地球科学进展 ›› 2016, Vol. 31 ›› Issue (6): 634 -642. doi: 10.11867/j.issn.1001-8166.2016.06.0634.

所属专题: 青藏高原研究——青藏科考

上一篇    下一篇

基于树轮资料初探过去千年强火山喷发与青藏高原东部温度变化关系
李明启 1( ), 邵雪梅 1, 2   
  1. 1.中国科学院地理科学与资源研究所,陆地表层格局与模拟院重点实验室,北京 100101
    2.中国科学院青藏高原地球科学卓越创新中心,北京 100101
  • 收稿日期:2016-03-08 修回日期:2016-05-20 出版日期:2016-06-20
  • 基金资助:
    *国家自然科学基金重点项目“过去千年自然外强迫异常期的中国气候变化空间型及其形成机制”(编号:41430528);国家自然科学基金面上项目“横断山区树轮揭示的过去500年火山喷发信号及其气候效应”(编号:41571194)资助

Study on the Relationship between Large Volcanic Eruptions and Temperature Variation Based on Tree-Ring Data in the Eastern Tibetan Plateau during the Past Millennium

Mingqi Li 1( ), Xuemei Shao 1, 2   

  1. 1.Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    2.Chinese Academy of Sciences Center for Excellence in Tibetan Plateau Earth System Sciences, Beijing 100101, China
  • Received:2016-03-08 Revised:2016-05-20 Online:2016-06-20 Published:2016-06-10
  • About author:

    First author:Li Mingqi(1979-), male, Dongming County, Shandong Province, Research Assistant. Research areas include the dendroclimatology.E-mail:limq@igsnrr.ac.cn

  • Supported by:
    Project supported by the Key Program of National Natural Science Foundation of China “Spatial patterns of climate change in China driven by the anomalies of natural external forcings during the past millennium”(No.41430528);The General Program of National Natural Science Foundation of China “Volcanic eruption signals from tree-ring and its effect on climate in the Hengduan Mountain area in the past 500 years”(No.41571194)

强火山喷发是影响年际至年代际全球气候变化的重要因素之一。基于树木年轮资料重建的6条温度序列,集成重建了青藏高原东北部过去1 300多年和青藏高原东南部过去600多年的温度序列。在过去1 300多年,青藏高原东北部存在3个明显的冷期:670—920年、1000—1310年和1590—1930年;3个明显的暖期:920—1000年、1310—1590年和1930—2000年。青藏高原东南部过去600多年存在2个明显的冷期:1385—1450年和1570—1820年,2个明显的暖期:1450—1570年和1820—2000年。结合火山活动序列年表,利用时序叠加法,初步分析了过去千年强火山喷发对青藏高原东部温度变化的影响。结果表明:10°S~10°N的强火山喷发后第一年青藏高原东部出现降温,并且在α=0.05置信水平上东北部地区降温显著,东南部地区第二年达到降温显著水平;其他纬度的强火山喷发对青藏高原东北部和东南部的温度影响存在一定差异,第一年后两区均发生降温,但均未达到显著水平,然而青藏高原东北部地区第四年降温达到显著水平。这可能主要是由区域差异、不同季节温度对火山活动响应差异,或者火山喷发性质、季节、纬度以及区域的气候背景存在差异引起的。

Volcanic eruptions can significantly cool the global troposphere on the time scales from several months up to a decade due to reflection of solar radiation by sulfate aerosols and feedback mechanisms in the climate system. The impact of volcanic eruptions on global climate are discussed in many studies. However, few studies have been done on the impact of volcanic eruption on climate change in China in the past millennium. The 1300-year and 600-year temperature series were reconstructed based on the six tree-ring temperature proxy data in northeastern and southeastern Tibetan Plateau, respectively. Three warm periods occurred in 670-920,1000-1310 and 1590-1930, and three cold periods happened at 920-1000,1310-1590 and 1930-2000 in the northeastern Tibetan Plateau. There were two obviously warm periods (1385-1450 and 1570-1820) and two cold periods (1450-1570 and 1820-2000) in southeastern Tibetan Plateau. Contrasting with volcanic eruption chronology, we analyzed the relationship between volcanic activity and temperature variation in the eastern Tibetan plateau during the past millennium using Superposed Epoch Analysis (SEA) method. The results indicated that the temperature decreased one year after large volcanic eruptions located beteen 10°S and 10°N in latitude in northeastern Tibetan Plateau and two years in southeastern Tibetan Plateau. The volcanic eruptions occurred at different latitudes have different impacts on the temperature variations, which may be caused by regional difference, the nature of the eruption, the magnitude of the resulting change in incoming solar radiation, prevailing background climate and internal variability, season, latitude, and other considerations.

