximum or minimum showed clearly zonal differences, namely earlier in the south and later in the north. The prevailing mean and trend abrupt changes of potential evapotranspiration were observed in the study area, while there were large differences in the abrupt change time in different regions and seasons. Specifically, the mean abrupt change was dominated by positive mutation, with generally the earliest abrupt change time occurring in spring and the latest appearing in winter; the trend abrupt change pattern was mainly described as the process shifting from a downward trend to an upward trend, the trend change points in year, spring, autumn and winter were postponed gradually from the northeast to the southwest with a delay of about 20, 10, 20 and 5 years, respectively. Comparatively, the abrupt change time of potential evapotranspiration trend in the whole plateau was later than that in the whole buffer zone, with a respective lag of 5, 1, 12, 5 and 4 years. Corresponding to the periodic change of potential evapotranspiration, significant evaporation paradox only scattered through the study area during the period before the trend change point (2007), but it was absent afterwards and would not appear in the future. The above findings will provide a scientific basis for further understanding the climate change and eco-hydrological process of the Qinghai-Tibetan Plateau and its surrounding areas in global warming.

中图分类号: 

图1 青藏高原及其缓冲区地势、生态地理分区与气象站点分布
HIB1:果洛那曲高原山地高寒灌丛草甸区,HIC1:青南高原宽谷高寒草甸草原区,HIC2:羌塘高原湖盆高寒草原区,HIIAB1:川西藏东高山深谷针叶林区,HIIC1:祁连青东高山盆地针叶林、草原区,HIIC2:藏南高山谷地灌丛草原区,HIID1:柴达木盆地荒漠区,HIID2:昆仑北翼山地
荒漠区,HIID3:阿里山地荒漠区,IID2:阿拉善与河西走廊荒漠区,IIIB4:汾渭盆地落叶阔叶林、人工植被区,IIIC1:黄土高原中北部草原区,IIID1:塔里木盆地荒漠区,IVA2:秦巴山地常绿落叶阔叶林混交林区,VA4:四川盆地常绿阔叶林、人工植被区,VA5:云南高原常绿阔叶林、松林区,VA6:东喜马拉雅南翼山地季雨林、常绿阔叶林区,VIA2:闽粤桂低山平原常绿阔叶林、人工植被区
Fig.1 Topography and eco-geographic regionalization of the Qinghai-Tibetan Plateau and its surrounding areas, and the location of meteorological stations
HIB1: Guoluo and Naqu plateau and mountain alpine shrub-meadow region, HIC1: South Qinghai plateau and wide valley alpine meadow-steppe region, HIC2: Qiangtang plateau lake basin alpine steppe region, HIIAB1: West Sichuan and east Xizang high mountain and deep valley coniferous forest zone, HIIC1: Qilian Mountains of east Qinghai high mountain and basin coniferous forest and steppe region, HIIC2: South Xizang high mountain and valley shrub-steppe region, HIID1: Qaidam Basin desert region, HIID2: North Kunlun mountain desert region, HIID3: Ngari mountain desert region, IID2: Alxa and Hexi Corridor desert region, IIIB4: Fenhe and Weihe river basins deciduous broad-leaved forest and cultivated vegetation region, IIIC1: North and central Loess steppe region, IIID1: Tarim Basin desert region, IVA2: Qinling and Bashan mountains evergreen and deciduous broad-leaved forest region, VA4: Sichuan Basin evergreen broad-leaved forest and cultivated vegetation region, VA5: Yunnan Plateau evergreen broad-leaved forest and pine forest region, VA6: South of east Himalaya mountain seasonal rainforest evergreen broad-leaved forest region, VIA2: Fujian, Guangdong and Guangxi (South China) low mountain and plain evergreen broad-leaved forest and cultivated vegetation region
