[1]Xia Hongyuan, Liang Shuyi. The Genesis of Granitic Tin-Tungsten Rare Metal Ore Deposits in the South-east of China[M].Beijing: Science Press,1991.[夏宏远,梁书艺.华南钨锡稀有金属花岗岩矿床成因系列[M].北京:科学出版社,1991.] [2]Audetat A, Gunther D, Heinrich C A. Magmatic-hydrothermal evolution in a fractionating granite: A microchemical study of the Sn-W-F-mineralized Mole Granite(Australia)[J].Geochimica et Cosmochimica Acta,2000, 64(19):3 373-3 793. [3]Eugster H P,Wilson G A. Transport and deposition of ore-forming elements in hydrothermal systems associated with granites[C]//Halls C, ed. High Heat Production Granite, Hydrothermal Circulation and Ore Genesi.1985:87-98. [4]Bai T B, Koster A F, Gross V. The distribution of Na, K, Rb, Sr, Al, Ge, Cu, W, Mo, La, and Ce between granitic melts and coexisting aqueous fluids [J]. Geochimics et Cosmochimica Acta, 1998, 63:1 117-1 131. [5]Webster J D, De Vivo B. Experimental and modeled solubilities of chlorine in aluminosilicate melts, consequences of magma evolution, and implications for exsolution of hydrous chloride melt at Mt. Somma-Vesuvius[J]. Ameriean Mineralogist,2002, 87:1 046-1 061. [6]Thomas R, Förster H J, Heinrich W. The behaviour of boron in aperaluminous granite-pegmatite system and associated hydrothermal solutions: A melt and fluid-inclusion study[J]. Contributions to Mineralogy and Petrology,2003,144: 457-472. [7] Wang Yurong, Haselton T, Aruscavage P,et al. Experimental research on the partitioning coefficients of tin between fluids and granitic melts[C]//Annual Report Institute of Geochemistry Academia Sinica. Guiyang:Guizhou People's Press,1986:180-181.[王玉荣,Haselton T, Aruscavage P,等.锡在花岗岩熔体相及水热流体相中的分配实验研究[C]//中国科学院地球化学研究所年报.贵阳:贵州人民出版社,1986:180-181.] [8] Keppler H,Wyllie P J. Partitioning of Cu ,Sn ,Mo ,U ,and Th between melt and aqueous fluid in the systems haplogranite-H2O-HCl and haplogranite-H2O-HF[J]. Contributions to Mineralogy and Petrology,1991,109:149-160. [9]Chen Zilong, Peng Shenglin. The experimental results of W and Sn Partitioning between fluid and melts and their significance for the origin of W and Sn ore deposits[J]. Geological Review,1994 ,40 (3): 274-282.[陈子龙,彭省临.钨、锡流—熔分配实验结果及其矿床成因意义[J].地质论评,1994,40(3):274-282.] [10]Peng Shenglin, Chen Zilong, Chen Xu, et al. New evidence for the liquation mineralization of W and Sn[J].Journal of Central South University Technology,1995,26(2):153-156.[彭省临,陈子龙,陈旭,等.钨、锡液态分离成矿作用的新证据 [J].中南工业大学学报,1995,26(2):153-156.] [11]Kohn S C, Schofield P F, The implication of melt composition in controlling trace-element behavior: An experimental study of Mn and Zn partitioning between forsterite and silicate melts[J].Chemical Geology,1994,117: 73-87. [12]Kushiro I, Mysen B O. A possible effect of melt structure on the Mg-Fe2+ partitioning between olivine and melt[J].Geochimica et Cosmochimica Acta,2002, 66(12): 2 267-2 272. [13]Murthy V R, van Westrenen W, Fei Y. Experimental evidence that potassium is a substantial radioactive heat source in planetary cores[J]. Nature,2003, 423: 163-165. [14]Lowenstern J B, Mahood G A, Hervig R L, et al. The occurrence and distribution of Mo and molybdenite in unaltered peralkaline rhyolites from Pantellera, Italy[J].Contribution to Mineralogy and Petrology,1993, 114:119-129. [15]Tang Qunli. Experimental research on the partitioning cofficients of copper between silicate melts and liquid coexisting[D]. Institute of Geochemistry, Chinese Academy of Sciences,2003.