Please wait a minute...
img img
高级检索
地球科学进展  2021, Vol. 36 Issue (4): 335-345    DOI: 10.11867/j.issn.1001-8166.2021.042
综述与评述     
烃类流体在MVT型铅锌矿成矿中角色与作用:研究进展与展望
李荣西1,2(),毛景文1,3,赵帮胜1,2,陈宝赟1,2,刘淑文1,2
1.长安大学地球科学与资源学院,陕西 西安 710054
2.长安大学西部矿产资源与地质工程教育部 重点实验室,陕西 西安 710054
3.中国地质科学院矿产资源研究所,北京 100037
A Review of the Role of Hydrocarbon Fluid in the Ore Formation of the MVT Pb-Zn Deposit
Rongxi LI1,2(),Jingwen MAO1,3,Bangsheng ZHAO1,2,Baoyun CHEN1,2,Shuwen LIU1,2
1.School of Earth Science and Resources,Chang'an University,Xi'an 710054,China
2.Key Laboratory of West China's Mineral Resources and Geological Engineering,Minstry of Education,Chang'an University,Xi'an 710054,China
3.Institute of Mineral Resources,Chinese Academy of Geological Sciences,Beijing 100037,China
 全文: PDF(13955 KB)   HTML
摘要:

MVT型铅锌矿床是最重要的铅锌矿类型之一,近百年来人们在此类矿床地质和地球化学特征、成矿物质来源、成矿物质活化、运移和沉淀机制、成矿时代和成矿动力学等方面取得了许多重要成果,其中最重要的认识就是与油气相关的烃类流体在Pb-Zn等金属元素活化、迁移和沉淀成矿中起着非常重要的作用。在综合分析前陆盆地烃类流体与MVT型铅锌矿二者之间的成因关系的基础上,系统总结了世界范围内前陆盆地MVT型Pb-Zn矿床共同特征,总结了近年来前陆盆地MVT型铅锌矿烃类流体研究成果和进展,分析表明烃类流体以什么角色、如何参与MVT型铅锌矿成矿作用是目前研究的热点问题,有关烃类流体携带Pb-Zn等金属元素能力及其参与Pb-Zn沉淀成矿机制、前陆盆地构造演化背景下流体汇聚动力学,以及油气藏破坏与Pb-Zn成矿耦合关系等是未来有待深入探讨的重要科学问题。在矿床学和矿床地球化学研究基础上,应该发挥交叉学科特色优势和研究手段,从石油地质学角度出发,研究前陆盆地构造演化过程中烃类流体形成、演化与MVT型铅锌矿成矿过程之间的耦合关系,从有机流体角度切入,探讨MVT型铅锌矿成矿物质来源、成矿作用过程和成矿机制是新的研究趋势。

关键词: MVT型铅锌矿烃类流体成矿机制前陆盆地    
Abstract:

MVT Pb-Zn deposit (Mississippi Valley Type) is one of the most important types of lead-zinc mine. Many large oil and gas fields developed together with MVT type Pb-Zn ore in the foreland basin in the world. Hydrocarbon fluid associated with oil/gas has played a very important role in the mobilization, transportation and precipitation of metal elements of Pb-Zn. Several metallogenic models of MVT Pb-Zn deposit have been established based on the background of foreland basin structure of which hydrocarbon fluid participated in Pb-Zn mineralization, or acted as the role of reductant to precipitate in Pb-Zn minerals. The close connections between the MVT type Pb-Zn deposit and hydrocarbon fluid of oil/gas field in foreland basin is widely recognized by deposit scientists in the world. Currently geologists' attentions have been focused on the role of hydrocarbon fluid in the metallogenic characteristics of MVT Pb-Zn deposit formation, ability of mobilization and transportation of Pb-Zn elements and metallogenic mechanism of hydrocarbon fluid during tectonic evolution history. On the basis of geological and geochemical study of MVT Pb-Zn deposit, ideas and methods of petroleum geology and organic geochemistry should be used to study the coupling relationship of evolution process of hydrocarbon fluid and mineralization process of MVT Pb-Zn deposit.

Key words: MVT Pb-Zn deposit    Hydrocarbon fluid    Metallogenic mechanism    Foreland basin
收稿日期: 2020-10-17 出版日期: 2021-05-31
ZTFLH:  P618.4  
基金资助: 国家自然科学基金项目“大巴山前陆构造纤维状方解石脉体成因机理及其油气地质意义研究”(41772118)
作者简介: 李荣西(1966-),男,甘肃庆阳人,教授,主要从事矿产普查与勘探研究. E-mail:rongxi99@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李荣西
毛景文
赵帮胜
陈宝赟
刘淑文

引用本文:

李荣西,毛景文,赵帮胜,陈宝赟,刘淑文. 烃类流体在MVT型铅锌矿成矿中角色与作用:研究进展与展望[J]. 地球科学进展, 2021, 36(4): 335-345.

