地球科学进展 ›› 2018, Vol. 33 ›› Issue (4): 404 -415. doi: 10.11867/j.issn.1001-8166.2018.04.0404

研究论文 上一篇    下一篇

偏最小二乘回归在水汽和地面气温多模式集成预报中的应用研究
李江峰( ), 蔡晓军 *( ), 王文, 李倩文, 雷彦森   
  1. 南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心,江苏 南京 210044
  • 收稿日期:2017-09-30 修回日期:2018-01-08 出版日期:2018-04-20
  • 通讯作者: 蔡晓军 E-mail:18751978762@163.com;wwllw003@126.com
  • 基金资助:
    *国家自然科学基金项目“长江中下游流域多尺度干旱指标的适应性研究”(编号:41279051)资助.

Application of Partial Least Squares Regression in Multimodal Integrated Forecasting of Water Vapor and Surface Air Temperature

Jiangfeng Li( ), Xiaojun Cai *( ), Wen Wang, Qianwen Li, Yansen Lei   

  1. Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology/Joint Laboratory of International Cooperation on Climate and Environment Change/Center for Innovation and Coordination of Meteorological Disaster Prediction and Early Warning and Assessment, Nanjing 210044, China
  • Received:2017-09-30 Revised:2018-01-08 Online:2018-04-20 Published:2018-05-24
  • Contact: Xiaojun Cai E-mail:18751978762@163.com;wwllw003@126.com
  • About author:

    First author:Li Jiangfeng(1993-),male,Tongshan County,Hubei Province,Master student. Research areas include multi-mode integration research.E-mail:18751978762@163.com

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Study on the adaptability of multi-scale drought indexes in the middle and lower reaches of the Yangtze River”(No.41279051).

使用一种新的多模式集成方法偏最小二乘回归(PLS),利用其能完全消除多重共线性的特征来改善比湿和地面气温多模式集成预报的效果。基于TIGGE资料集下的欧洲中期天气预报中心(ECMWF)、中国气象局(CMA)、日本气象厅(JMA)和英国气象局(UKMO)4个中心集合预报结果,建立2012年多模式(25°60°N,60°150°E)区域24168 h预报时效(间隔24 h)比湿和地面气温的多模式集成模型,分别使用消除偏差集合平均(BREM)、简单集合平均(EMN)、超级集合预报(SUP)以及偏最小二乘回归(PLS)4种方法对地面气温和水汽多模式集成,利用均方根误差(RMSE)和距平相关系数(cor)来判定多模式集成的效果并且针对性地预报了一次短期寒潮过程。2次预报结果均表明:偏最小二乘回归(PLS)方法的多模式集成效果最好,不但优于4种单一模式而且表现出比其他3种方法更好的预报性能,具有一定的价值以及应用前景。

The use of a new multi model integration method of Partial Least Squares regression (PLS) can completely eliminate the multicollinearity features to improve multi model’s integrated forecasting results of the humidity and temperature. Based on the four centers’ ensemble forecast results, namely, the European Center for Medium-Range Weather Forecasts (ECMWF), Chinese Meteorological Administration (CMA), the Japan Meteorological Agency (JMA) and the UK Met Office (UKMO), we built a 2012 multi mode (25°~60°N, 60°~150°E) 24 ~168 hours forecast time (interval 24 hours) multi model for humidity and temperature and used the four methods, like ensemble average (BREM) for eliminating the deviation, a simple set of average (EMN), Super Ensemble (SUP) and Partial Least Squares regression (PLS) for ground temperature multi model integration. We used the Root-Mean-Square Error (RMSE) and anomaly correlation coefficient (cor) to determine the effect of more modes of integration and to predict a short course of cold. The two prediction results showed that the Partial Least Squares regression (PLS) was the best multi model integrated method, more superior than the other three single modes and compared with the other three methods, it showed better prediction performance, which has certain value and application prospect.

