Please wait a minute...
img img
高级检索
地球科学进展  2016, Vol. 31 Issue (6): 634-642    DOI: 10.11867/j.issn.1001-8166.2016.06.0634.
全球变化研究     
基于树轮资料初探过去千年强火山喷发与青藏高原东部温度变化关系
李明启1, 邵雪梅1, 2
1.中国科学院地理科学与资源研究所,陆地表层格局与模拟院重点实验室,北京 100101;
2.中国科学院青藏高原地球科学卓越创新中心,北京 100101
Study on the Relationship between Large Volcanic Eruptions and Temperature Variation Based on Tree-Ring Data in the Eastern Tibetan Plateau during the Past Millennium
Li Mingqi1, Shao Xuemei1, 2
1.Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;
2.Chinese Academy of Sciences Center for Excellence in Tibetan Plateau Earth System Sciences, Beijing 100101, China
 全文: PDF(2773 KB)   RICH HTML
摘要: 强火山喷发是影响年际至年代际全球气候变化的重要因素之一。基于树木年轮资料重建的6条温度序列,集成重建了青藏高原东北部过去1 300多年和青藏高原东南部过去600多年的温度序列。在过去1 300多年,青藏高原东北部存在3个明显的冷期:670—920年、1000—1310年和1590—1930年;3个明显的暖期:920—1000年、1310—1590年和1930—2000年。青藏高原东南部过去600多年存在2个明显的冷期:1385—1450年和1570—1820年,2个明显的暖期:1450—1570年和1820—2000年。结合火山活动序列年表,利用时序叠加法,初步分析了过去千年强火山喷发对青藏高原东部温度变化的影响。结果表明:10°S~10°N的强火山喷发后第一年青藏高原东部出现降温,并且在α=0.05置信水平上东北部地区降温显著,东南部地区第二年达到降温显著水平;其他纬度的强火山喷发对青藏高原东北部和东南部的温度影响存在一定差异,第一年后两区均发生降温,但均未达到显著水平,然而青藏高原东北部地区第四年降温达到显著水平。这可能主要是由区域差异、不同季节温度对火山活动响应差异,或者火山喷发性质、季节、纬度以及区域的气候背景存在差异引起的。
关键词: 强火山喷发温度青藏高原东部树木年轮过去1 000年    
Abstract: Volcanic eruptions can significantly cool the global troposphere on the time scales from several months up to a decade due to reflection of solar radiation by sulfate aerosols and feedback mechanisms in the climate system. The impact of volcanic eruptions on global climate are discussed in many studies. However, few studies have been done on the impact of volcanic eruption on climate change in China in the past millennium. The 1300-year and 600-year temperature series were reconstructed based on the six tree-ring temperature proxy data in northeastern and southeastern Tibetan Plateau, respectively. Three warm periods occurred in 670-920,1000-1310 and 1590-1930, and three cold periods happened at 920-1000,1310-1590 and 1930-2000 in the northeastern Tibetan Plateau. There were two obviously warm periods (1385-1450 and 1570-1820) and two cold periods (1450-1570 and 1820-2000) in southeastern Tibetan Plateau. Contrasting with volcanic eruption chronology, we analyzed the relationship between volcanic activity and temperature variation in the eastern Tibetan plateau during the past millennium using Superposed Epoch Analysis (SEA) method. The results indicated that the temperature decreased one year after large volcanic eruptions located beteen 10°S and 10°N in latitude in northeastern Tibetan Plateau and two years in southeastern Tibetan Plateau. The volcanic eruptions occurred at different latitudes have different impacts on the temperature variations, which may be caused by regional difference, the nature of the eruption, the magnitude of the resulting change in incoming solar radiation, prevailing background climate and internal variability, season, latitude, and other considerations.
Key words: Large volcanic eruption    Temperature.    Tree-ring    The eastern Tibetan Plateau    Past millennium
收稿日期: 2016-03-08 出版日期: 2016-06-10
ZTFLH:  P423.3  
基金资助: 国家自然科学基金重点项目“过去千年自然外强迫异常期的中国气候变化空间型及其形成机制”(编号:41430528); 国家自然科学基金面上项目“横断山区树轮揭示的过去500年火山喷发信号及其气候效应”(编号:41571194)资助
作者简介: 李明启(1979-),男,山东东明人,助理研究员,主要从事树轮气候学研究.E-mail:limq@igsnrr.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李明启
邵雪梅

引用本文:

李明启, 邵雪梅. 基于树轮资料初探过去千年强火山喷发与青藏高原东部温度变化关系[J]. 地球科学进展, 2016, 31(6): 634-642.

