Please wait a minute...
img img
高级检索
地球科学进展  2017, Vol. 32 Issue (2): 174-186    DOI: 10.11867/j.issn.1001-8166.2017.02.0174
研究论文     
基于有效温度指数的云南舒适度变化分析
吴佳1, 高学杰2, 3, *, 韩振宇1, 徐影1
1.中国气象局国家气候中心,北京 100081;
2.中国科学院大气物理研究所气候变化研究中心, 北京 100029;
3.中国科学院大学,北京 100049
Analysis of the Change of Comfort Index over Yunnan Province Based on Effective Temperature
Wu Jia1, Gao Xuejie2, 3, *, Han Zhenyu1, Xu Ying1
1.National Climate Center, China Meteorological Administration, Beijing 100081, China;
2.Climate Change Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;
3.University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(17575 KB)   HTML
摘要:

使用高分辨率的格点化观测资料CN05.1,基于考虑了气温、相对湿度和风速影响的有效温度指数ET,进行了云南省1961—2014年气候舒适度变化的研究。结果表明,云南省地形高的北部地区气温低、相对湿度小、风速大、ET小,地形低的区域则相反。近几十年云南全境均表现出气温升高、相对湿度和风速减小、ET升高的变化趋势。对ET不同分级日数的分析指出:云南省北部冷—寒冷日和凉爽日较多,南部则主要为凉爽日和舒适日,并且全省冷—寒冷日呈明显减少趋势,凉爽日在北部增加、南部减少,舒适日显著增加,温暖及热—炎热日在南部个别地方增加,气候适宜日在4个季节均增加。在全球变暖背景下,冷—寒冷日的大幅度减少和气候适宜日的增加均表明,云南省目前的气候适宜程度有所提高。

关键词: 有效温度云南气候变化CN05.1观测资料    
Abstract:

The Effective Temperature (ET), which considers the aggregate effects of temperature, relative humidity and wind speed to describe the human thermal sensitivity, was employed to investigate the change of thermal conditions over Yunnan Province in China during the period of 1961-2014. The observation data used in the study is the high resolution gridded daily scale dataset CN05.1. The results show that over the northern part of the Province with high elevation mountains, colder temperature, lower relative humidity and stronger wind speed prevail, which leads to the lower ET values there. Opposite conditions are found over the low elevation areas in the south. An overall warming and decrease of both relative humidity and wind speed are observed in the latest decades in the whole Province, resulting in the general increase of ET over the region. Analysis based on the different assessment scales of ET shows that, more cold/extreme cold days and cool days exist in the north, while the cool days and comfortable days are mainly distributed in the south. General decrease of cold/extreme cold days is found over the region. An increase of the cool days in the north and decrease of it in the south, significant increase of the comfortable days, and increase of warm and hot/extreme hot days over portions in the south are reported. More climatic favorable days are found in all of the four seasons. Within the climate change context, the significant reduction of cold/extreme cold days and increase of climatic favorable days indicate that the climate in Yunnan Province so far tends to be more favorable for the human beings.

Key words: Effective temperature    Yunnan Province.    CN05.1 observation dataset    Climate change
收稿日期: 2016-10-12 出版日期: 2017-02-20
ZTFLH:  P463.1  
基金资助:

中国气象局气候变化专项“中国地区高分辨率极端气候事件和风险预估研究”(编号: CCSF201626)和“云南气候容量定量评估研究”(编号:CCSF201508)资助

通讯作者: 高学杰(1966-),男,河北石家庄人,研究员,主要从事区域气候模拟和气候变化研究.E-mail:gaoxuejie@mail.iap.ac.cn   
作者简介: 吴佳(1984-),女,湖南怀化人,副研究员,主要从事区域气候模拟和气候变化研究.E-mail:wujia@cma.gov.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
徐影
吴佳
韩振宇
高学杰

引用本文:

吴佳, 高学杰, 韩振宇, 徐影. 基于有效温度指数的云南舒适度变化分析[J]. 地球科学进展, 2017, 32(2): 174-186.