[唐群力.硅酸盐熔体-流体共存体系中的Cu分配系数的实验研究[D].中国科学院地球化学研究所,2003.] [16]Urabe T. Aluminous granite as a source Magma of hydrothermal ore deposits: An experimental study[J].Economic Geology,1985,80:148-157. [17]Barnes H L. Geochemistry of Hydrothermal Ore Deposits (3 rd)[M]. New York: John Wiley and Sons, 1997:435-469. [18]Barsukov V L, Volosov A G, Ryzhenko B N, et al. Calculated equilibria in the Sn-Cl-F-O-H-Na system and the thermodynamic parameters of tin compounds[J].Geochimiea et Cosmochimica Acta,1991,55:1-11. [19]Volosov A V, Ryzhenko B N, Sushchevskaya T M, et al. Simulation of redox-Potential and rock-water ratio effects on Sn-bearing systems at 300 ℃[J].Geochimica et Cosmochimica Acta,1991,55:124-130. [20]Liu Yushan, Chen Shuqing. Experimental research of tin solubility and transformation[J].Acta Geologica Sinica,1986,59(1):78-87 .[刘玉山,陈淑卿.锡石溶解度和锡迁移形式的实验研究[J].地质学报,1986,59(1):78-87.] [21]Fan Wenling, Chen Zixin, Wang Shengyuan, et al. Experimental Calibration of Sn-SiO2 complexation in Hydrothermal Solutions[J].Bulletin of Mineralogy, Petrology and Geochemistry,1997,16(3):159-162.[樊文苓,陈紫新,王声远,等.热液中二氧化硅与成矿元素锡络合作用的实验标定[J].矿物岩石地球化学通报,1997,16(3):159-162.] [22]Chen Jun, et al. Geochemistry of Tin[M]. Nanjing:Nanjing University Press,2000:116-154. [陈骏,等.锡的地球化学[M].南京:南京大学出版社,2000:116-154.] [23]Seby F, Potin-Gautier M, Giffaut E, et al. A critical review of thermodynamic data for inorganic tin species[J].Geochimica et Cosmochimica Acta,2001,65(18): 3 041-3 053. [24]Eugster H P. Minerals in hot water[J]. American Mineralogist,1986, 71: 655-673. [25]Helgeson H C,Kirkham D H. Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressure and temperatures: I. Summary of the thermodynamic/electrostatic properties of the solvent[J]. American Journal of Science,1974, 274:1 089-1 198. [26]Helgeson H C. Prediction of the thermodynamic properties of electrolytes at high pressures and temperatures[J].Physics and Chemistry of the Earth,1981,13/14:133-177. [27]Chen Jun. Experiment on solubility of cassiterite in the presence of charcoal[J].Geology Review,1986,32(3):287-294.[陈骏.碳存在条件下锡石的溶解度实验[J].地质评论,1986,32(3):287-294.] [28]Li Tongjin. Experimantal studies of the solubility of cassiterite and the extraction of tin from granitic melts[J].Chinese Journal of Geochemistry,1989, 8(1):84-96. [29]Art A, Migdisov A E, Williams-Jones. An experimental study of cassiterite solubility in HCl-bearing water vapour at temperatures up to 350℃. Implications for tin ore formation[J].Chemical Geology,2005, 217:29-40. [30]Kenneth J, Jackson, Harold C, et al. Chemical and thermodynamic constraints on the hydrothermal transport and deposition of tin: I.Calculation of the solubility of cassiterite at high pressures and temperatures[J]. Geochimica et Cosmochimica Acta,1985,49(1):1-22. [31]Brsukove V L, Durasova N A, Kovalenko N I, et al. Oxygen fugacity and tin behavior in metals and fluids. [J].Geology,1987,38:723-733. [32]Kovalenko N I, Ryzhenko B N, Dorofeyeva V A,et al. The stability of Sn(OH)2-4, Sn(OH)2F- and Sn(OH)2Cl- at 500℃ and 1 kbar[J]. Geochemistry International,1992, 29: 84-94. [33]Sherman D M, Ragnarsdotir K V, Oelkers E H,et al.Speciation of tin (Sn2+ and Sn4+) in aqueous Cl solutions from 25℃ to 350℃: An in situ EXAFS