Rongxi LI,Jingwen MAO,Bangsheng ZHAO,Baoyun CHEN,Shuwen LIU. A Review of the Role of Hydrocarbon Fluid in the Ore Formation of the MVT Pb-Zn Deposit. Advances in Earth Science, 2021, 36(4): 335-345.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2021.042        http://www.adearth.ac.cn/CN/Y2021/V36/I4/335

图1  美国密西西比河谷铅锌矿集区分布与盆地构造和生烃中心关系图[17]
图2  环扬子地块铅锌矿集区与下寒武统生烃中心和早古生代古构造分布关系图
图3  大巴山前陆盆地马元铅锌矿两期沥青与铅锌矿宏观产状特征
图4  前陆盆地烃类流体演化与铅锌成矿模式图(a)MVT型铅锌矿与古油藏形成与演化关系;(b)MVT型铅锌矿与古气藏形成与演化关系
1 DAI Zixi. The distribution, types and exploration criteria of lead and zinc resources in the world [J]. Word Nonferrous Metals, 2005(3):15-23.
1 戴自希.世界铅锌资源的分布、类型和勘查准则[J].世界有色金属,2005(3):15-23.
2 LEACH D L, SANGSTER D F, KELLEY K D, et al. Sediment-hosted lead-zinc deposits: A global perspective [J]. Economic Geology, 2005, 100(3): 561-607.
3 LEACH D L, BRADLEY D C. Sediment-hosted lead-zinc deposits in Earth history [J]. Economic Geology, 2010, 105(3): 593-625.
4 BODNAR R J. Petroleum migration in the Miocene Monterey Formation, California, USA: Constraints from fluid inclusion studies [J]. Mineralogical Magazine, 1990, 54(375): 295-304.
5 BURRUSS R C. Hydrocarbon fluid inclusions in studies of sedimentary diagenesis [M]//Hollister L S, Crawford M L. Fluid inclusions: Applications to petrology. Mineralogical Association of Canada Short Course Handbook, 1981, 6:138-156.
6 ANDERSON G M. Kerogen as a source of sulfur in MVT deposits [J]. Economic Geology, 2015, 110(3): 837-840.
7 ANDERSON G M. The mixing hypothesis and origin of Mississippi Valley-Type ore deposits[J]. Economic Geology, 2008, 103(8): 1 683-1 690.
8 HURTIG N C, HANLEY J J, GYSI A P. The role of hydrocarbons in ore formation at the Pillara Mississippi Valley-Type Zn-Pb deposit, Canning Basin, Western Australia [J]. Ore Geology Reviews, 2018, 102: 875-893.
9 OSTENDORF J, HENJES-KUNST F, MONDILLO N, et al. Formation of Mississippi Valley-Type deposits linked to hydrocarbon generation in extensional tectonic settings: Evidence from the Jabali Zn-Pb-(Ag) deposit (Yemen) [J]. Geology, 2015, 43(12): 1 055-1 058.
10 LECUMBERRI-SANCHEZ P, BOUABDELLAH M, ZEMRI O. Transport of Rare Earth Elements by hydrocarbon-bearing brines: Implications for ore deposition and the use of REEs as fluid source tracers[J]. Chemical Geology, 2018, 479: 204-215.
11 SAMANEH Fazli, BATOUL Taghipour, FARID Moore. Fluid inclusions, S and Pb isotopes characteristics of the Kuh-eSurmeh carbonate-hosted Zn-Pb deposit in the Zagros Fold Belt, southwest Iran: Implications for the source of metals and sulfur and MVT genetic model [J]. Ore Geology Reviews, 2019, 109: 182-212.
12 Energy Group IHS. International petroleum exploration and production database: USA [EB/OL]. 2013. [2020-05-16]. .
13 BRADLEY D C, LEACH D L. Tectonic controls of Mississippi Valley-Type lead-zinc mineralization in orogenic forelands [J]. Mineralium Deposita, 2003, 38: 652-667.
14 BOND G C, KOMINZ M A. Construction of tectonic subsidence curves for the Early Paleozoic syncline, southern Canadian Rocky Mountains: Implications for subsidence mechanisms [J]. Geological Society of America Bulletin, 1984, 95:155-173.
15 BOUHLEL S, LEACH D L, JOHNSON C A, et al. A salt diapir-related Mississippi Valley-Type deposit: The Bou Jaber Pb-Zn-Ba-F deposit, Tunisia: Fluid inclusion and isotope study [J]. Mineralium Deposita, 2016, 51(6): 749-780.
16 XIONG Suofei, GONG Yongjun, YAO Shuzhen, et al. Nature and evolution of the ore-forming fluids from Nanmushu carbonate- hosted Zn-Pb deposit in the Mayuan district, Shaanxi Province, Southwest China [J]. Geofluids, 2017, 5: 1-19.