Wu Jia, Gao Xuejie, Han Zhenyu, Xu Ying. Analysis of the Change of Comfort Index over Yunnan Province Based on Effective Temperature. Advances in Earth Science, 2017, 32(2): 174-186.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2017.02.0174        http://www.adearth.ac.cn/CN/Y2017/V32/I2/174

[1] Editorial Committee of the Climate Change Projection and Its Impact Assessment Report on Climate Change over Yunnan in the Next 10-30 Years. Climate Change Projection and Its Impact Assessment Report on Climate Change over Yunnan in the Next 10-30 Years[M]. Beijing: Meteorological Press, 2014.
[云南未来10~30年气候变化预估及其影响评估报告编写委员会. 云南未来10~30年气候变化预估及其影响评估报告[M]. 北京: 气象出版社, 2014.]
[2] Epstein Y, Moran D S. Thermal comfort and heat stress indices[J]. Industrial Health, 2006, 44(3): 388-398.
[3] Blazejczyk K, Epstein Y, Jendritzky G,et al. Comparison of UTCI to selected thermal indices[J]. International Journal of Biometeorology, 2012, 56: 515-535, doi: 10.1007/s00484-011-0453-2.
[4] Freitas C R, Grigorieva E A. A comprehensive catalogue and classification of human thermal climate indices[J]. International Journal of Biometeorology, 2015, 59(1): 109-120.
[5] Diffenbaugh N S, Pal J S, Giorgi F, et al. Heat stress intensification in the Mediterranean climate change hotspot[J]. Geophysical Research Letters, 2007, 34: L11706, doi: 10.1029/2007GL030000.
[6] Perch-Nielsen S L, Amelung B, Knutti R. Future climate resources for tourism in Europe based on the daily tourism climatic index[J]. Climatic Change, 2010, 103(3/4): 363-381, doi: 10.1007/s10584-009-9772-2.
[7] Fischer E M, Oleson K W, Lawrence D M. Contrasting urban and rural heat stress responses to climate change[J]. Geophysical Research Letters, 2012, 39: L03705,doi:10.1029/2011 GL050576.
[8] Pal J S, Eltahir E A B. Future temperatures in southwest Asia projected to exceed a threshold for human adaptability[J]. Nature Climate Change, 2015, 6: 197-200, doi: 10.1038/nclimate2833.
[9] Fan Zhengye, Guo Laixi. The climate suitability of tourism at the coastline destinations of China[J]. Journal of Natural Resources, 1998, 13(4): 304-311.
[范正业, 郭来喜.中国海滨旅游地气候适宜性评价[J]. 自然资源学报, 1998,13(4): 304-311.]
[10] Ren Jianmei, Niu Junjie, Hu Caihong, et al. Tourism climate and evaluation of comfortableness in Wutai Mountain[J]. Geographical Research, 2004, 23(6): 856-862.
[任健美, 牛俊杰, 胡彩虹, 等. 五台山旅游气候及其舒适度评价[J]. 地理研究, 2004, 23(6): 856-862.]
[11] Ma Lijun, Sun Gennian, Wang Jiejie. Evaluation of tourism climate comfortableness of coastal cities in the Eastern China[J].Progress in Geography, 2009, 28(5): 713-722.
[马丽君, 孙根年, 王洁洁. 中国东部沿海沿边城市旅游气候舒适度评价[J]. 地理科学进展, 2009, 28(5): 713-722.]
[12] Chen Yongtao. Evaluation of tourism climate comfort index in Yunnan Province[J]. Ecological Economy, 2013,(2): 305-310.
[陈永涛.云南省旅游气候舒适度评价[J]. 生态经济: 学术版, 2013,(2): 305-310.]
[13] Dang Bing, Wang Shigong, Shang Kezheng. Evaluation of tourism climate comfort level in Pingliang of Gansu Province[J].Journal of Arid Meteorology, 2013, 31(4): 684-689.
[党冰, 王式功, 尚可政. 甘肃平凉市的旅游气候舒适度评价[J]. 干旱气象, 2013, 31(4): 684-689.]
[14] Zhu Xueling, Ren Jian. Analysis and forecast of human comfort[J]. Meteorological and Environmental Sciences, 2011, 34(Suppl.): 131-134.