study[J].Chemical Geology,2000, 167:169-176. [34]Wilson G A, Eugster H P. Cassiterite solubility and tin speciation in supercritical chloride solutions[C]//Spencer R J, Chou Ming, eds. Fluid-mineral Interactions. Geochemistry Society of Special Publishing,1990,2:179-195. [35]Müller B, Seward T M. Spectrophotometric determination of the stability of tin (II) chloride complexes in aqueous solution up to 300℃[J].Geochimica et Cosmochimica Acta,2001,65(22):4 187-4 199. [36]Taylor J R, Wall V J. Cassiterite solubility, Tin speciation, and transport in a magmatic aqueous phase[J].Economic Geology,1993,88:437-460. [37]Heinrich C A. The chemistry of hydrothermal tin (tungsten) ore deposition[J].Economic Geology,1990;85:457-481. [38]Zhang Dehui. Overview of research on the ore depositonal mechanisms in ore-forming fluid[J].Geological Science and Technology Information,1997,16(3):53-58.[张德会.成矿流体中金属沉淀机制研究综述[J].地质科技情报,1997,16(3):53-58.] [39]Halter W E, Williams J A E, Kontak D J. Origin and evolution of the greisenizing fluid at the east Kepmptiville tin deposit, Nova Scotia, Canada[J].Economic Geology,1995,93:1 026-1 051. [40]Taylor J R, Wall V J. The behavior of tin in granitoid Magmas[J].Economic Geology,1992, 87: 403-420 . [41]Linnen R L, Pichavant M, Holtz F. The combined effects of fo2 on the solubility, diffusion, and speciation of tin in haplogranitic melt at 850℃ and 2kbar[J].Geochimica et Cosmochimica Acta,1995,60:4 965-4 976. [42]Linnen R L, Pichavant M,Holts F. The conbined effect of fo2 and melt composition on SnO2 solubility and tin diffusion in haplogranitic melts[J].Geochimica et Cosmochimica Acta,1996,60(24):4 965-4 976. [43]Bhalla P, Holtz F, Linnen R L.Behrens H. Solubility of cassiterite in evolved granitic melts: Effect of T, fo2, and additional volatiles[J].Lithos,2004,80:387-400. [44]Li Fuchun, Zhu Jinchu, Rao Bing, et al. SnO2 concentration in granitic melt and its relation with crystallization temperature and time duration[J].Mineral Deposits,2002,21(4):393-398.[李福春,朱金初,饶冰,等.花岗质熔体中SnO2含量与结晶温度和时间的关系[J].矿床地质,2002,21(4):393-398.] [45]Zhang Bangdong. Physical Chemic of Granite Related to Uranium ore Forming[M]. Beijing: Atomic Energy Press,1992:9-18.[章邦桐著.花岗岩物理化学及铀成矿作用[M].北京:原子能出版社,1992:9-18.] [46]Taylor J R,Wall V J. The mobilization of tin from granitoid magmas[C]. 27th International Geology Congress,1984 ,IV.V(Section9). [47]Štemprok M. Solubility of tin, tungsten and molybdenum oxides in felsic magmas[J].Mineralium Deposita,1990,25(3):205-212. [48]Yuan Wanming. Improvement of calculation method of NBO/T value for magmatic melts[J].Acta Petrologica Sinica,1990,(3):71-77.[袁万明.岩浆熔体NBO/T值计算法的改进[J].岩石学报,1990,(3):71-77.] [49]Yuan Wanming. The relation between the melt structure of silicate and some geologic characteristics[J].Acta Petrologica Sinica,1994,10(3):301-310.[袁万明.硅酸盐熔体结构与某些地质特征的关系[J].岩石学报,1994,10(3):301-310.] [50]Jin Zhisheng, Huang Zhilong, Zhu Chengming. Silicate melt texture and liquid immiscibility[J].Geology-Geochemistry,1997,(1):60-64.[金志升,黄智龙,朱成明.硅酸盐熔体结构与岩浆液态不混溶作用[J].地质地球化学,1997,(1):60-64.] [51]Jiang Guochang, You Jinglin, Wu Yongquan, et al. A discussion on the micro-structural of silicate melt[J].Geology-Geochemistry,2003,31(4):80-86.[蒋国昌,尤静林,吴永全,等.硅酸盐熔体微结构单元的探讨[J].地质地球化学,2003,31(4):80-86.] [52]Wang Yongqiang, Zhang Zhaochong, Xu Peicang, et al. Advance in the structure studies on silicate melts[J].Advances in Earth Science,1999,14(2):168-173.