地球科学进展 ›› 2007, Vol. 22 ›› Issue (3): 290 -296. doi: 10.11867/j.issn.1001-8166.2007.03.0290

综述与评述 上一篇    下一篇

近年来中等复杂程度地球系统模式的研究进展
尹崇华 1,2,延晓冬 1,石正国 1,2   
  1. 1.中国科学院大气物理研究所东亚区域气候—环境重点实验室,北京 100029;2.中国科学院研究生院,北京 100039
  • 收稿日期:2006-07-24 修回日期:2007-01-11 出版日期:2007-03-10
  • 通讯作者: 延晓冬(1962-),男,陕西绥德人,研究员,博士,主要从事系统生态学、森林生态学和全球变化研究.E-mail:yxd@tea.ac.cn E-mail:yxd@tea.ac.cn
  • 基金资助:

    国家重点基础研究发展计划项目“北方干旱化与人类适应”(编号: 2006CB400500);国家自然科学基金项目“基于个体的陆面动态植被模式”(编号:40675048)资助.

Progress of the Study of Earth System of Models of Intermediate Complexity in Recent Years

YIN Chong-hua 1, 2, YAN Xiao-dong 1 , SHI Zheng-guo 1,2    

  1. 1.Key Laboratory of Regional Climate-Environment Research for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; 2.Gruduate University of Chinese Academy of Sciences, Beijing 100039, China
  • Received:2006-07-24 Revised:2007-01-11 Online:2007-03-10 Published:2007-03-10

近十几年来,地球系统模式领域活跃着一类新兴的模式——中等复杂程度的地球系统模式(EMICs),EMICs以其对计算能力的较低要求和对地球系统的较为完备的描述,使其应用几乎覆盖了简单模式和大气环流模式(CGCMs)的所有研究领域,特别在长期气候变化的模拟方面展现了得天独厚的优势,从而使得在长期气候变化的背景下研究近代气候变化更具现实意义。EMICs已经成为模拟地球系统的有力工具,为目前的CGCMs模拟提供了必要的补充,在简单模式与CGCMs之间架起了一座桥梁。首先回顾了中等复杂程度地球系统模式(EMICs)的发展现状,结合近年来国内外发表的文献探讨了EMICs的基本组成、应用领域,并对EMICs未来的发展趋势进行了预测。

In recent decades, except for conceptual and three-dimensional comprehensive models (CGCMs), Earth system models of intermediate complexity (EMICs) as a new type of models occur in the scope of the Earth system models. EMICs simulate the interactions among several or even all components of the Earth system explicitly, albeit in a more reduced, i.e., more parameterized form. Thus EMICs describe the Earth system in an almost complete manner. Just due to their Simplicities, EMICs need more low Computation cost. Therefore, EMICs can not carry out only long-term simulations over 10 000 years, but a broad range of sensitivity experiments. EMICs have already become an integrated and powerful assessment tool for environmental studies, and bridge the gap between present CGCMs and conceptual models. In this review paper, status and improvements of EMICs are reviewed firstly. Then based on the domestic and foreign published literatures, the basic composition and application domain of EMICs in recent years are discussed. Finally, the future development trend of EMICs is forecasted.

中图分类号: 