[朱学玲, 任健. 人体舒适度的分析与预报[J]. 气象与环境科学, 2011, 34(增刊):131-134.]
[15] Yan Yechao, Yue Shuping, Liu Xuehua, et al. Advances in assessment of bioclimatic comfort conditions at home and abroad[J]. Advances in Earth Science, 2013, 28 (10): 1 119-1 125.
[闫业超, 岳书平, 刘学华, 等.国内外气候舒适度评价研究进展[J]. 地球科学进展, 2013, 28(10): 1 119-1 125.]
[16] Wang Zunya, Ding Yihui, He Jinhai, et al. An updating analysis of the climate change in China in recent 50 years[J]. Acta Meteorologica Sinica, 2004, 62(2): 228-236.
[王遵娅, 丁一汇, 何金海, 等. 近50年来中国气候变化特征的再分析[J]. 气象学报, 2004, 62(2): 228-236.]
[17] Ren Guoyu, Guo Jun, Xu Mingzhi, et al. Climate changes of China’s mainland over the past half century[J]. Acta Meteorologica Sinica, 2005, 63(6): 942-956.
[任国玉, 郭军, 徐铭志, 等. 近50年中国地面气候变化基本特征[J]. 气象学报, 2005, 63(6): 942-956.]
[18] Li Yu, Zhu Gengrui. Changes of climate zones in the transition area of three natural zones during the past 50 years and their responses to climate change[J]. Advances in Earth Science, 2015, 30(7):791-801, doi:10.11867/j.issn.1001-8166.2015.07.0791.
[李育,朱耿睿. 三大自然区过渡地带近50年来气候类型变化及其对气候变化的响应[J]. 地球科学进展, 2015, 30(7): 791-801, doi:10.11867/j.issn.1001-8166.2015.07.0791.]
[19] Yang Jianping, Ding Yongjian, Fang Yiping, et al. Research frame of vulnerability and adaptation for the cryosphere and its changes[J]. Advances in Earth Science, 2015, 30(5): 517-529,doi:10.11867/j.issn.1001-8166.2015.05.0517.
[杨建平, 丁永建, 方一平, 等. 冰冻圈及其变化的脆弱性与适应研究体系[J]. 地球科学进展, 2015, 30(5): 517-529,doi: doi:10.11867/j.issn.1001-8166.2015.05.0517.]
[20] Dong Guoqing, Li Liping, Zheng Guangfen. Changing trends of winter temperature in recent 53 years in Ningxia and impact for agriculture[J]. Advances in Earth Science, 2016, 31(11): 1 172-1 181,doi:10.11867/j.issn.1001-8166.2016.11.1172.
[董国庆, 李丽平, 郑广芬. 宁夏近53 年冬季气温变化趋势及对农业的影响[J]. 地球科学进展, 2016, 31(11): 1 172-1 181,doi:10.11867/j.issn.1001-8166.2016.11.1172.]
[21] Cheng Jiangang, Xie Ming’en. The analysis of regional climate change features over Yunnan in recent 50 years[J]. Progress in Geography, 2008,127(5): 19-26.
[程建刚, 解明恩. 近50年云南地区气候变化特征分析[J]. 地理科学进展, 2008,127(5): 19-26.]
[22] Li Meng, Zhu Yong, Huang Wei. Influence of climate change on climate potential productivity in Yunnan[J]. Chinese Journal of Agrometeorology, 2010, 31(3): 442-446.
[李蒙, 朱勇, 黄玮. 气候变化对云南气候生产潜力的影响[J]. 中国农业气象, 2010, 31(3): 442-446.]
[23] Liu Yu, Zhao Erxu, Huang Wei, et al. Characteristic analysis of precipitation and temperature trend in Yunnan Province in recent 46 years[J]. Journal of Catastrophology,2010, 25(1): 39-44, 63.
[刘瑜, 赵尔旭, 黄玮, 等. 云南近46年降水与气温变化趋势的特征分析[J]. 灾害学, 2010, 25(1): 39-44,63.]
[24] Duan Xu, Tao Yun. The climate change of Yunnan over the last 50 years[J]. Journal of Tropical Meteorology, 2012, 28(2): 243-250.
[段旭, 陶云. 云南近50 年来的气候变化[J]. 热带气象学报, 2012, 28(2): 243-250.]
[25] Wu Jia, Gao Xuejie. A gridded daily observation dataset over China region and comparison with the other datasets[J]. Chinese Journal Geophysics, 2013, 56(4): 1 102-1 111,doi: 10.6038/cjg20130406.
[吴佳, 高学杰. 一套格点化的中国区域逐日观测资料及与其它资料的对比[J]. 地球物理学报, 2013, 56(4): 1 102-1 111, doi: 10.6038/cjg20130406.]