中图分类号: 

表1 本文所收集的6条温度序列的信息
Table 1 Information of six temperature series selected in this study
图1 本文所收集序列和气象站点分布图
黑圆圈:1.Zhang2014, 2.Zhu2008,3.Gou2008,4.Zhu2011,5.Fan2010,6.Li2015;黑三角:7.张掖站,8.野牛沟站,9.德令哈站,10.兴海站,11.波密站,12.德钦站
Fig.1 Locations of the six temperature series and six meteorological stations in this study
Black dots: 1.Zhang2014, 2.Zhu2008, 3.Gou2008, 4.Zhu2011,5.Fan2010,6.Li2015; Black triangles: 7.Zhangye,8.Yeniugou,9.Delingha,10.Xinghai,11.Bomi,12.Deqin
表2 青藏高原东北部及东南部3条序列相关系数
Table 2 Correlation coefficients between the selected series in the eastern Tibetan Plateau
表3 过去千年10次强火山喷发(VEI≥6)的喷发年份、经纬度和VEI等级
Table 3 The time, latitude, longitude and VEI of 10 volcanic eruptions (VEI≥6) in the past millennium
图2 青藏高原东北部冬春季和东南部夏季温度变化
灰色曲线为温度距平值,黑色粗曲线是11年平滑曲线
Fig.2 The winter-spring temperature variations in northeastern Tibetan Plateau and summer temperature variations in southeastern Tibetan Plateau
Grey line: Temperature anomaly; Thick black line: 11-year smoothing values
表4 青藏高原东北部(NE)和东南部(SE)集成温度序列与季节观测温度的相关系数
Table 4 Correlation coefficients of instrumental seasonal temperature and the reconstructed temperature in Northeastern Tibetan Plateau (NE) and Southeastern Tibetan Plateau (SE)
表5 青藏高原东北部(NE)和东南部(SE)集成温度序列与观测年温度的相关系数
Table 5 Correlation coefficients of instrumental annual temperature and the reconstructed temperature in Northeastern Tibetan Plateau (NE) and Southeastern Tibetan Plateau (SE)
图3 10次强火山喷发(VEI≥6)对青藏高东部过去1 000年温度变化影响的时序叠加法分析结果
(a),(b)和(c)分别代 表10 °S~10°N、南北纬10°~40°及北纬40°以北强火山喷发对青藏高原东北部温度变化影响分析结果;(d),(e)和 (f)分别为10°S~10°N、南北纬10°~40°及北纬40°以北强火山喷发对青藏高原东南部温度变化影响分析结果;虚线表示95%置信度
Fig.3 Superposed epoch analyses centered on 10 large volcanic eruptions (VEI≥6) of the past millennium in the eastern Tibetan Plateau
(a)~(c): The impact of large volcanic eruptions in 10°S~10°N, 10°~40°S/N and north of 40°N on the northeastern Tibetan Plateau, respectively; (d)~(f): The impact of large volcanic eruptions in 10°S~10°N, 10°~40°S/N and north of 40°N on the southeastern Tibetan Plateau, respectively. The dot lines:95% confidence limit
[1] IPCC. Climate Change 2007: The Physical Science Basis, Summary for Policymakers, Fourth Assessment Report[M].Cambridge: Cambridge University Press, 2013.
[2] Robock A.Volcanic eruptions and climate[J]. Reviews of Geophysics, 2000, 38(2):191-219.
[3] Miller G H, Geirsdottir A, Zhong Y F, et al.Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks[J]. Geophysical Research Letters, 2012, 39: L02708, doi:10.1029/2011GL050168.
[4] Zhong Y, Miller G H, Otto-Bliesner B L, et al. Centennial-scale climate change from decadally-paced explosive volcanism: A coupled sea ice-ocean mechanism[J]. Climate Dynamics, 2011, 37(11/12):2 373-2 387.
[5] Zanchettin D, Timmreck C, Graf H F, et al.Bi-decadal variability excited in the coupled ocean-atmosphere system by strong tropical volcanic eruptions[J]. Climate Dynamics, 2012, 39(1/2):419-444.