[1]Kraus H.Die Atmosphere der Erde[M].Viewing, Braunschweig,2000.
[2]Alcamo J. IMAGE 2.0: Integrated modeling of global climate change[J].Specical Issue Water, Air, Soil, Pollution,1994, 76(1/2):13-21.
[3]Schellnhuber H J.“Earth system” analysis and the second Copernican revolution[J]. Nature,1999,402:C19-C28.
[4]Grassl H. Status and improvements of coupled general circulation models[J]. Science, 2000,288:1 991-1 997.
[5]Claussen M . Earth system models[C]//Ehlers E, Krafit T,eds. Understanding the Earth System: Compartments, Processes and interactions.Heidelberg, Berlin, New York:Springer, 2000.
[6]Brovkin V,Ganopolski A,Svirezhev Y. A continuous climate-vegetation classification for use in climate-biosphere studies[J].Ecological Modelling,1997,101:251-261.
[7]Pacanowski R C, Griffies S M. The MOM-3 manual[R]. Technology Report,1999,4.
[8]Petoukhov V, Ganopolski A, Brovkin V,et al. CLIMBER- 2: A climate system model of intermediate complexity. Part I: Model description and perform-ance for present climate[J].Climate Dynamics,2000, 16:1-17.
[9]Petoukhov V, Ganopolski A, Claussen M. POTSDAM-a set of atmosphere statistical-dynamical models: Theoretical background[R]. PIK Report, 2003,81:136.
[10]Wang Z. Two climatic states and feedbacks on thermohaline circulation in an Earth system model of intermediate complexity[J].Climate Dynamics,2005, 25: 299-314, doi: 10.1007/s00382-05-0033-4.
[11]Marsh R J, Yool A, Lenton T M, et al. Bistability of the thermohaline circulation identified through comprehensive 2-parameter sweeps of an efficient climate model [J].Climate Dynamics, 2004,23:761-777.
[12]Stocker T F, Schmittner A. Influence of CO2 emission rates on the stability of the thermohaline circulation[J].Nature,1997,388:862-865.
[13]Papa B, Mysak L A, Wang Z. Intermittent ice sheet discharge events in northeastern North America during the last glacial period[J].Climate Dynamics,2005,26:201-216,DOI:10.1007/s00382-005-0078-4.
[14]Lehman S J, Wright D G, Stocker T F. Transport of freshwater into the deep ocean by the conveyor[C]//Peltier W R, ed. Ice in the Climate System. NATO ASI Ser,1993,12(I):187-209. 
[15]Milankovitch M. Mathematische Klimalehre und astronomische Theorie der Klimaschwankungen[C]//Koppen W, Geige R, eds.Handbuch der Klimatologie, Berlin: Gebruder Borntraeger,1930.
[16]Gall′ee H, Ypersele J P, Fichefet T, et al. Simulation of the last glacial cycle by a coupled, sectorially averaged climate-ice sheet model. II Response to insolation and CO2 variation[J]. Journal of Geophysical Research,1992, 97(15):713-715.
[17]Berger A, Loutre M F, Gall′ee H. Sensitivity of the LLN climate model to the astronomical and CO2 forcings over the last 200 kyr[J].Climate Dynamics,1998,14:615-629.
[18]Loutre M F, Berger A. No glacial-interglacial cycle in the ice volume simulated under a constant astronomical forcing and a variable CO2[J].Geophysical Research Letters,2000,27(6):783-786.
[19]Meissner K J, Weaver A J, Matthews H D, et al. The role of land surface dynamics in glacial inception: A study with the UVic Earth System Model[J].Climate Dynamics,2003, 21:515-537, doi: 10.1007/s00382-003-0352-2.
[20]Kageyama M, Charbit S, Ritz C, et al. Quantifying ice-sheet feedbacks during the last glacial inception[J].Geophysical Research Letters,2004,31,L24203,doi:10.1029/2004GL021339.
[21]Yoshimori M, Weaver A J, Marshall S J, et al. Glacial Terminations: Sensitivity to orbital and CO2 forcing in a coupled climate system model [J].Climate Dynamics,2001, 17:571-588.
[22]Loutre M F, Berger A. Future climatic changes: Are we entering an exceptionally long Interglacial? [J].Climatic Change,2000, 46:61-90.
[23]Claussen M, Brovkin V, Petoukhov V, et al. Biogeophysical versus biogeochemical feedbacks of large-scale land-cover change[J]. Geophysical Research Letters,2001, 26(6):1 011-1 014.
[24]Claussen M, Kubatzki C, Brovkin V, et al. Simulation of an abrupt change in Saharan vegetation in the mid-Holocene[J]. Geophysical Research Letters,1999,24(14):2 037-2 040.
[25]Wang Y, Mysak L A , Wang Z,et al. The greening of the McGill Paleoclimate Model. Part II: Simulation of natural millennial-scale variability during the Holocene[J].Climate Dynamics,2005, 24: 481-496.
[26]Brovkin V, Claussen M, Driesschaert E, et al. Biogeophysical effects of historical land cover changes simulated by six Earth system models of intermediate complexity[J]. Climate Dynamics,2006, 26(6):587-600,Doi: 10.1007/s00382-005-0092-6.
[27]Bertrand C,Loutre M F,Crucifix  M, et al.Climate of the last millennium:A sensitivity study[J] .Tellus,2002,54A:221-244.
[28]Bauer E,Claussen M,Brovkin V. Assessing climate forcings of the Earth. system for the past millennium[J]. Geophysical Research Letters,2003,30(6),doi:10.1029/2002GL016639.
[29]Wang Z, Mysak L A .Glacial abrupt climate changes and Dansgaard-Oeschger oscillations in a coupled climate model[J]. Paleoceanography, 2006, 21: PA2001. 
[30]Petoukhov V, Claussen M, Berger A, et al. EMIC intercomparison project (EMIP-CO2): Comparative analysis of EMIC simulations of current climate and equilibrium and transient responses to atmospheric CO2 doubling[J]. Climate Dynamics,2005, 25: 363-385, doi: 10.1007/s00382-005-0042-3.
[31]Brovkin V, Claussen M, Petoukhov V, et al. On the stability of the atmosphere-vegetation system in the Sahara/Sahel region[J].Journal of Geophysical Research,1998, 103(D24):3 113-3 124.