[26] Wu J, Gao X J, Giorgi F, et al. Changes of effective temperature and cold/hot days in late 10 as over China based on a high resolution gridded observation dataset[J].International Journal of Climatology, 2017, doi: 10.1002/joc.5038.
[27] Xu Y, Gao X J, Shen Y, et al. A daily temperature dataset over China and its application in validating a RCM simulation[J]. Advances in Atmospheric Sciences, 2009, 26(4): 502 763-502 772.
[28] Gao X J, Wang M L, Giorgi F. Climate change over China in the 21st century as simulated by BCC_CSM1.1-RegCM4.0[J]. Atmospheric and Oceanic Science Letter, 2013, 6: 381-386, doi:10.3878/j.issn.1674-2834.13.0029.
[29] Hu Qin, Jiang Dabang, Fan Guangzhou. Evaluation of CMIP5 Models over the Qinghai-Tibetan Plateau[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(5): 924-938.
[胡芩, 姜大膀, 范广洲. CMIP5全球气候模式对青藏高原地区气候模拟能力评估[J]. 大气科学, 2014, 38(5): 924-938.]
[30] Huang Y Y, Wang H J, Fan K. Improving the prediction of the summer Asian-Pacific Oscillation using the interannual increment approach[J]. Journal of Climate, 2014, 27: 8 126-8 134,doi: 45010.1175/JCLI-D-14-00209.1.
[31] Hua Wenjian, Chen Haishan, Li Xing. Effects of future land use change on the regional climate in China[J]. Scientia Sinica Terrae, 2015, 45(7): 1 034-1 042.
[华文剑, 陈海山, 李兴. 未来土地利用变化影响中国区域气候的数值模拟[J]. 中国科学:地球科学, 2015, 45(7): 1 034-1 042.]
[32] Shi Y, Gao X J, Xu Y, et al. Effects of climate change on heating and cooling degree days and potential energy demand in the household sector of China[J]. Climate Research, 2016, 67: 135-149, doi: 10.3354/cr01360.
[33] Houghton F C, Yaglo C P. Determining equal comfort lines[J]. Journal of the American Society of Heating and Ventilating Engineers, 1923, 29: 165-176.
[34] Missenard F A. Température effective d’une atmosphere Généralisation temperature résultante d’un milieu[M]∥Encyclopédie Industrielleet Commerciale, Etude physiologique et technique de la ventilation. Paris: Librerie de l’Enseignement Technique, 1933.
[35] Gregorczuk M. Biometeorological and hygienic assessment of negative effective temperatures[J].Hygiene and Sanitation, 1968, 33: 400-403.
[36] Landsberg H E. The Assessment of Human Bioclimate: A Limited Review of Physical Parameters[M]. Geneva: World Meteorological Organization (WMO No. 331), Technical Note No. 123, 1972.
[37] Hentschel G. A human biometeorology classification of climate for large and local scales[C]∥Proc. WMO/HMO/UNEP Symposium on Climate and Human Health. Leningrad: Vol. I, WCPA-No.1, WMO, 1987.
[38] Li P W, Chan S T. Application of a weather stress index for alerting the public to stressful weather in Hong Kong[J]. Meteorological Applications, 2000, 7(4): 369-375.
[39] Gagge A P, Stolwijk J A J, Nishi Y. An effective temperature scale based on a simple model of human physiological regulatory response[J]. ASHRAE Transactions, 1971, 77: 247-272.
[40] Höppe P. The physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal environment[J]. International Journal of Biometeorology, 1999, 43:71-75.
[41] Jendritzky G, de Dear R, Havenith G. UTCI—Why another thermal index?[J]. International Journal of Biometeorology, 2012, 56(3): 421-428.
[42] Wang Y Q. MeteoInfo: GIS software for meteorological data visualization and analysis[J].Meteorological Applications,2014, 21(2): 360-368.