[6] Oppenheimer C.Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815[J]. Progress in Physical Geography, 2003, 27(2):230-259.
[7] Yang Yuda, Man Zhimin, Zheng Jingyun.A serious famine in Yunnan (1815-1817) and the eruption of Tambola volcano[J]. Fudan Journal (Social Sciences), 2005, (1): 79-85.
[杨煜达, 满志敏, 郑景云. 嘉庆云南大饥荒(1815—1817)与坦博拉火山喷发[J]. 复旦学报:社会科学版, 2005, (1):79-85.]
[8] Finch R H.A tree ring calendar for dating volcanic events at Cinder Cone, Lassen National Park, California[J]. American Journal of Science, 1937, 33(194):140-146.
[9] Lamarche Jr V C, Hirschboeck K K. Frost rings in trees as records of major volcanic eruption[J]. Nature, 1984, 307: 121-126.
[10] Briffa K R, Jones P D, Schweingruber F H, et al.Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years[J]. Nature, 1998, 393(6 684):450-455.
[11] D’Arrigo R D, Jacoby G C. Northern North American tree-ring evidence for regional temperature changes after major volcanic events[J]. Climatic Change, 1999, 41(1):1-15.
[12] Filion L, Payette S, Gauthier L, et al.Light rings in Sub-Arctic Conifers as a dendrochronological tool[J]. Quaternary Research, 1986, 26(2):272-279.
[13] Salzer M W, Hughes M K.Bristlecone pine tree rings and volcanic eruptions over the last 5000 yr[J]. Quaternary Research, 2007, 67(1):57-68.
[14] D’Arrigo R, Wilson R, Anchukaitis K J. Volcanic cooling signal in tree ring temperature records for the past millennium[J]. Journal of Geophysical Research—Atmospheres, 2013, 118(16):9 000-9 010.
[15] Esper J, Schneider L, Krusic P J, et al.European summer temperature response to annually dated volcanic eruptions over the past nine centuries[J]. Bulletin of Volcanology, 2013, 75(7):1-14.
[16] Chen F, Yuan Y J, Wei W S, et al.Temperature reconstruction from tree-ring maximum latewood density of Qinghai spruce in middle Hexi Corridor, China[J]. Theoretical and Applied Climatology, 2012, 107(3/4):633-643.
[17] Liang E Y, Shao X M, Qin N S.Tree-ring based summer temperature reconstruction for the source region of the Yangtze River on the Tibetan Plateau[J]. Global and Planetary Change, 2008, 61(3/4):313-320.
[18] Liu N, Liu Y, Zhou Q, et al.Droughts and broad-scale climate variability reflected by temperature-sensitive tree growth in the Qinling Mountains, central China[J]. International Journal of Biometeorology, 2013, 57(1):169-177.
[19] Zhang Y, Shao X M, Yin Z Y, et al.Millennial minimum temperature variations in the Qilian Mountains, China: Evidence from tree rings[J]. Climate of the Past, 2014, 10(5):1 763-1 778.
[20] Yao T D, Liu X D, Wang N L, et al.Amplitude of climatic changes in Qinghai-Tibetan Plateau[J]. Chinese Science Bulletin, 2000, 45(13):1 236-1 243.
[21] Pan Baotian, Li Jijun.Qinghai-Tibetan Plateau: A driver and amplifier of the global climatic change[J]. Journal of Lanzhou University (Natural Sciences), 1996, 32(1): 108-115.
[潘保田, 李吉均. 青藏高原:全球气候变化的驱动机与放大器青藏高原隆起对气候变化的影响[J]. 兰州大学学报:自然科学版, 1996, 32(1):108-115.]