[王永强,张招崇,徐培苍,等.硅酸盐熔体结构的研究进展和问题[J].地球科学进展,1999,14(2):168-173.] [53]Mysen B O, Virgo D, Seifert F A. Relationships between properties and structure of aluminosilicate melts[J].American Mineralogist,1985,70:85-105. [54]Baker D R, Vaillancourt J. The low viscosities of F+H2O-bearing granitic melts and implications for melt extraction and transport[J].Earth and Planetary Science Letters,1995, 132: 199-211. [55]Naski G C,Hess P C. SnO2 solubility: Experimental results in peralumious and peralkaline high silica glasses[J]. EOS,1985,66:412. [56]Institue of Geochemistry, Chinese Academy of Science. Advanced Geochemistry[M].Beijing: Science Press,2000:159-170. [中国科学院地球化学研究所.高等地球化学[M].北京:科学出版社,2000:159-170.] [57]Chantal P, Chinh N, Michel C. Uranium in granitic magmas: Part 2. Experimental determination of uranium solubility and fluid-melt partition coefficients in the Uranium oxide-Hapligranite-H2O-NaX(X=Cl,F) system at 770℃, 2kbar[J].Geochimics et Cosmochimica Acta,1996,60:1 515-1 529. [58]Keppler H. Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks[J].Contribution to Mineralogy and Petrology,1993,114:479-488. [59]Webster J D. Exsolution of magmatic volatile phases from Cl-enriched Mineralizing granitic magmas and implications for ore metal transport[J].Geochimica et Cosmochimica Acta,1997,61(5):1 017-1 029. [60]Webster J D, De Vivo B. Experimental and modeled solubilities of chlorine in aluminosilicate melts, consequences of magma evolution, and implications for exsolution of hydrous chloride melt at Mt. Somma-Vesuvius[J].American Mineralogist,2002,87:1 046-1 061. [61]Abiochemistry Staff Room of Dalian University of Technology. Abiochemistry[M].Beijing: High Education Press,1994.[大连理工大学无机化学教研室编.无机化学[M].北京:高等教育出版社,1994.] [62]Behrens H, Meyer M, Holtz F, et al. The effect of alkali ionic radius, temperature, and pressure on the solubility of water in MAlSi3O8 melt(M=Li,Na,K,Rb)[J]. Chemical Geology,2001, 174: 275-289. [63]Webster J D. Water solubility and chlorine partitioning in Cl-rich granitic systems: Effect of melt composition at 2 kbar and 800℃[J].Geochimica et Cosmochimica Acta,1992,56:679-687. [64]Malinin S D, Kravchuk I F, Delbove F. Chloride distribution between phases in hydrated and dry chloride-aluminosilicate metl systems as a function of phase composition[J].Geochimistry International,1989, 26:32-38. [65]Webster J D. Fluid-melt interactions involving Cl-rich granites: Experimental study from 2 to 8 kbar[J]. Geochimica et Cosmochimica Acta,1992, 56:659-678. [66]Schaller T, Dingwell D B, Keppler H,et al. Fluorine in silicate glasses: A multinuclear nuclear magnetic resonance study[J].Geochimica et Cosmochimica Acta,1992,56:701-707. [67]Xiong Xiaolin, Zhao Zhenhua, Zhu Jinchu, et al. Experiments on the fluid/melt partition of fluorine in the system albite granite-H2O-HF[J].Geochimica,1998,27(1):67-73.[熊小林,赵振华,朱金初,等.钠长花岗岩-H2O-HF体系中流体/熔体间氟的分配系数研究[J].