Li Mingqi, Shao Xuemei. Study on the Relationship between Large Volcanic Eruptions and Temperature Variation Based on Tree-Ring Data in the Eastern Tibetan Plateau during the Past Millennium. Advances in Earth Science, 2016, 31(6): 634-642.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2016.06.0634.        http://www.adearth.ac.cn/CN/Y2016/V31/I6/634

[1] IPCC. Climate Change 2007: The Physical Science Basis, Summary for Policymakers, Fourth Assessment Report[M].Cambridge: Cambridge University Press, 2013.
[2] Robock A. Volcanic eruptions and climate[J]. Reviews of Geophysics , 2000, 38(2):191-219.
[3] Miller G H, Geirsdottir A, Zhong Y F, et al . Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks[J]. Geophysical Research Letters , 2012, 39: L02708, doi:10.1029/2011GL050168.
[4] Zhong Y, Miller G H, Otto-Bliesner B L, et al . Centennial-scale climate change from decadally-paced explosive volcanism: A coupled sea ice-ocean mechanism[J]. Climate Dynamics , 2011, 37(11/12):2 373-2 387.
[5] Zanchettin D, Timmreck C, Graf H F, et al . Bi-decadal variability excited in the coupled ocean-atmosphere system by strong tropical volcanic eruptions[J]. Climate Dynamics , 2012, 39(1/2):419-444.
[6] Oppenheimer C. Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815[J]. Progress in Physical Geography , 2003, 27(2):230-259.
[7] Yang Yuda, Man Zhimin, Zheng Jingyun. A serious famine in Yunnan (1815-1817) and the eruption of Tambola volcano [J]. Fudan Journal ( Social Sciences ), 2005, (1): 79-85.
. 复旦学报:社会科学版, 2005, (1):79-85.]
[8] Finch R H. A tree ring calendar for dating volcanic events at Cinder Cone, Lassen National Park, California[J]. American Journal of Science , 1937, 33(194):140-146.
[9] Lamarche Jr V C, Hirschboeck K K. Frost rings in trees as records of major volcanic eruption[J]. Nature , 1984, 307: 121-126.
[10] Briffa K R, Jones P D, Schweingruber F H, et al . Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years[J]. Nature , 1998, 393(6 684):450-455.
[11] D’Arrigo R D, Jacoby G C. Northern North American tree-ring evidence for regional temperature changes after major volcanic events[J]. Climatic Change , 1999, 41(1):1-15.
[12] Filion L, Payette S, Gauthier L, et al . Light rings in Sub-Arctic Conifers as a dendrochronological tool[J]. Quaternary Research , 1986, 26(2):272-279.
[13] Salzer M W, Hughes M K. Bristlecone pine tree rings and volcanic eruptions over the last 5000 yr[J]. Quaternary Research , 2007, 67(1):57-68.
[14] D’Arrigo R, Wilson R, Anchukaitis K J. Volcanic cooling signal in tree ring temperature records for the past millennium[J]. Journal of Geophysical Research — Atmospheres , 2013, 118(16):9 000-9 010.
[15] Esper J, Schneider L, Krusic P J, et al . European summer temperature response to annually dated volcanic eruptions over the past nine centuries[J]. Bulletin of Volcanology , 2013, 75(7):1-14.
[16] Chen F, Yuan Y J, Wei W S, et al . Temperature reconstruction from tree-ring maximum latewood density of Qinghai spruce in middle Hexi Corridor, China[J]. Theoretical and Applied Climatology , 2012, 107(3/4):633-643.
[17] Liang E Y, Shao X M, Qin N S. Tree-ring based summer temperature reconstruction for the source region of the Yangtze River on the Tibetan Plateau[J]. Global and Planetary Change , 2008, 61(3/4):313-320.
[18] Liu N, Liu Y, Zhou Q, et al . Droughts and broad-scale climate variability reflected by temperature-sensitive tree growth in the Qinling Mountains, central China[J]. International Journal of Biometeorology , 2013, 57(1):169-177.
[19] Zhang Y, Shao X M, Yin Z Y, et al . Millennial minimum temperature variations in the Qilian Mountains, China: Evidence from tree rings[J]. Climate of the Past , 2014, 10(5):1 763-1 778.