[22] Zhou X, Zhao P, Chen J, et al.Impacts of thermodynamic processes over the Tibetan Plateau on the Northern Hemispheric climate[J]. Science in China (Series D), 2009, 52(11):1 679-1 693.
[23] Liang H, Lyu L, Wahab M.A 382-year reconstruction of August mean minimum temperature from tree-ring maximum latewood density on the southeastern Tibetan Plateau, China[J]. Dendrochronologia, 2016, 37:1-8,doi:10.1016/j.dencho.2015.11.011.
[24] Liu X, Shao X, Zhao L, et al.Dendroclimatic temperature record derived from tree-ring width and stable carbon isotope chronologies in the middle Qilian Mountains, China[J]. Arctic Antarctic and Alpine Research, 2007, 39(4):651-657.
[25] Liu Y, An Z, Linderholm H W, et al.Annual temperatures during the last 2485 years in the mid-eastern Tibetan Plateau inferred from tree rings[J]. Science in China (Series D), 2009, 52(3):348-359.
[26] Zhu H F, Zheng Y H, Shao X M, et al.Millennial temperature reconstruction based on tree-ring widths of Qilian juniper from Wulan, Qinghai Province, China[J]. Chinese Science Bulletin, 2008, 53(24):3 914-3 920.
[27] Zhu H F, Shao X M, Yin Z Y, et al.August temperature variability in the southeastern Tibetan Plateau since AD 1385 inferred from tree rings[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 305(1/4):84-92.
[28] Liang E Y, Shao X M, Liu X H.Annual precipitation variation inferred from tree rings since AD 1770 for the Western Qilian Mts., Northern Tibetan Plateau[J]. Tree-Ring Research, 2009, 65(2):95-103.
[29] Sheppard P R, Tarasov P E, Graumlich L J, et al.Annual precipitation since 515 BC reconstructed from living and fossil juniper growth of northeastern Qinghai Province, China[J]. Climate Dynamics, 2004, 23(7/8):869-881.
[30] Gou X H, Deng Y, Gao L L, et al.Millennium tree-ring reconstruction of drought variability in the eastern Qilian Mountains, northwest China[J]. Climate Dynamics, 2015, 45(7/8):1 761-1 770.
[31] Yang B, Qin C, Wang J L, et al.A 3,500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(8):2 903-2 908.
[32] Fan Z X, Brauning A, Tian Q H, et al.Tree ring recorded May-August temperature variations since AD 1585 in the Gaoligong Mountains, southeastern Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 296(1/2):94-102.
[33] Li M Y, Wang L, Fan Z X, et al.Tree-ring density inferred late summer temperature variability over the past three centuries in the Gaoligong Mountains, southeastern Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 422:57-64.
[34] Gou X H, Chen F H, Yang M X, et al.Asymmetric variability between maximum and minimum temperatures in Northeastern Tibetan Plateau: Evidence from tree rings[J]. Science in China (Series D), 2008, 51(1):41-55.
[35] Battipaglia G, Cherubini P, Saurer M,et al.Volcanic explosive eruptions of the Vesuvio decrease tree-ring growth but not photosynthetic rates in the surrounding forests[J]. Global Change Biology, 2007, 13(6):1 122-1 137.
