地球科学进展 ›› 2017, Vol. 32 ›› Issue (2): 160 -173. doi: 10.11867/j.issn.1001-8166.2017.02.0160

上一篇    下一篇

气温增暖与趋冷变化阶段江淮汛期气旋气候特征对比研究
王坚红 1( ), 丁晓敏 1, 薛峰 2, 苗春生 1   
  1. 1.南京信息工程大学, 气象灾害预报预警与评估协同创新中心/气象灾害教育部重点实验室,江苏 南京 210044
    2.中国气象局国家气象中心, 北京 100081
  • 收稿日期:2016-10-30 修回日期:2016-12-20 出版日期:2017-02-20
  • 基金资助:
    国家自然科学基金面上项目“海洋中尺度涡旋动力结构与维持机制研究”(编号:41276033);江苏省科技支撑项目“基于耦合数值模式的江苏海洋综合要素预报预警技术研究与应用”(编号:BE2014729)资助

A Comparative Research on Climatic Characteristics of Jianghuai Cyclones in Rainfall Season between Warming and Cooling Stages

Jianhong Wang 1( ), Xiaomin Ding 1, Feng Xue 2, Chunsheng Miao 1   

  1. 1.Nanjing University of Information Science & Technology, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing 210044, China
    2.National Meteorological Center of China Meteorological Administration, Beijing 100081, China
  • Received:2016-10-30 Revised:2016-12-20 Online:2017-02-20 Published:2017-02-20
  • About author:

    First author:Wang Jianhong(1956-), female, Shanghai City, Professor. Research areas include atmospheric and oceanographic dynamics.E-mail:1597706505@qq.com

  • Supported by:
    Project supported by the National Natural Science Foundation of China “ The dynamic structures and maintaining mechanisms of oceanic meso-scale eddies” (No.41276033);The Jiangsu Provincial Science & Technology Supporting Program “ Research and application of the forecast and warning techniques on Jiangsu oceanic elements based on the coupling numerical models ” (No.BE2014729)

对1948—2014年67年的江淮地区5~7月气温序列,利用EOF、功率谱和非线性映射法进行气候阶段客观划分,可分为3个时长近似的气候阶段:气温趋势下降阶段(1948—1970年)、气温趋势上升阶段(1971—1994年)和气温趋势缓升阶段(1995—2014年),它们的气候特征可用特定气温指数定量表达。其次,对各阶段江淮气旋统计特征与各阶段气温变化趋势进行对比, 结果显示,气旋年平均发生频数,生命期大于48 h的气旋,各类气旋数量 (深厚型,浅薄型和底层型),以及气旋路径(纬向型,经向型和打转型)的特征演变,均有明显响应阶段性气温变化的表现,阶段气温的趋冷抑制江淮气旋的活动,而阶段气温的增暖促进了气旋的发展、维持与活跃,并引导气旋位置的北进。对气旋结构特征的合成分析显示, 在气旋结构中的气旋中心强度、温度梯度、气旋急流最大风速, 气旋水汽通量通道的强度、长度、位置以及表征气旋斜压性的气旋冷暖气团的强度、厚度和北进南退位置等特征的演变, 均与阶段内环境气温的趋冷、增暖、缓升相对应。这些结果清晰显示在环境气温下降趋冷阶段,气温变化减弱了气旋的结构强度, 抑制了气旋的活跃性, 在环境气温增温和缓升阶段,气温变化加强了气旋结构的稳定成长与增强,并维持了气旋的活跃性。