中图分类号: 

图1 多模式集成预报流程示意图
Fig.1 Schematic diagram of multi-mode integrated forecasting process
图1 多模式集成预报流程示意图
Fig.1 Schematic diagram of multi-mode integrated forecasting process
图2 2012年12月131日每日24 h(a),48 h(b),72 h(c),96 h(d),120 h(e),144 h(f),168 h(g)地面气温预报在25°60°N,60°150°E区域的平均均方根误差
Fig.2 December 1,2012 to December 31,2012 daily 24 h(a),48 h(b),72 h(c),96 h(d),120 h(e),144 h(f),168 h(g) surface air temperature in 25°60°N,60°150°E area average Root-Mean-Square Error
图2 2012年12月131日每日24 h(a),48 h(b),72 h(c),96 h(d),120 h(e),144 h(f),168 h(g)地面气温预报在25°60°N,60°150°E区域的平均均方根误差
Fig.2 December 1,2012 to December 31,2012 daily 24 h(a),48 h(b),72 h(c),96 h(d),120 h(e),144 h(f),168 h(g) surface air temperature in 25°60°N,60°150°E area average Root-Mean-Square Error
图3 2012年12月131日8种模式气温分别与FNL资料气温的日平均距平相关系数
Fig.3 Daily average Anomaly correlation coefficient between FNL air temperature and eight modes air temperature from December 1, 2012 to December 31, 2012
图3 2012年12月131日8种模式气温分别与FNL资料气温的日平均距平相关系数
Fig.3 Daily average Anomaly correlation coefficient between FNL air temperature and eight modes air temperature from December 1, 2012 to December 31, 2012
图4 2012年12月2729日寒潮过程地面气温“实况场”与CMA(a),EC(b),UKMO(c),JMA(d),PLS(e),SUP(f),BREM(g),EMN(h)24168 h平均均方根误差的地理分布(单位:℃)
右上角RMSE表示平均均方根误差
Fig.4 December 27, 2012 to December 29, 2012 cold-air outbreak surface air temperature “real ” and CMA(a), EC(b),UKMO(c),JMA(d),PLS(e),SUP(f),BREM(g),EMN(h)24168 h average Root-Mean-Square Error geographical distribution(unit:℃)
In the upper right corner RMSE express the average Root-Mean-Square Error
图4 2012年12月2729日寒潮过程地面气温“实况场”与CMA(a),EC(b),UKMO(c),JMA(d),PLS(e),SUP(f),BREM(g),EMN(h)24168 h平均均方根误差的地理分布(单位:℃)
右上角RMSE表示平均均方根误差
Fig.4 December 27, 2012 to December 29, 2012 cold-air outbreak surface air temperature “real ” and CMA(a), EC(b),UKMO(c),JMA(d),PLS(e),SUP(f),BREM(g),EMN(h)24168 h average Root-Mean-Square Error geographical distribution(unit:℃)
In the upper right corner RMSE express the average Root-Mean-Square Error
图5 2012年6月1日至8月31日每日24 h(a),48 h(b),72 h(c),96 h(d),120 h(e),144 h(f),168 h(g)850 hPa比湿预报的25°60°N,60°150°E区域的平均均方根误差
Fig.5 June 1, 2012 to August 31, 2012 daily 24 h(a),48 h(b),72 h(c),96 h(d),120 h(e),144 h(f),168 h(g) specific humidity in 25°60°N,60°150°E area average Root-Mean-Square Error
图5 2012年6月1日至8月31日每日24 h(a),48 h(b),72 h(c),96 h(d),120 h(e),144 h(f),168 h(g)850 hPa比湿预报的25°60°N,60°150°E区域的平均均方根误差
Fig.5 June 1, 2012 to August 31, 2012 daily 24 h(a),48 h(b),72 h(c),96 h(d),120 h(e),144 h(f),168 h(g) specific humidity in 25°60°N,60°150°E area average Root-Mean-Square Error
图6 2012年6月1日至8月31日850 hPa比湿“实况场”分别与CMA(a),EC(b),JMA(c),UKMO(d), EMN(e),BREM(f),SUP(g),PLS(h)24168 h平均均方根误差的地理分布(单位:g/kg)