表1 青藏高原及其缓冲区生态地理区域系统
Table 1 Eco-geographical region systems of the Qinghai-Tibetan Plateau and its surrounding areas
图2 青藏高原及其缓冲区潜在蒸散发多年平均值空间分布
Fig.2 Spatial distribution of potential evapotranspiration in the Qinghai-Tibetan Plateau and its surrounding areas
表2 青藏高原及其缓冲区潜在蒸散发与气象因子的空间相关系数
Table 2 Spatial correlation coefficients between potential evapotranspiration and meteorological factors in the Qinghai-Tibetan Plateau and its surrounding areas
图3 青藏高原及其缓冲区潜在蒸散发年内最大值(a)和最小值(b)出现月份
Fig.3 The month corresponding to maximuma and minimum bpotential evapotranspiration in the Qinghai-Tibetan Plateau and its surrounding areas
图4 青藏高原及其缓冲区生态地理区潜在蒸散发均值突变时间(数字)及变化率(柱形)
Fig.4 The time (number) and change ratio (histogram) of potential evapotranspiration mean abrupt changes for different eco-geographical regions in the Qinghai-Tibetan Plateau and its surrounding areas
表3 青藏高原与其缓冲区突变特征比较
Table 3 Comparison of abrupt change characteristics between the Qinghai-Tibetan Plateau and its surrounding areas
图5 青藏高原及其缓冲区潜在蒸散发趋势突变时间(数字)及转折点前后气候倾向率(柱形)
(a)~(e)为不同生态地理分区潜在蒸散发趋势突变检测;(f)为整个青藏高原和整个缓冲区潜在蒸散发趋势突变检测
Fig.5 The trend abrupt change time (number) and corresponding segmented trends (histogram) of potential evapotranspiration in different eco-geographical regions in the Qinghai-Tibetan Plateau and its surrounding areas
(a)~(e) are for trend abrupt changes of potential evapotranspiration in different eco-geographical regions and (f) is for trend abrupt changes of potential evapotranspiration in the whole Qinghai-Tibetan Plateau and its whole surrounding areas
图6 青藏高原及其缓冲区生态地理区潜在蒸散发变化趋势的Hurst指数
Fig.6 Hurst exponent of the trend in potential evapotranspiration of different eco-geographical regions in the Qinghai-Tibetan Plateau and its surrounding areas
表4 青藏高原及其缓冲区生态地理区蒸发悖论比较
Table 4 Comparison of evaporation paradoxes among different eco-geographical regions in the Qinghai-Tibetan Plateau and its surrounding areas
1 Yao Tandong, Chen Fahu, Cui Peng, et al. From Tibetan Plateau to Third Pole and Pan-Third Pole[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(9): 924-931.
姚檀栋, 陈发虎, 崔鹏, 等. 从青藏高原到第三极和泛第三极[J]. 中国科学院院刊, 2017, 32(9): 924-931.
2 Deng Wei, Zhao Wei, Liu Bintao, et al. Water security and the countermeasures in South Asia based on the “Belt and Road” initiative[J]. Advances in Earth Science, 2018, 33(7): 687-701.
邓伟, 赵伟, 刘斌涛, 等. 基于“一带一路”的南亚水安全与对策[J]. 地球科学进展, 2018, 33(7): 687-701.
3 Zhu Liping, Ju Jianting, Qiao Baojin, et al. Recent lake changes of the Asia Water Tower and their climate response: Progress, problems and prospects[J]. Chinese Science Bulletin, 2019, 64(27): 2 796-2 806.
朱立平, 鞠建廷, 乔宝晋, 等. “亚洲水塔”的近期湖泊变化及气候响应: 进展、问题与展望[J]. 科学通报, 2019, 64(27): 2 796-2 806.
4 Yang K, Wu H, Qin J, et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review[J]. Global and Planetary Change, 2014, 112: 79-91.
5 Sun Zhizhong, Ma Wei, Mu Yanhu, et al. Permafrost change under natural sites along the Qinghai-Tibet Railway during the years of 2006-2015[J]. Advances in Earth Science, 2018, 33(3): 248-256.
孙志忠, 马巍, 穆彦虎, 等. 青藏铁路沿线天然场地多年冻土变化[J]. 地球科学进展, 2018, 33(3): 248-256.