By EOF, Power spectrum and nonlinear mapping methods, the temperature time series of May to July in Jianghuai river basins from 1948-2014 (67 years) were objectively divided into several climate stages. The time series were divided into three climate stages with similar lengths: the stage with its air temperature trend going downwards stage (1948-1970); the stage with its air temperature trend going upwards (1971-1994) and the stage with its air temperature trend going gentle upwards (1995-2014). Their climate characteristics can be quantified by a special climate index. Then, the statistic characteristics of Jianghuai cyclones in the three climate stages were compared with the cooling or warming trends. The results showed that characteristic evolutions of the frequency of yearly average of Jianhuai cyclones, the cyclones with their life cycles in the area longer than 48h, the cyclones with three types of thickness, shallow and bottom shapes classified according to the cyclone height, the cyclones with three kinds of zonal, meridional, and circular trajectory, responded to the temperature changing trends in the three climate stages. The cooling trends of the stage temperature restrained the activity of Jianghuai cyclones, and the warming trends of the stage temperature promoted the cyclone’s development, maintaining, activity, and also led cyclone moving towards to north further. The composite analysis of cyclone structures showed that the evolution characteristics in the center intensity, temperature grads, the maxima velocity of jet of the cyclones, and the intensity, length and position of the vapor flux passage of the Jianghuai cyclones, also the intensity, thickness, the positions of the warm and cold air masses within the cyclones, all responded to the trend change of stage temperature including cooling, warming and gentle warming. The results show clearly that temperature cooling reduces the intensity of cyclone structures and restrains the activity of cyclones in the temperatures trend down stage. The temperature warming enhances the stable development and strengthening of cyclone structure,and maintains the activity of cyclones in the temperature warming stages.

中图分类号: 