[20] Yao T D, Liu X D, Wang N L, et al . Amplitude of climatic changes in Qinghai-Tibetan Plateau[J]. Chinese Science Bulletin , 2000, 45(13):1 236-1 243.
[21] Pan Baotian, Li Jijun. Qinghai-Tibetan Plateau: A driver and amplifier of the global climatic change[J]. Journal of Lanzhou University ( Natural Sciences ), 1996, 32(1): 108-115.
. 兰州大学学报:自然科学版, 1996, 32(1):108-115.]
[22] Zhou X, Zhao P, Chen J, et al . Impacts of thermodynamic processes over the Tibetan Plateau on the Northern Hemispheric climate[J]. Science in China ( Series D ), 2009, 52(11):1 679-1 693.
[23] Liang H, Lyu L, Wahab M. A 382-year reconstruction of August mean minimum temperature from tree-ring maximum latewood density on the southeastern Tibetan Plateau, China[J]. Dendrochronologia , 2016, 37:1-8,doi:10.1016/j.dencho.2015.11.011.
[24] Liu X, Shao X, Zhao L, et al . Dendroclimatic temperature record derived from tree-ring width and stable carbon isotope chronologies in the middle Qilian Mountains, China[J]. Arctic Antarctic and Alpine Research , 2007, 39(4):651-657.
[25] Liu Y, An Z, Linderholm H W, et al . Annual temperatures during the last 2485 years in the mid-eastern Tibetan Plateau inferred from tree rings[J]. Science in China ( Series D ), 2009, 52(3):348-359.
[26] Zhu H F, Zheng Y H, Shao X M, et al . Millennial temperature reconstruction based on tree-ring widths of Qilian juniper from Wulan, Qinghai Province, China[J]. Chinese Science Bulletin , 2008, 53(24):3 914-3 920.
[27] Zhu H F, Shao X M, Yin Z Y, et al . August temperature variability in the southeastern Tibetan Plateau since AD 1385 inferred from tree rings[J]. Palaeogeography , Palaeoclimatology , Palaeoecology , 2011, 305(1/4):84-92.
[28] Liang E Y, Shao X M, Liu X H. Annual precipitation variation inferred from tree rings since AD 1770 for the Western Qilian Mts., Northern Tibetan Plateau[J]. Tree-Ring Research , 2009, 65(2):95-103.
[29] Sheppard P R, Tarasov P E, Graumlich L J, et al . Annual precipitation since 515 BC reconstructed from living and fossil juniper growth of northeastern Qinghai Province, China[J]. Climate Dynamics , 2004, 23(7/8):869-881.
[30] Gou X H, Deng Y, Gao L L, et al . Millennium tree-ring reconstruction of drought variability in the eastern Qilian Mountains, northwest China[J]. Climate Dynamics , 2015, 45(7/8):1 761-1 770.
[31] Yang B, Qin C, Wang J L, et al . A 3,500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America , 2014, 111(8):2 903-2 908.
[32] Fan Z X, Brauning A, Tian Q H, et al . Tree ring recorded May-August temperature variations since AD 1585 in the Gaoligong Mountains, southeastern Tibetan Plateau[J]. Palaeogeography , Palaeoclimatology , Palaeoecology , 2010, 296(1/2):94-102.
[33] Li M Y, Wang L, Fan Z X, et al . Tree-ring density inferred late summer temperature variability over the past three centuries in the Gaoligong Mountains, southeastern Tibetan Plateau[J]. Palaeogeography , Palaeoclimatology , Palaeoecology , 2015, 422:57-64.
[34] Gou X H, Chen F H, Yang M X, et al . Asymmetric variability between maximum and minimum temperatures in Northeastern Tibetan Plateau: Evidence from tree rings[J]. Science in China ( Series D ), 2008, 51(1):41-55.
[35] Battipaglia G, Cherubini P, Saurer M, et al . Volcanic explosive eruptions of the Vesuvio decrease tree-ring growth but not photosynthetic rates in the surrounding forests[J]. Global Change Biology , 2007, 13(6):1 122-1 137.
[36] Breitenmoser P, Beer J, Bronnimann S, et al . Solar and volcanic fingerprints in tree-ring chronologies over the past 2000 years[J]. Palaeogeography , Palaeoclimatology , Palaeoecology , 2012, 313:127-139,doi:10.1016/j.palaeo.2015.01.003.
[37] Chenoweth M. Two major volcanic cooling episodes derived from global marine air temperature, AD 1807-1827[J]. Geophysical Research Letters , 2001, 28(15):2 963-2 966.
