Please wait a minute...
img img
高级检索
地球科学进展  2018, Vol. 33 Issue (4): 396-403    DOI: 10.11867/j.issn.1001-8166.2018.04.0396
研究论文     
大气环流形势客观分型及其与中国降水的联系
陈亮(), 段建平*(), 马柱国
中国科学院大气物理研究所,中国科学院东亚区域气候—环境重点实验室, 北京 100029
Objective Analysis on Large-scale Circulation Type and Its Links to Precipitation over China
Liang Chen(), Jianping Duan*(), Zhuguo Ma
CAS Key Laboratory of Regional Climate Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
 全文: PDF(10418 KB)   HTML
摘要:

大气环流异常是造成天气和气候变化的直接原因。以往对大气环流形势和中国降水关系的研究绝大部分是在对大气环流形势进行主观分型和进一步诊断的基础上来研究两者的联系。相对于对大气环流形势的主观分析,客观分型方法采用的指标更一致、标准更统一,能够得到较多的大气环流类型,目前得到了较为广泛的应用。利用欧洲中期数值天气预报中心提供的1979—2016年的再分析资料(ERA-Interim),通过选择逐日12UTC的海平面气压、可降水量和700 hPa风速3个变量, 应用倾斜旋转T模态主成分分析方法对中国区域内的大气环流进行了客观分型,并进一步分析了不同大气环流类型与中国区域降水之间的联系。结果表明,不同大气环流类型对中国区域降水趋势和降水量的影响不仅在空间上存在差异,而且在季节上也不尽相同。总体表现为大气环流类型对降水量大的区域和降水量多的月份影响较大,而对降水量小的区域和降水少的月份的影响较小。此外,与环流类型发生频次对中国降水的影响相比,大气环流类型发生频次不变的背景下降水强度变化对中国降水趋势的影响更加显著。

关键词: 大气环流中国降水环流分型倾斜T模态主成分分析    
Abstract:

Atmospheric circulation anomaly is a direct cause of weather and climate change. In the past, most researches for the relationship between Weather Type (WT) and precipitation have mainly focused on the subjective classification and diagnosis. Compared to the subjective analysis, objective classification uses more consistent index and standard unification, thus, we can get more WTs, and it has been widely used in many areas. By using daily 12UTC Sea Level Pressure (SLP), Precipitable Water (PW), and 700 hPa wind speed (UV700) data from ECMWF’s Interim Reanalysis, the classification of WTs over China was performed with the method of obliquely rotated T-mode principle component analysis. WT and its link to precipitation over China were further analyzed. The results show that the influence of different WTs on precipitation is not uniform over China, and also show distinctly difference in different seasons. A common feature is that WTs great impact on the regions and months with large precipitation, while less impact on regions and months have with less precipitation. In addition, precipitation trends originating from WT intensity changes are much more deterministic, significant, and predictable than trends from WT frequency changes.

Key words: Atmospheric circulation    Precipitation over China    Circulation classification    Obliquely rotated T-mode principle component analysis.
收稿日期: 2017-12-01 出版日期: 2018-05-24
ZTFLH:  P426.6  
基金资助: *国家自然科学基金面上项目“青藏高原东南部过去500年极端温度事件的演变特征及其动力机制”(编号:41471035);中国科学院寒旱区陆面过程与气候变化重点实验室开放基金项目“西北干旱地区陆—气耦合强度对区域气候的影响”(编号:LPU2017001)资助.
通讯作者: 段建平     E-mail: chenliang@tea.ac.cn;duanjp@tea.ac.cn
作者简介:

作者简介:陈亮(1982-),江西萍乡人,副研究员,主要从事区域气候模拟及陆气相互作用研究.E-mail:chenliang@tea.ac.cn

服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈亮
段建平
马柱国

引用本文:

陈亮, 段建平, 马柱国. 大气环流形势客观分型及其与中国降水的联系[J]. 地球科学进展, 2018, 33(4): 396-403.

Liang Chen, Jianping Duan, Zhuguo Ma. Objective Analysis on Large-scale Circulation Type and Its Links to Precipitation over China. Advances in Earth Science, 2018, 33(4): 396-403.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2018.04.0396        http://www.adearth.ac.cn/CN/Y2018/V33/I4/396