6 Liu Y, Chen H, Zhang G, et al. The advanced South Asian monsoon onset accelerates lake expansion over the Tibetan Plateau[J]. Science Bulletin, 2019, 64(20): 1 486-1 489.
7 Ding Yongjian, Zhang Shiqiang, Zhao Lin, et al. Global warming weakening the inherent stability of glaciers and permafrost[J]. Science Bulletin, 2019, 64(4): 245-253.
8 Wu Guoxiong, Zhuo Haifeng, Wang Ziqian, et al. Two types of summertime heating over the Asian large-scale orography and excitation of potential-vorticity forcing I. Over Tibetan Plateau[J]. Science China Earth Sciences, 2016, 46(9): 1 209-1 222.
吴国雄, 卓海峰, 王子谦, 等. 夏季亚洲大地形双加热及近对流层顶位涡强迫的激发(I): 青藏高原主体加热[J]. 中国科学: 地球科学, 2016, 46(9): 1 209-1 222.
9 Li G, Zhang F, Jing Y, et al. Response of evapotranspiration to changes in land use and land cover and climate in China during 2001-2013[J]. Science of the Total Environment, 2017, 596: 256-265.
10 Yu Tengfei, Feng Qi, Si Jianhua, et al. Estimating terrestrial ecosystems evapotranspiration: A review on methods of integrateing remote sensing and ground observations[J]. Advances in Earth Science, 2011, 26(12): 1 260-1 268.
鱼腾飞, 冯起, 司建华, 等. 遥感结合地面观测估算陆地生态系统蒸散发研究综述[J]. 地球科学进展, 2011, 26(12): 1 260-1 268.
11 Liu W, Sun F. Assessing estimates of evaporative demand in climate models using observed pan evaporation over China[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(14): 8 329-8 349.
12 Wang Jingfeng, Liu Yuanbo, Zhang Ke. The maximum entropy production approach for estimating evapotranspiration: Principle and applications[J]. Advances in Earth Science, 2019, 34(6): 596-605.
Wang Jingfeng, 刘元波, 张珂. 最大熵增地表蒸散模型: 原理及应用综述[J]. 地球科学进展, 2019, 34(6): 596-605.
13 Allen R G, Pereira L S, Raes D, et al. Crop evapotranspiration-guidelines for computing crop water requirements-FAO irrigation and drainage paper 56[J]. Fao, Rome, 1998, 300(9): D5109.
14 Ramírez J A, Hobbins M T, Brown T C. Observational evidence of the complementary relationship in regional evaporation lends strong support for Bouchet's hypothesis[J]. Geophysical Research Letters, 2005, 32(15): L15401.
15 Hansen J, Rind D, Goldberg R, et al. Potential evapotranspiration and the likelihood of future drought[J]. Journal of Geophysical Research: Atmospheres, 1990, 95(D7): 9 983-10 004.
16 Peterson T C, Golubev V S, Groisman P Y. Evaporation losing its strength[J]. Nature, 1995, 377(6 551): 687-688.
17 Cong Z T, Yang D W, Ni G H. Does evaporation paradox exist in China?[J]. Hydrology and Earth System Sciences, 2009, 13(3): 357-366.
18 Chen S, Liu Y, Thomas A. Climatic change on the Tibetan Plateau: Potential evapotranspiration trends from 1961-2000[J]. Climatic Change, 2006, 76(3/4): 291-319.
19 Zhang X, Ren Y, Yin Z, et al. Spatial and temporal variation patterns of reference evapotranspiration across the Qinghai-Tibetan Plateau during 1971-2004[J]. Journal of Geophysical Research: Atmospheres, 2009, 114: D15105.
20 Wang Buwei, Zhang Xueqin. Change and attribution of reference evapotranspiration over the Tibetan Plateau during the period of 1971-2014[J]. Arid Zone Research, 2019, 36(2): 269-279.