[1] 丁之勇, 鲁瑞洁, 刘畅, 段晨曦. 环青海湖地区气候变化特征及其季风环流因素[J]. 地球科学进展, 2018, 33(3): 281-293.
[2] 周洪建. 当前全球减轻灾害风险平台的前沿话题与展望——基于2017年全球减灾平台大会的综述与思考[J]. 地球科学进展, 2017, 32(7): 688-695.
[3] 李兴文, 张鹏, 强小科, 敖红. 三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究[J]. 地球科学进展, 2017, 32(5): 513-523.
[4] 何霄嘉, 王敏, 冯相昭. 生态系统服务纳入应对气候变化的可行性与途径探讨[J]. 地球科学进展, 2017, 32(5): 560-567.
[5] 翦知湣, 党皓文. 解读过去、预告未来:IODP气候与海洋变化钻探研究进展与展望[J]. 地球科学进展, 2017, 32(12): 1267-1276.
[6] 方修琦, 张頔旸. 气候变化影响区域文明发展演化的主要表现方式[J]. 地球科学进展, 2017, 32(11): 1218-1225.
[7] 程根伟, 范继辉, 彭立. 高原山地土壤冻融对径流形成的影响研究进展[J]. 地球科学进展, 2017, 32(10): 1020-1029.
[8] 田彪, 丁明虎, 孙维君, 汤洁, 王叶堂, 张通, 效存德, 张东启. 大气CO研究进展[J]. 地球科学进展, 2017, 32(1): 34-43.
[9] 王聪强, 杨太保, 许艾文, 冀琴, MihretabG.Ghebrezgabher. 近25年唐古拉山西段冰川变化遥感监测[J]. 地球科学进展, 2017, 32(1): 101-109.
[10] 史培军, 王爱慧, 孙福宝, 李宁, 叶涛, 徐伟, 王静爱, 杨建平, 周洪建. 全球变化人口与经济系统风险形成机制及评估研究[J]. 地球科学进展, 2016, 31(8): 775-781.
[11] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.
[12] 董文杰, 袁文平, 滕飞, 郝志新, 郑景云, 韦志刚, 丑洁明, 刘昌新, 齐天宇, 杨世莉, 阎东东, 张婧. 地球系统模式与综合评估模型的双向耦合及应用[J]. 地球科学进展, 2016, 31(12): 1215-1219.
[13] 裴巧敏, 马玉贞, 胡彩莉, 李丹丹, 郭超, 刘杰瑞. 全球典型地区MIS 5e阶段气候特征研究进展[J]. 地球科学进展, 2016, 31(11): 1182-1196.
[14] 何志斌, 杜军, 陈龙飞, 朱喜, 赵敏敏. 干旱区山地森林生态水文研究进展[J]. 地球科学进展, 2016, 31(10): 1078-1089.
[15] 赵进平, 史久新, 王召民, 李志军, 黄菲. 北极海冰减退引起的北极放大机理与全球气候效应[J]. 地球科学进展, 2015, 30(9): 985-995.