[1] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[2] 于德永,郝蕊芳. 生态系统服务研究进展与展望[J]. 地球科学进展, 2020, 35(8): 804-815.
[3] 吴泽燕,章程,蒋忠诚,罗为群,曾发明. 岩溶关键带及其碳循环研究进展[J]. 地球科学进展, 2019, 34(5): 488-498.
[4] 董文杰, 袁文平, 滕飞, 郝志新, 郑景云, 韦志刚, 丑洁明, 刘昌新, 齐天宇, 杨世莉, 阎东东, 张婧. 地球系统模式与综合评估模型的双向耦合及应用[J]. 地球科学进展, 2016, 31(12): 1215-1219.
[5] 安培浚, 张志强, 王立伟. 地球关键带的研究进展[J]. 地球科学进展, 2016, 31(12): 1228-1234.
[6] 张学珍, 于志博, 郑景云, 郝志新. 植物挥发性有机物的气候与环境效应研究进展[J]. 地球科学进展, 2015, 30(11): 1198-1209.
[7] 程国栋, 肖洪浪, 傅伯杰, 肖笃宁, 郑春苗, 康绍忠, 延晓冬, 王毅, 安黎哲, 李秀彬, 陈宜瑜, 冷疏影, 王彦辉, 杨大文, 李小雁, 张甘霖, 郑元润, 柳钦火, 邹松兵. 黑河流域生态—水文过程集成研究进展[J]. 地球科学进展, 2014, 29(4): 431-437.
[8] 王卷乐, 林海, 冉盈盈, 周玉洁, 宋佳, 杜佳. 面向数据共享的地球系统科学数据分类探讨[J]. 地球科学进展, 2014, 29(2): 265-274.
[9] 汪品先. 对地球系统科学的理解与误解——献给第三届地球系统科学大会[J]. 地球科学进展, 2014, 29(11): 1277-1279.
[10] WuGuoxiong,LinHai,ZouXiaolei,LiuBoqi,HeBian. 全球气候变化研究与科学数据[J]. 地球科学进展, 2014, 29(1): 15-22.
[11] 曾庆存,林朝晖. 地球系统动力学模式和模拟研究的进展[J]. 地球科学进展, 2010, 25(1): 1-6.
[12] 汪品先. 地球深部与表层的相互作用[J]. 地球科学进展, 2009, 24(12): 1331-1338.
[13] 曲建升,葛全胜,张雪芹. 全球变化及其相关科学概念的发展与比较[J]. 地球科学进展, 2008, 23(12): 1277-1284.
[14] 张志强,王雪梅. 国际全球变化研究发展态势文献计量评价[J]. 地球科学进展, 2007, 22(7): 760-765.
[15] 葛全胜,王芳,陈泮勤,田砚宇,程邦波. 全球变化研究进展和趋势[J]. 地球科学进展, 2007, 22(4): 417-427.
阅读次数
全文


摘要