左上角RMSE表示平均均方根误差
Fig.6 June 1, 2012 to August 31, 2012 specific humidity “real” and CMA(a),EC(b),JMA(c),UKMO(d),EMN(e), BREM(f),SUP(g),PLS(h) 24168 h average Root-Mean-Square Error geographical distribution(unit:g/kg)
In the upper right corner RMSE express the average Root-Mean-Square Error
图6 2012年6月1日至8月31日850 hPa比湿“实况场”分别与CMA(a),EC(b),JMA(c),UKMO(d), EMN(e),BREM(f),SUP(g),PLS(h)24168 h平均均方根误差的地理分布(单位:g/kg)
左上角RMSE表示平均均方根误差
Fig.6 June 1, 2012 to August 31, 2012 specific humidity “real” and CMA(a),EC(b),JMA(c),UKMO(d),EMN(e), BREM(f),SUP(g),PLS(h) 24168 h average Root-Mean-Square Error geographical distribution(unit:g/kg)
In the upper right corner RMSE express the average Root-Mean-Square Error
[1] Lorenz E N.A study of the predictability of a 28-variable atmospheric model[J]. Tellus, 1965, 17:321-333.
doi: 10.1111/j.2153-3490.1965.tb01424.x     URL    
[2] Du Jun.The status and prospect of ensemble forecast[J]. Journal of Applied Meteorology,2002,13(1):16-28.
[杜钧. 集合预报的现状和前景[J].应用气象学报,2002,13(1):16-28.]
[3] Epstein E S.Stochastic dynamic prediction[J]. Tellus,1969,21:739-759.
[4] Leith C E.Theoretical skill of Monte Carlo forecasts[J]. Monthly Weather Review,1974,102:409-418.
doi: 10.1175/1520-0493(1974)1022.0.CO;2     URL    
[5] Thompson P D.How to improve accuracy by combining independent forecasts[J]. Monthly Weather Review, 1977, 105(2): 228-229.
doi: 10.1175/1520-0493(1977)1052.0.CO;2     URL    
[6] Krishnamurti T N, Kishtawal C M, LaRow T E,et al. Improved weather and seasonal climate forecasts from multimodel SUPerensemble[J]. Science, 1999, 285(5 433): 1 548-1 550.
doi: 10.1126/science.285.5433.1548     URL     pmid: 10477515
[7] Yang Xuesheng.The present situation and prospect of service ensemble forecasting system[J].Meteorological Monthly,2001, 27(6): 3-9.
[杨学胜. 业务集合预报系统的现状及展望[J]. 气象, 2001, 27(6): 3-9.]
doi: 10.3969/j.issn.1000-0526.2001.06.001     URL    
[8] Vijaya Kumar T S V, Krishnamurti T N, Fiorino M,et al. Multimodel superensemble forecasting of tropical cyclones in the Pacific[J]. Monthly Weather Review, 2003, 131(3): 574-583.
doi: 10.1175/1520-0493(2003)1312.0.CO;2     URL    
[9] Ross R S, Krishnamurti T N.Reduction of forecast error for global numerical weather prediction by the Florida State University (FSU) superensemble[J].Meteorology and Atmospheric Physics, 2005, 88(3): 215-235.
doi: 10.1007/s00703-004-0077-8     URL    
[10] Krishnamurti T N, Sagadevan A D, Chakraborty A,et al. Improving multimodel weather forecast of monsoon rain over China using FSU superensemble[J]. Advances in Atmospheric Sciences, 2009, 26(5): 813-839.
doi: 10.1007/s00376-009-8162-z     URL    