地球化学,1998,27(1):67-73.] [68]Webster J D. Partitioning of F between H2O and CO2 fluids and topaz rhyolite melt[J].Contribution to Mineralogy and Petrology,1990,104:424-438. [69]Webster J, Thomas R, Förster H J, et al. Geochemical evolution of halogen-enriched granite magmas and mineralizing fluids of the Zinnwald tin-tungsten mining district, Erzgebirge, Germany[J].Mineralium Deposita,2004,39:452-472. [70]Webster J D, Holloway J R. Experimental constraints on the partitioning of Cl between topaz rhyolite melt and H2O and H2O+CO2 fluids: New implications for granitic differentiation and ore deposition[J].Geochimica et Cosmochimica Acta,1988,52:2 091-2 105. [71]Bettencourt J S, Leite Jr W B, Goraieb C L, et al. Sn-polymetallic greisen-type deposits associated with late stage rapakivi granites, Brazil: Fluid inclusion and stable isotope characteristics[J].Lithos,2005, 80: 363-386. [72]Bi Chengsi, Shen Xiangyuan, Xu Qingsheng, et al.Geological characteristics of stanniferous Granites in the Beilekuduk tin metallogenic belt Xinjiang[J].Acta Petrologica et Mineralogica,1993, 12(3):213-223.[毕承思, 沈湘元, 徐庆生, 等.新疆贝勒库都克锡矿带含锡花岗岩地质特征[J].岩石矿物学杂志.1993, 12(3):213-223.] [73]Liu Jiayuan, Yu Hengxiang, Wu Guoquan. Alkali granites and tin deposits of the Kalamaili Area, northern Xinjiang[J]. Geological Exploration for Non-ferrous Metals,1997, 6(3):129-135.[刘家远, 喻亨祥, 吴郭泉. 新疆北部卡拉麦里富碱花岗岩带的碱性花岗与锡矿[J]. 有色金属矿产与勘查,1997, 6(3):129-135.] [74]Chen Fuwen, Li Huaqin, Cai Hong, et al. Chronology and origin of the Ganliangzi tin orefield Xinjiang[J].Mineral Deposits,1999, 8(1):91-97.[陈富文, 李华芹, 蔡红,等.新疆干梁子锡矿田成岩成矿作用同位素年代学研究及矿床成因探讨[J]. 矿床地质,1999,18(1):91-97.] [75]Zhao Zhenhua,Bao Zhiwei,Zhang Boyou.Geochemistry of the Mesozoic basaltic roc ks in so uthern Hunan province[J].Science in China(Series D),1998, 41(suppl.):102- 112.[赵振华, 包志伟, 张伯友. 湘南中生代玄武岩类地球化学特征[J].中国科学:D辑, 1998, 28(增刊):7-14.] [76]Zhao Zhenhua, Bao Zhiwei, Zhang Boyou, et al. Crust-mantle interaction and its contribution to the Shizhuyuan tungsten-polymeta~c mineralization[J].Science in China(Series D),2000, 30(suppl.):161-168.[赵振华, 包志伟, 张伯友,等.柿竹园超大型钨多金属矿床的壳幔相互作用背景[J]. 中国科学:D辑, 2000, 30(增刊):161-168.] [77]Wang Denghong, Chen Yuchuan, Li Huaqin, et al. Geological and geochemical features of the Furong tin depo sits in Hunan and their significanceformineral prospecting[J]. Bulletin of Geology,2003,22(1):50-56.[王登红, 陈毓川, 李华芹, 等.湖南芙蓉锡矿的地质地球化学特征及找矿意义[J]. 地质通报, 2003,22(1):50-56.] [78]Li Zhaoli.Geochemical relationship between tin mineralization and A-type granite: A case of the Furong tin orefield, Hunan province, South China[D].Guiyang: Chinese Academy of Sciences and for Diploma of the Institute of Geochemisty,2006.[李兆丽.锡成矿与A型花岗岩关系的地球化学研究—以湖南芙蓉锡矿田为例.中国科学院研究生院博士论文[D].贵阳:中国科学院地球化学研究所,2006.] [79]Zheng Jijian, Jia Baohua. Geological characteristics and related tin-polymetallic mineralization of the qitianling granite complex in southern Hunan Province[J]. Geology and Mineral Resources of South China,2001, (4):50-57.[郑基俭, 贾宝华. 骑田岭岩体的基本特征及其与锡多金属成矿作用关系[J]. 华南地质与矿产, 2001, (4):50-57.] [80]Tu Guangzhi. Alkalirich intrusive rocks[J].Mineral Resources and Geology,1989,13(3):1-4.[涂光炽. 关于富碱侵入岩[J]. 矿产与地质,1989,13(3):1-4.] [81]Zeng Yonghong, Wang Tingjiang, Zheng Shigan, et al. Characteristics of mineralization of chuanling jiao tin deposit in Hunan and disccusion on genesis of the deposit[J].Geology and Mineral Resources of South China,2006,(2):13-17.[曾永红,王廷江,郑时干,等. 湖南船岭脚锡矿区矿化特征及成因探讨[J].华南地质与矿产,2006,(2):13-17.] [82]Zhang Yuquan,Xie Yingwen,Chen Zhongli.Rb-Sr isochron age for tin-bearing granites in the Sanjiang region[J].Acta Petrologica Sinica,1990,(1):75-81.[张玉泉,谢应雯,成忠礼.三江地区含锡花岗岩Rb-Sr等时线年龄[J].岩石学报,1990,(1):75-81.] |