图1 江淮流域区域范围
Fig.1 Area of Jianghuai river basins
图2 1948—2014年5~7月月平均气温及EOF时空分布
(a) 时间序列(第1,2模态);(b)区域平均气温序列;(c),(d)EOF空间模态(第1,2模态)
Fig.2 The monthly temperature series and EOF spatial and temporal modes from May to July in 1948 to 2014
(a) EOF time series (EOF1 and EOF2);(b) The reginal average air temperature series; (c),(d)EOF spatial modes (EOF1 and EOF2)
图3 1948—2014年EOF1和EOF2时间序列的功率谱
Fig.3 Power spectrum of time series of EOF1 and EOF2 from 1948 to 2014
表1 阶段长度分类列表及拟合曲线2项式系数 a
Table 1 Stage length classification list and fitting curve 2-item coefficient a
图4 各气候阶段5~7月平均气温序列
Fig.4 The mean temperature series from May to July in each climate stage
表2 气温变化阶段指数列表
Table 2 Temperature trend stage index list
图5 3个阶段5~7月平均气温的EOF1(1 000 hPa)空间分布
Fig.5 EOF1 of seasonal(5~7 month) average temperature of in three stages(1 000 hPa)
图6 3个阶段内次级阶段的平均气温对比
Fig.6 Mean temperature features in secondary stages in three climate stages
表3 不同气温变化阶段气旋发生频数对比
Table 3 Comparison of cyclone frequencies in different temperature trend Stages
表4 不同气温变化阶段各个细分阶段气旋发生频数对比
Table 4 Comparison of cyclone frequencies at different secondary stages in different temperature trend stages
表5 各气温变化阶段区域内气旋生命史百分比分布表
Table 5 Percentage distribution of cyclone life cycle in different temperature trend stages
表6 3个阶段内次级阶段的生命史统计
Table 6 Cyclone life cycle statistics of secondary stage in three stages
表7 3个阶段内次级阶段的浅薄型气旋统计
Table 7 The shallow-type cyclone statistics of the secondary stage in the three temperature trend stages
图7 江淮气旋路径类别图
(a)纬向路径;(b)经向路径;(c)打转路径
Fig.7 Classification of cyclone paths
(a) Zonal path; (b) Meridional path; (c) Rotation path
表8 3类路径江淮气旋在3个阶段中的数量统计
Table 8 The statistics on three types of cyclone paths in three temperature stages
表9 3个阶段内次级阶段的气旋路径最北点年平均统计 *
Table 9 Statistics of the farthest north point of the cyclone path in the three stages
图8 次级阶段内QBX气旋温度、位势高度和风场合成图(850 hPa)
阴影为风速,单位:m/s;黑色实线为位势高度,单位:gpm;红色虚线为气温,单位:℃
Fig.8 The composite graph of QBX cyclone’s air temperature、potential height and wind speed in the secondary stage (850 hPa)
The shadow is the wind speed, unit: m/s; The black solid line is the potential height, unit: gpm; The red dotted line is the air temperature, unit:℃
图9 次级阶段内QBX气旋水汽通量合成图(850 hPa)
图中阴影为水汽通量,单位:g/(hPa·m·s);黑色矢量箭头为水汽通道,单位:m/s;粗矢量箭头表征水汽输送强轴
Fig.9 The composite graph of QBX cyclone’s water vapor flux in the secondary stage (850 hPa)
Shadow is for water vapor flux,unit: g/(hPa·m·s);Black vector arrow is for water vapor channel,unit:m/s; Bold vector arrow is for the largest water vapor channel,unit:m/s
图10 次级阶段内QBX气旋温度纬向偏差垂直剖面图
图中阴影为温度纬向偏差,单位:℃
Fig.10 The vertical profile of air temperature zonal mean deviation in the secondary stages
Shadow and line are all for air temperature zonal mean deviation,unit:℃
[1] McCabe G J, Clark M P, Serreze M C.Trends in Northern hemisphere surface cyclone frequency and intensity[J]. Journal of Climate,2001, 14(12):2 763-2 768.
[2] Orsolini Y J, Sorteberg A.Projected changes in Eurasian and Arctic summer cyclones under global warming in the Bergen climate model[J]. Atmospheric and Ocean Science Letters,2009, 2(1):62-67.
[3] Lambert S J, Fyfe J C.Changes in winter cyclone frequencies and strengths simulated in enhanced greenhouse warming experiments: Results from the models participating in the IPCC diagnostic exercise[J].Climate Dynamics, 2006, 26(7):713-728.
[4] Akperov M G, Mokhov I I.Estimates of the sensitivity of cyclonic activity in the troposphere of extra-tropical latitudes to changes in the temperature regime[J]. Izvestiya, Atmospheric and Oceanic Physics,2013, 49(2):113-120.