[11] Bao Hongjun.Inspection and application of multi-model integrated quantitative precipitation forecast in a storm flood forecast[C]∥S12 Meteorological, Geo-hazard Meteorological Forecasting and Services. Chinese Meteorological Society, 2012.
[包红军. 多模式集成定量预报降水在一次暴雨洪水预报中的检验与应用[C]∥S12水文气象、地质灾害气象预报与服务.中国气象学会,2012.]
[12] Chen Chaohui, Wang Tie, Tan Yanke, et al. Study on multi-mode short-term ensemble forecasting method for Jianghuai flood season in 2003[J]. Journal of Tropical Meteorology, 2009, 25(4): 449-457.
[陈超辉, 王铁, 谭言科, 等. 2003 年江淮汛期多模式短期集合预报方法研究[J]. 热带气象学报, 2009, 25(4): 449-457.]
doi: 10.3969/j.issn.1004-4965.2009.04.010     URL    
[13] Zhang Yazhou, Li Shenglin, Deng Wenbin, et al. Experiment of tropical cyclone precipitation forecast based on multi-mode short-term ensemble forecasting[J]. Meteorology and Disaster Reduction Research,2011, 34(2): 26-33.
[张亚洲, 李盛林, 邓文彬, 等. 基于多模式短期集合预报技术的热带气旋降水预报试验[J]. 气象与减灾研究, 2011, 34(2): 26-33.]
doi: 10.3969/j.issn.1007-9033.2011.02.005     URL    
[14] Tang Shengjun, Wang Donghai, Du Jun, et al. Experiment of mixed ensemble forecasting method for short term Rainstorm Forecast in Southern China[J]. Journal of Applied Meteorological Science,2015, 26(6): 669-679.
[唐圣钧, 王东海, 杜钧, 等. 混合集合预报法在华南暴雨短期预报中的试验[J]. 应用气象学报, 2015, 26(6): 669-679.]
doi: 10.11898/1001-7313.20150603     URL    
[15] Wei Fengying.Integrated weighted prediction experiment of regional summer rainfall in China[J].Journal of Applied Meteorological Science, 1999,10(4):402-409.
[魏凤英. 全国夏季降水区域动态权重集成预报试验[J]. 应用气象学报,1999,10(4):402-409.]
doi: 10.3969/j.issn.1001-7313.1999.04.003     URL    
[16] Zhi Xiefei, Ji Xiaodong, Zhang Jing, et al. Multimodal integrated forecasting of ground temperature and precipitation based on TIGGE data[J].Journal of Nanjing Institute of Meteorology, 2013, 36(3): 257-266.
[智协飞, 季晓东, 张璟, 等. 基于TIGGE 资料的地面气温和降水的多模式集成预报[J]. 大气科学学报, 2013, 36(3): 257-266.]
[17] Yu Shuiyan, Zhi Xiefei.Multimodal Integrated Forecasting of Water Vapor in Eastern China[C]∥The Thirty-first Session of the Annual Meeting. Beijing, 2014.
[于水燕, 智协飞. 中国东部水汽的多模式集成预报研究[C]∥第31届中国气象学会年会 S2 灾害天气监测, 分析与预报.北京, 2014.]
[18] Li Qian, Hu Banghui, Wang Xuezhong, et al. Multi model integrated prediction experiment of regional temperature based on BP artificial neural network[J].Arid Meteorology, 2011, 29(2): 231-235.
[李倩, 胡邦辉, 王学忠, 等. 基于BP 人工神经网络的区域温度多模式集成预报试验[J]. 干旱气象, 2011, 29(2): 231-235.]
[19] Lin Chunze, Zhi Xiefei, Han Yan, et al. Multi model super set forecast of surface temperature based on TIGGE data[J].Journal of Applied Meteorological Science, 2009, 20(6): 706-712.
[林春泽, 智协飞, 韩艳, 等. 基于TIGGE 资料的地面气温多模式超级集合预报[J]. 应用气象学报, 2009, 20(6): 706-712.]
doi: 10.3969/j.issn.1001-7313.2009.06.008     URL    
[1] 任国玉. 气候变暖成因研究的历史、现状和不确定性[J]. 地球科学进展, 2008, 23(10): 1084-1091.
阅读次数
全文


摘要