17 SICREE A A, BARNES H L. Upper Mississippi Valley district ore fluid model: The role of organic complexes [J]. Ore Geology Review, 1996, 11: 105-131.
18 LI Houmin, ZHANG Changqing. The genetic relationship between the H2S-bearing gas in Sichuan Basin and lead-zinc-copper deposits around the basin [J]. Geological Review, 2012, 58(3): 495-510.
18 李厚民,张长青. 四川盆地富硫天然气与盆地周缘铅锌铜矿的成因联系[J]. 地质论评,2012, 58(3): 495-510.
19 GU Xuexiang, ZHANG Yongmei, LI Baohua, et al. The coupling relationship between metallization and hydrocarbon accumulation in sedimentary basins [J]. Earth Science Frontiers, 2010, 17(2): 83-105.
19 顾雪祥,章永梅,李葆华, 等. 沉积盆地中金属成矿与油气成藏的耦合关系[J].地学前缘, 2010, 17(2): 83-105.
20 RIEGER A, SCHWARK L, CISTERNAS M E, et al. Genesis and evolution of bitumen in Lower Cretaceous lavas and implications is for strata-bound copper deposits, north Chile [J]. Economic Geology, 2008, 103: 387-404.
21 WANG Guozhi, LIU Shugen, CHEN Cuihua. Genesis of the Heba MVT Pb-Zn deposit and paleo-oil/gas reservoirs in southeastern margin of Sichuan Basin [J]. Earth Science Frontiers, 2013, 20(1): 107-116.
21 王国芝,刘树根,陈翠华.四川盆地东南缘河坝MVT铅锌矿与古油气藏的成生关系[J]. 地学前缘, 2013,20(1): 107-116.
22 ETMINAN H, HOFFMANN C F. Biomarkers in fluid inclusions, a new tool in constraining source regimes and its implications for the genesis of Mississippi Valley-Type deposits [J]. Geology, 1989, 17:19-22.
23 WALLACE M W, MIDDLETON H A, JOHNS B, et al. Hydrocarbons and Mississippi Valley-Type sulfides in the Devonian reef complexes, Canning Basin, Western Australia [J]. Proceedings of Petroleum Exploration Society of Australia Symposium, 2002, 3: 795-816.
24 HAGGAN T, PARNELL J. Hydrocarbon-metal associations in the Western Cordillera, Central Peru [J]. Journal of Geochemical Exploration, 2000, 69/70: 229-234.
25 STOFFELL B, APPOLD M S, WILKINSON J J. Geochemistry and evolution of Mississippi Valley-Type mineralizing brines from the Tri-State and Northern Arkansas districts determined by LA-ICP-MS microanalysis of fluid inclusions [J]. Economic Geology, 2008, 103: 1 411-1 435.
26 WILKINSON J J, STOFFELL B, WILKINSON C C, et al. Anomalously metal-rich fluids form hydrothermal ore deposits [J]. Science, 2009, 323: 764-767.
27 APPOLD M S, WENZ Z J. Composition of ore fluid inclusions from the Viburnum Trend, Southeast Missouri district, United States: Implications for transport and precipitation mechanisms [J]. Economic Geology, 2011, 106: 55-78.
28 PELCH M A, APPOLD M S, EMSBO P, et al. Constraints from fluid inclusion compositions on the origin of Mississippi Valley-Type mineralization in the Illinois- Kentucky district [J]. Economic Geology, 2015, 110: 787-808.
29 YARDLEY D. Metal concentrations in crustal fluids and relationship to ore formation [J]. Economic Geology, 2005, 100: 613-632.
30 PARNELL J. Metal enrichments in solid bitumens: A review [J]. Mineralium Deposita, 1988, 23:191-199.
31 EISENLOHR B N, TOMPKINS L A, CATHLES L M, et al. Mississippi Valley-Type deposits: Products of brine expulsion by eustatically induced hydrocarbon generation [J]. Geology, 1994, 22: 315-318.
32 SELBY D, CREASER A, DEWING K, et al. Evaluation of bitumen as 187Re-187Os geochronometer for hydrocarbon maturation and migration: A case from Polaris MVT deposit, Canada [J]. Earth Planetary Science Letters, 2005, 235: 1-15.
33 GREENWOOD P F, BROCKS J J, GRICE K. Organic geochemistry and mineralogy. I. Characterisation of organic matter associated with metal deposits [J]. Ore Geology Reviews, 2013, 50: 1-27.