[36] Breitenmoser P, Beer J, Bronnimann S, et al.Solar and volcanic fingerprints in tree-ring chronologies over the past 2000 years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 313:127-139,doi:10.1016/j.palaeo.2015.01.003.
[37] Chenoweth M.Two major volcanic cooling episodes derived from global marine air temperature, AD 1807-1827[J]. Geophysical Research Letters, 2001, 28(15):2 963-2 966.
[38] Fischer E M, Luterbacher J, Zorita E, et al.European climate response to tropical volcanic eruptions over the last half millennium[J]. Geophysical Research Letters, 2007, 34:L05707,doi:10.1029/2006GL027992.
[39] Li Xiaodong, Wang Shaowu, Huang Jianping.Signal detection of volcanic impact on climate[J]. Quarterly Journal of Applied Meteorology, 1993, 4(4): 458-467.
[李晓东, 王绍武, 黄建平. 火山喷发对气候影响信号的检测[J]. 应用气象学报, 1993, 4(4):458-467.]
[40] Schoennagel T, Veblen T T, Romme W H, et al.ENSO and PDO variability affect srought-induced fire occurrence in Rocky Mountain Subalpine forests[J]. Ecological Applications, 2005, 15(6):2 000-2 014.
[41] Mass C F, Portman D A.Major volcanic eruptions and climate: A critical evaluation[J]. Journal of Climate, 1989, 2(6):566-593.
[42] Zhao Ji. Chinese Physical Geography (3rd Eds) [M]. Beijing: Higher Eeducation Press, 1995.
[赵济. 中国自然地理(第三版)[M]. 北京: 高等教育出版社, 1995.]
[43] Ge Q S, Zheng J Y, Hao Z X, et al.Temperature variation through 2000 years in China: An uncertainty analysis of reconstruction and regional difference[J]. Geophysical Research Letters, 2010, 37: L03703, doi:10.1029/2009GL041281.
[44] Li Jing, Zhang Deer.Impact of volcanic eruptions on climate[J]. Meteorological Science and Technology, 2005, 33(3): 193-198.
[李靖, 张德二. 火山活动对气候的影响[J]. 气象科技, 2005, 33(3):193-198.]
[45] Robock A, Mao J P.Winter warming from large volcanic-eruptions[J]. Geophysical Research Letters, 1992, 19(24):2 405-2 408.
[1] 胡棉舒, 李阔, 曹海月, 王兆国, 刘钦甫. 湘中寒婆坳矿区测水组无烟煤—煤系石墨变质温度研究[J]. 地球科学进展, 2021, 36(10): 1015-1025.
[2] 蔡长娥,陈鸿,尚文亮,倪凤玲. 牙形石( U-Th/He热定年技术的研究进展[J]. 地球科学进展, 2020, 35(9): 924-932.
[3] 肖生春,彭小梅,丁爱军,田全彦,韩超. 中国寒旱区灌木年轮学研究进展[J]. 地球科学进展, 2020, 35(6): 561-567.
[4] 田少华,肖国桥,杨欢. GDGTs在黄土古环境重建中的研究进展[J]. 地球科学进展, 2020, 35(5): 465-477.
[5] 田野,田云涛. 石墨化碳质物质拉曼光谱温度计原理与应用[J]. 地球科学进展, 2020, 35(3): 259-274.
[6] 李欣泽,金会军,吴青柏. 多年冻土区天然气管道压气站失效情境下应对方案研究[J]. 地球科学进展, 2020, 35(11): 1127-1136.
[7] 黄稳柱,张文涛,李芳. 基于光纤传感的多参量地震综合观测技术研究[J]. 地球科学进展, 2019, 34(4): 424-432.
[8] 孔乐,黄恩清,田军. 冷水珊瑚氧、碳同位素—古水温重建与钙化机制[J]. 地球科学进展, 2019, 34(12): 1252-1261.
[9] 陈云浩, 吴佳桐, 王丹丹. 广义地表热辐射方向性计算机模拟研究进展[J]. 地球科学进展, 2018, 33(6): 555-567.
[10] 杨秋明. 长江下游夏季低频温度和高温天气的延伸期预报研究[J]. 地球科学进展, 2018, 33(4): 385-395.
[11] 马晋, 周纪, 刘绍民, 王钰佳. 卫星遥感地表温度的真实性检验研究进展[J]. 地球科学进展, 2017, 32(6): 615-629.
[12] 郭准, 周天军. IAP近期际气候预测系统海洋初始化试验中海表温度和层积云的关系[J]. 地球科学进展, 2017, 32(4): 373-381.
[13] 韩振宇, 吴波, 辛晓歌. BCC_CSM1.1气候模式对全球海表温度年代际变化的回报能力评估[J]. 地球科学进展, 2017, 32(4): 396-408.
[14] 李东欢, 邹立维, 周天军. 全球1.5 ℃温升背景下中国极端事件变化的区域模式预估[J]. 地球科学进展, 2017, 32(4): 446-457.
[15] 吴佳, 高学杰, 韩振宇, 徐影. 基于有效温度指数的云南舒适度变化分析[J]. 地球科学进展, 2017, 32(2): 174-186.
阅读次数
全文


摘要