图1  基于倾斜T模态主成分分析方法划分的中国区域12种天气环流类型(a)~(i)阴影为海平面气压在1979—2016年时段的异常
图2  12种环流类型发生频次的变化特征99和90分别表示通过了99%和90%的信度检验
图3  中国区域内划分的8个子区域
图4  不同环流类型下中国及8个子区域降水变化的月趋势及年内变化
图5  观测的中国1979—2016年逐月降水距平
图6  12种环流类型对应的1979—2016年降水距平
图7  中国1979—2016年年降水变化趋势与环流类型的关系(a)观测的1979—2016年中国区域年降水变化趋势(%/10年);(b) 环流类型发生频率导致的降水趋势变化和(c) 环流类型对应降水强度导致的降水趋势变化;红色点区域表示趋势通过90%信度检验
[1] Li Chongyin.An Introduction of Climate Dynamics (2nd Edition)[M]. Beijing: China Meteorological Press, 2000:27.[李崇银. 气候动力学引论(第二版)[M]. 北京:气象出版社,2000:27.]
[2] Zuo Hongchao, Lü Shihua, Hu Yinqiao.Variations trend of yearly mean air temperature and precipitation in China in the last 50 years[J]. Plateau Meteorology, 2004, 23(2): 238-244.[左洪超, 吕世华, 胡隐樵.中国近50年气温及降水量的变化趋势分析[J].高原气象,2004,23(2):238-244.]
doi: 10.3321/j.issn:1000-0534.2004.02.017
[3] Zhou Liantong, Huang Ronghui.Research on the characteristics of interdecadal variability of summer climate in China and its possible cause[J]. Climate and Environmental Research, 2003, 8(3): 274-290.[周连童,黄荣辉. 关于我国夏季气候年代际变化特征及其可能成因的研究[J].气候与环境研究, 2003, 8(3):274-290.]
doi: 10.3969/j.issn.1006-9585.2003.03.003
[4] Kwon M, Jhun J, Ha K.Decadal change in east Asian summer monsoon circulation in the mid-1990s[J]. Geophysical Research Letters, 2007, 34(21):377-390.
doi: 10.1029/2007GL031977
[5] Zhu Y, Wang H, Zhou W, et al. Recent changes in the summer precipitation pattern in East China and the background circulation[J]. Climate Dynamics, 2011, 36(7/8):1 463-1 473.
doi: 10.1007/s00382-010-0852-9
[6] Lu Riyu.Linear relationship between the interdecadal and interannual variabilities of North China rainfall in rainy season[J]. Chinese Science Bulletin, 2003, 48(10):1 040-1 044.[陆日宇. 华北汛期降水量年代际和年际变化之间的线形关系[J]. 科学通报,2003,48(7):718-722.]
doi: 10.3321/j.issn:0023-074X.2003.07.017
[7] Huang Ronghui, Chen Jilong, Liu Yong.Interdecadal variation of the leading modes of summertime precipitation anomalies over eastern China and its association with water vapor transport over East Asia[J]. Chinese Journal of Atmospheric Sciences, 2011,35(4): 589-606.[黄荣辉,陈际龙,刘永. 我国东部夏季降水异常主模态的年代际变化及其与东亚水汽输送的关系[J]. 大气科学,2011,35(4):589-606.]
doi: 10.3878/j.issn.1006-9895.2011.04.01
[8] Gong D Y, Ho C H.Shift in the summer rainfall over the Yangtze River valley in the late 1970s[J]. Geophysical Research Letters, 2002, 29(10):1 436.
doi: 10.1029/2001GL014523
[9] Cahynová M, Huth R.Circulation vs. climatic changes over the Czech Republic: A comprehensive study based on the COST733 database of atmospheric circulation classifications[J]. Physics and Chemistry of the Earth (Parts A/B/C), 2010, 35(9/12): 422-428.
doi: 10.1016/j.pce.2009.11.002
[10] Huth R.Synoptic-climatological applicability of circulation classifications from the COST733 collection: First results[J]. Physics & Chemistry of the Earth, 2010, 35(9/12):388-394.
doi: 10.1016/j.pce.2009.11.013
[11] Huth R, Beck C, Philipp A, ,et al. Classifications of atmospheric circulation patterns[J]. Annals of the New York Academy of Sciences. Classifications of atmospheric circulation patterns[J]. Annals of the New York Academy of Sciences, 2008, 1 146(1): 105-152.
[12] Huth R.An example of using obliquely rotated principal components to detect circulation types over Europe[J]. Meteorologische Zeitschrift, 1993, 2: 285-293.
[13] Huth R.An intercomparison of computer-assisted circulation classification methods[J]. International Journal of Climatology, 1996, 16(8): 893-922.
doi: 10.1002/(ISSN)1097-0088
[14] Huth R.Properties of the circulation classification scheme based on the rotated principal component analysis[J]. Meteorology and Atmospheric Physics, 1996, 59(3/4): 217-233.
doi: 10.1007/BF01030145
[15] Philipp A, Bartholy J, Beck C, et al. Cost733cat—A database of weather and circulation type classifications[J]. Physics and Chemistry of the Earth (Parts A/B/C), 2010, 35(9/12): 360-373.
doi: 10.1016/j.pce.2009.12.010
[16] Dee D, Uppala S, Simmons A, et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(656): 553-597.DOI:10.1002/qj.828.
doi: 10.1002/qj.828
[1] 武丰民, 何金海, 祁莉. 北极海冰消融及其对欧亚冬季低温影响的研究进展[J]. 地球科学进展, 2014, 29(8): 913-921.
[2] 尹崇华,延晓冬,石正国. 近年来中等复杂程度地球系统模式的研究进展[J]. 地球科学进展, 2007, 22(3): 290-296.
[3] 万世明;李安春. 海洋风尘沉积的古气候学研究进展[J]. 地球科学进展, 2004, 19(6): 955-962.
[4] 王澄海,董文杰,韦志刚. 陆面模式中土壤冻融过程参数化研究进展[J]. 地球科学进展, 2002, 17(1): 44-52.
[5] 黄荣辉. 大气科学发展的回顾与展望[J]. 地球科学进展, 2001, 16(5): 643-657.
[6] 钱正安,焦彦军. 青藏高原气象学的研究进展和问题[J]. 地球科学进展, 1997, 12(3): 207-216.
[7] 周亚军,陈葆德,孙国武. 陆面过程研究综述[J]. 地球科学进展, 1994, 9(5): 26-31.
[8] 叶笃正,黄荣辉. 我国长江、黄河两流域旱涝规律成因与预测研究的进展、成果与问题[J]. 地球科学进展, 1991, 6(4): 24-29.