[38] Fischer E M, Luterbacher J, Zorita E, et al . European climate response to tropical volcanic eruptions over the last half millennium[J]. Geophysical Research Letters , 2007, 34:L05707,doi:10.1029/2006GL027992.
[39] Li Xiaodong, Wang Shaowu, Huang Jianping. Signal detection of volcanic impact on climate [J]. Quarterly Journal of Applied Meteorology , 1993, 4(4): 458-467.
. 应用气象学报, 1993, 4(4):458-467.]
[40] Schoennagel T, Veblen T T, Romme W H, et al . ENSO and PDO variability affect srought-induced fire occurrence in Rocky Mountain Subalpine forests[J]. Ecological Applications , 2005, 15(6):2 000-2 014.
[41] Mass C F, Portman D A. Major volcanic eruptions and climate: A critical evaluation[J]. Journal of Climate , 1989, 2(6):566-593.
[42] Zhao Ji. Chinese Physical Geography (3rd Eds) [M]. Beijing: Higher Eeducation Press, 1995.
. 北京: 高等教育出版社, 1995.]
[43] Ge Q S, Zheng J Y, Hao Z X, et al. Temperature variation through 2000 years in China: An uncertainty analysis of reconstruction and regional difference[J]. Geophysical Research Letters , 2010, 37: L03703, doi:10.1029/2009GL041281.
[44] Li Jing, Zhang Deer. Impact of volcanic eruptions on climate[J]. Meteorological Science and Technology , 2005, 33(3): 193-198.
. 气象科技, 2005, 33(3):193-198.]
[45] Robock A, Mao J P. Winter warming from large volcanic-eruptions[J]. Geophysical Research Letters , 1992, 19(24):2 405-2 408.
[1] 蔡长娥,陈鸿,尚文亮,倪凤玲. 牙形石(U-Th/He热定年技术的研究进展[J]. 地球科学进展, 2020, 35(9): 924-932.
[2] 肖生春,彭小梅,丁爱军,田全彦,韩超. 中国寒旱区灌木年轮学研究进展[J]. 地球科学进展, 2020, 35(6): 561-567.
[3] 田少华,肖国桥,杨欢. GDGTs在黄土古环境重建中的研究进展[J]. 地球科学进展, 2020, 35(5): 465-477.
[4] 田野,田云涛. 石墨化碳质物质拉曼光谱温度计原理与应用[J]. 地球科学进展, 2020, 35(3): 259-274.
[5] 李欣泽,金会军,吴青柏. 多年冻土区天然气管道压气站失效情境下应对方案研究[J]. 地球科学进展, 2020, 35(11): 1127-1136.
[6] 黄稳柱,张文涛,李芳. 基于光纤传感的多参量地震综合观测技术研究[J]. 地球科学进展, 2019, 34(4): 424-432.
[7] 孔乐,黄恩清,田军. 冷水珊瑚氧、碳同位素—古水温重建与钙化机制[J]. 地球科学进展, 2019, 34(12): 1252-1261.
[8] 陈云浩, 吴佳桐, 王丹丹. 广义地表热辐射方向性计算机模拟研究进展[J]. 地球科学进展, 2018, 33(6): 555-567.
[9] 杨秋明. 长江下游夏季低频温度和高温天气的延伸期预报研究[J]. 地球科学进展, 2018, 33(4): 385-395.
[10] 马晋, 周纪, 刘绍民, 王钰佳. 卫星遥感地表温度的真实性检验研究进展[J]. 地球科学进展, 2017, 32(6): 615-629.
[11] 郭准, 周天军. IAP近期际气候预测系统海洋初始化试验中海表温度和层积云的关系[J]. 地球科学进展, 2017, 32(4): 373-381.
[12] 韩振宇, 吴波, 辛晓歌. BCC_CSM1.1气候模式对全球海表温度年代际变化的回报能力评估[J]. 地球科学进展, 2017, 32(4): 396-408.
[13] 李东欢, 邹立维, 周天军. 全球1.5 ℃温升背景下中国极端事件变化的区域模式预估[J]. 地球科学进展, 2017, 32(4): 446-457.
[14] 吴佳, 高学杰, 韩振宇, 徐影. 基于有效温度指数的云南舒适度变化分析[J]. 地球科学进展, 2017, 32(2): 174-186.
[15] 叶晓燕, 陈崇成, 罗明. 东亚夏季降水与全球海温异常的年代际变化关系[J]. 地球科学进展, 2016, 31(9): 984-994.