[5] Zappa G, Len C S, Kevin I H, et al.A multimodel assessment of future projections of North Atlantic and European extratropical cyclones in the CMIP5 climate models[J]. Journal of Climate,2013, 26:5 846-5 862, doi:10.1175/JCLI-D-12-00573.1
[6] Akperov M, Mokhov I, Rinke A, et al.Cyclones and their possible changes in the Arctic by the end of the twenty first century from regional climate modelsimulations[J]. Theoretical and Applied Climatology,2015, 122:85-96,doi: 10.1007/s00704-014-1272-2.
[7] Zhang Ying, Wang Huijun.A projection of future climate change over the western North Pacific related to typhoon activities[J]. Acta Meteorologica Sinica,2010, 68(4):539-549.
[张颖,王会军.全球变暖情境下西北太平洋地区台风活动背景场气候变化的预估[J]. 气象学报,2010,68(4):539-549.]
[8] Ma Liping,Chen Lianshou,Xu Xiangde.On the characteristics of correlation between global tropicalcyclone activities and global climate change[J].Journal of Tropical Meteorology,2006,22(2):147-154.
[马丽萍,陈联寿,徐祥德.全球热带气旋活动与全球气候变化相关特征[J].热带气象学报,2006,22(2):147-154.]
[9] Tian Rongxiang.Influence of clmiatic warm ing in Southern Hem isphere on tropical cyclone of northwestern Pacific Ocean[J].Journal of Natural Disasters, 2005, 14(4):25-29.
[田荣湘. 南半球气候变暖对西北太平洋热带气旋的影响[J].自然灾害学报,2005, 14(4):25-29.]
[10] Zhao Haikun.Study on the Mechanism of Tropical Cyclone Activity Change over the Western North Pacific under the Background of Global Warming[D]. Nanjing: Nanjing University of Information Science & Technology, 2012.
[赵海坤. 全球变暖背景下西北太平洋热带气旋活动变化机理研究[D].南京:南京信息工程大学,2012.]
[11] Wang Chao.The Influence of Global Warming on the Tropical Cyclone Intensity over the Western North Pacific[D].Nanjing: Nanjing University of Information Science & Technology, 2012.
[王超. 全球变暖对西太平洋热带气旋强度的影响[D]. 南京:南京信息工程大学,2012.]
[12] Lei Xiaotu, Xu Ming, Ren Fumin.Research progress on the effect of global warming on Typhoon activity[J]. Journal of Meteorology,2009,67(5):679-688.
[雷小途, 徐明,任福民.全球变暖对台风活动影响的研究进展[J]. 气象学报,2009,67(5):679-688.]
[13] Miao Chunsheng, Xu Fangzhu, Wang Jianhong, et al.Huai valley under two greenhouse gas emissions scenarios[J]. Chinese Journal of Atmospheric Sciences,2016,40(2):257-270.
[苗春生,徐方姝,王坚红,等.两种温室排放情景下中国汛期江淮暴雨低涡特征研究[J].大气科学,2016,40(2):257-270].
[14] Wang Jianhong, Niu Dan, Ren Shuyuan, et al.Comparative study ondevelopmeng of different deep Jianghuai Rivers cyclones entering the sea and the influence of environment factors[J].Journal of Tropical Meteorology,2015,31(6): 744-756.
[王坚红,牛丹,任淑媛,等.不同深厚气旋入海发展中环境因子作用对比研究[J]. 热带气象学报,2015,31(6): 744-756.]
[1] 刘凯,聂格格,张森. 中国 19512018年气温和降水的时空演变特征研究[J]. 地球科学进展, 2020, 35(11): 1113-1126.
[2] 康文敏,蔡芫镔,郑慧祯. 福州城市地表温度时空变化与贡献度研究[J]. 地球科学进展, 2020, 35(1): 88-100.
[3] 李江峰, 蔡晓军, 王文, 李倩文, 雷彦森. 偏最小二乘回归在水汽和地面气温多模式集成预报中的应用研究[J]. 地球科学进展, 2018, 33(4): 404-415.
[4] 马晋, 周纪, 刘绍民, 王钰佳. 卫星遥感地表温度的真实性检验研究进展[J]. 地球科学进展, 2017, 32(6): 615-629.
[5] 贾佳, 胡泽勇. 中国不同等级高温热浪的时空分布特征及趋势[J]. 地球科学进展, 2017, 32(5): 546-559.
[6] 陈晓龙, 周天军. 使用订正的“空间型标度”法预估1.5 ℃温升阈值下地表气温变化[J]. 地球科学进展, 2017, 32(4): 435-445.
[7] 王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展, 2017, 32(3): 234-244.
[8] 王晓青,刘健,王志远. 过去2000年中国区域温度模拟与重建的对比分析[J]. 地球科学进展, 2015, 30(12): 1318-.
[9] 黄强, 陈子燊. 全球变暖背景下珠江流域极端气温与降水事件时空变化的区域研究[J]. 地球科学进展, 2014, 29(8): 956-967.
[10] 徐自为,刘绍民,徐同仁,丁闯. 不同土壤热通量测算方法的比较及其对地表能量平衡闭合影响的研究[J]. 地球科学进展, 2013, 28(8): 875-889.
[11] 陈修治,陈水森, 李丹, 苏泳娴, 钟若飞. 被动微波遥感反演地表温度研究进展[J]. 地球科学进展, 2010, 25(8): 827-835.
[12] 苗爱梅,武捷,贾利冬. 1958—2008年山西气温变化的特征及趋势研究[J]. 地球科学进展, 2010, 25(3): 264-272.
[13] 康国婷,阎广建,任华忠,王颢星,钱永刚. 田块尺度作物辐射温度获取方法对比研究[J]. 地球科学进展, 2009, 24(7): 784-792.
[14] 张强,王胜. 关于黄土高原陆面过程及其观测试验研究[J]. 地球科学进展, 2008, 23(2): 167-173.
[15] 郭艳君. 高空大气温度变化趋势不确定性的研究进展[J]. 地球科学进展, 2008, 23(1): 24-30.
阅读次数
全文


摘要