汪步惟, 张雪芹. 1971—2014年青藏高原参考蒸散变化及其归因[J]. 干旱区研究, 2019, 36(2): 269-279.
21 Zhang H, Ding M, Li L, et al. Continuous wetting on the Tibetan Plateau during 1970-2017[J]. Water, 2019, 11(12): 2 605.
22 Zhang Yili, Li Bingyuan, Zheng Du. A discussion on the boundary and area of the Tibetan Plateau in China[J]. Geographical Research, 2002, 21(1): 1-8.
张镱锂, 李炳元, 郑度. 论青藏高原范围与面积[J]. 地理研究, 2002, 21(1): 1-8.
23 Zheng Du. Study on the Eco-geographical Region System of China[M]. Beijing: The Commercial Press, 2008.
郑度. 中国生态地理区域系统研究[M]. 北京: 商务图书馆, 2008.
24 Roderick M L, Rotstayn L D, Farquhar G D, et al. On the attribution of changing pan evaporation[J]. Geophysical Research Letters, 2007, 34(17). DOI:10.1029/2007GL031166.
doi: 10.1029/2007GL031166    
25 Yin Y, Wu S, Zheng D, et al. Radiation calibration of FAO56 Penman-Monteith model to estimate reference crop evapotranspiration in China[J]. Agricultural Water Management, 2008, 95(1): 77-84.
26 Mallakpour I, Villarini G. A simulation study to examine the sensitivity of the Pettitt test to detect abrupt changes in mean[J]. Hydrological Sciences Journal, 2016, 61(2): 245-254.
27 Tomé A R, Miranda P M A. Piecewise linear fitting and trend changing points of climate parameters[J]. Geophysical Research Letters, 2004, 31(2). DOI:10.1029/2003GL019100.
doi: 10.1029/2003GL019100    
28 Yao T, Lu H, Feng W, et al. Evaporation abrupt changes in the Qinghai-Tibet Plateau during the last half-century[J]. Scientific Reports, 2019, 9(1): 1-13.
29 Mandelbrot B B, Wallis J R. Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical dependence[J]. Water Resources Research, 1969, 5(5): 967-988.
30 Shi Neng, Chen Jiaqi, Tu Qipu. 4-phase climate change features in the last 100years over China[J]. Acta Meteorologica Sinica, 1995, 53(4): 431-439.
施能, 陈家其, 屠其璞. 中国近100年来4个年代际的气候变化特征[J]. 气象学报, 1995, 53(4): 431-439.
31 Zhao X, Li Z, Zhu Q. Change of precipitation characteristics in the water-wind erosion crisscross region on the Loess Plateau, China, from 1958 to 2015[J]. Scientific Reports, 2017, 7(1): 1-16.
32 Niu Tao, Chen Longxun, Wang Wen. REOF analysis of climatic characteristics of winter temperature and humidity on Xizang-Qinghai Plateau[J]. Journal of Applied Meteorological Science, 2002, 13(5): 560-570.
牛涛, 陈隆勋, 王文. 青藏高原冬季平均温度、湿度气候特征的REOF分析[J]. 应用气象学报, 2002, 13(5): 560-570.
33 Lu Longhua, Zhang De’er. Spatio-temporal variation of annual precipitation in China and its relationship with the east Asian summer monsoon[J]. Quaternary Sciences, 2013, 33(1): 97-107.
陆龙骅, 张德二. 中国年降水量的时空变化特征及其与东亚夏季风的关系[J]. 第四纪研究, 2013, 33(1): 97-107.
34 Yao Shibo, Jiang Dabang, Fan Guangzhou. Seasonality of precipitation over China[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(6): 1 191-1 203.
姚世博, 姜大膀, 范广洲. 中国降水的季节性[J]. 大气科学, 2017, 41(6): 1 191-1 203.
35 Yao Huiru. Characteristics of Wind Speed and Atmospheric Kinetic Energy over the Tibetan Plateau in Spring and Their Relationship with Vegetation Coverage[D]. Nanjing: Nanjing University of Information Science and Technology, 2018.
姚慧茹. 青藏高原春季风速和大气动能的变化特征及其与植被覆盖的关系[D]. 南京: 南京信息工程大学, 2018.
36 Wang T, Zhang J, Sun F, et al. Pan evaporation paradox and evaporative demand from the past to the future over China: A review[J]. Wiley Interdisciplinary Reviews: Water, 2017, 4(3): e1207.
37 Wang L, Chen W. A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China[J]. International Journal of Climatology, 2014, 34(6): 2 059-2 078.
38 Yao T, Wu F, Ding L, et al. Multispherical interactions and their effects on the Tibetan Plateau’s Earth system: A review of the recent researches[J]. National Science Review, 2015, 2(4): 468-488.
39 Liu B. A spatial analysis of pan evaporation trends in China, 1955-2000[J]. Journal of Geophysical Research, 2004, 109: D15102.
40 Wang J, Wang Q, Zhao Y, et al. Temporal and spatial characteristics of pan evaporation trends and their attribution to meteorological drivers in the Three-River Source region, China[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(13): 6 391-6 408.
41 Lu H, Guan Y, He L, et al. Patch aggregation trends of the global climate landscape under future global warming scenario[J]. International Journal of Climatology, 2019. DOI: 10.1002/joc.6358.
doi: 10.1002/joc.6358    
42 Tian P, Lu H, Feng W, et al. Large decrease in streamflow and sediment load of Qinghai-Tibetan Plateau driven by future climate change: A case study in Lhasa River Basin[J]. CATENA, 2020, 187: 104340.
43 Feng Song, Tang Maocang, Wang Dongmei. New evidence for the Qinghai-Xizang (Tibet) Plateau as a pilot region of climatic fluctuation in China[J]. Chinese Science Bulletin, 1998, 43(6): 633-636.
冯松, 汤懋苍, 王冬梅. 青藏高原是我国气候变化启动区的新证据[J]. 科学通报, 1998, 43(6): 633-636.
44 Cai Ying, Li Dongliang, Tang Maocang, et al. Decadal temperature changes over Qinghai-Xizang Plateau in recent 50 years[J]. Plateau Meteorology, 2003, 22(5): 464-470.
蔡英, 李栋梁, 汤懋苍, 等. 青藏高原近50年来气温的年代际变化[J]. 高原气象, 2003, 22(5): 464-470.
45 Ding Yihui, Zhang Li. Intercomparison of the time for climate abrupt change between the Tibetan Plateau and other regions in China[J]. Chinese Journal of Atmospheric Sciences, 2008, 32(4): 794-805.
丁一汇, 张莉. 青藏高原与中国其他地区气候突变时间的比较[J]. 大气科学, 2008, 32(4): 794-805.
46 Liang Xiaowen, Yang Meixue, Wan Guoning, et al. Research on the homogeneity of air temperature series over Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2015, 37(2): 275-285.
梁小文, 杨梅学, 万国宁, 等. 青藏高原气温序列的均一性研究[J]. 冰川冻土, 2015, 37(2): 275-285.
[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[3] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[4] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[5] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[6] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[7] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[8] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[9] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[10] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[11] 苗毅, 刘海猛, 宋金平, 戴特奇. 青藏高原交通设施建设及影响评价研究进展[J]. 地球科学进展, 2020, 35(3): 308-318.
[12] 牛富俊, 王玮, 林战举, 罗京. 青藏高原多年冻土区热喀斯特湖环境及水文学效应研究[J]. 地球科学进展, 2018, 33(4): 335-342.
[13] 王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展, 2017, 32(3): 234-244.
[14] 李明启, 邵雪梅. 基于树轮资料初探过去千年强火山喷发与青藏高原东部温度变化关系[J]. 地球科学进展, 2016, 31(6): 634-642.
[15] 王婷. 基于文献计量的青藏高原国际合作研究态势分析[J]. 地球科学进展, 2016, 31(6): 650-662.
阅读次数
全文


摘要