34 SVERJENSKY D A. Genesis of Mississippi Valley Type lead-zinc deposits [J]. Annual Review of Earth and Planetary Sciences, 1986, 14: 177-199.
35 CHARLES S S, ALLEN V H. Evaluation of proposed precipitation mechanisms for Mississippi Valley-Type deposits [J]. Ore Geology Reviews, 1995, 10:1-17.
36 WILKINSON J J. A review of fluid inclusion constraints on mineralization in the Irish ore field and implications for the genesis of sediment-hosted Zn-Pb deposits [J]. Economic Geology, 2010, 105: 417-442.
37 ANDERSON G M. Organic maturation and ore precipitation in Southeast Missouri [J]. Economic Geology, 1991, 86(5): 909-926.
38 KESLER S E, JONES H D, FURMAN F C, et al. Role of crude-oil in the genesis of Mississippi Valley-Type deposits, evidence from the Cincinnati Arch [J]. Geology, 1994, 22: 609-612.
39 SAINTILAN N J, SPANGENBERG J E, SAMANKASSOU E, et al. A refined genetic model for the Laisvall and Vassbo MVT-type sandstone-hosted deposits, Sweden: Constraints from organic geochemistry [J]. Mineralium Deposita, 2016, 51: 639-664.
40 LEACH D L, BRADLEY D C, LEWCHUK M, et al. Mississippi Valley-Type lead-zinc deposits through geological time: Implications from recent age-dating research [J]. Mineralium Deposita, 2001, 36: 711-740.
41 LIU Shuwen, LI Rongxi, CHI Guoxiang, et al. Geochemical characteristics and sources of ore-forming fluids of the Mayuan Pb-Zn Deposit,Nanzheng,Shaanxi,China [J].Acta Geologica Sinica, 2015, 89(3): 783-793.
42 LI Houmin, CHEN Yuchuan, WANG Denghong, et al. Geochemical characteristics and metallogenic epoch of Mayuan Zn/Pb deposit in Nanzheng area,Shaanxi Province[J]. Geological Bulletin of China, 2007, 26(5): 546-552.
42 李厚民,陈毓川,王登红,等. 陕西南郑地区马元锌矿的地球化学特征及成矿时代[J].地质通报, 2007, 26(5): 546-552.
43 ZHANG Changqing, YU Jinjie, MAO Jingwen, et al. Advances in the study of Mississippi Valley-Type deposits [J]. Mineral Deposits, 2009, 28(2): 195-210.
43 张长青,余金杰,毛景文,等. 密西西比型(MVT)铅锌矿床研究进展[J].矿床地质,2009,28(2): 195-210.
44 WANG Guozhi, ZHAO Fufeng, FU Yuzhen, et al. Determination of metallogenic epoch of MVT Pb-Zn in Dengying Formation at the northern margin of Sichuan Basin [J]. Acta Mineralogica Sinica, 2015(): 723.
44 王国芝,赵甫峰,付于真,等.四川盆地北缘灯影组中M V T 铅锌矿成矿时代的确定[J].矿物学报,2015(): 723.
45 WU Yue, KONG Zhigang, CHEN Miaohong, et al. Trace elements in sphalerites from the Mississippi Valley-Type lead-zinc deposits around the margins of Yangtze Block and its geological implications: A LA-ICPMS study [J]. Acta Petrologica Sinica,2019, 35(11): 3 443-3 460.
45 吴越,孔志岗,陈懋弘,等.扬子板块周缘MVT型铅锌矿闪锌矿微量元素组成特征与指示意义:LA-ICPMS研究[J].岩石学报,2019,35(11): 3 443-3 460.
46 LI Rongxi,DONG Shuwen, DAN Lehrmann. Tectonically driven organic fluid migration in the Dabashan Foreland Belt: Evidenced by fibrous calcite with organic inclusions [J]. Journal of Asian Earth Sciences, 2013, 75: 202-212.
47 CHI G, XUE C, LAI J, et al. Sand injection and liquefaction structures in the Jinding Zn-Pb deposit, Yunnan, China: Indicators of overpressured fluid and implications for mineralization [J]. Economic Geology, 2007, 102(4): 739-743.
48 QIN Xiaoli, LI Rongxi, LIU Shuwen, et al. High pressure paleofluid in the Dabashan continental orogenic belt and its migration dynamics[J]. Earth Science Frontiers, 2017,24(2): 123-129.
48 覃小丽,李荣西,刘淑文,等.大巴山陆内造山带高压古流体及其运移动力学机制研究[J].地学前缘, 2017,24(2): 123-129.
49 LI Rongxi, DONG Shuwen, DING Lei, et al. Tectonically driven organic fluid flow in the Dabashan foreland belt: Recorded by fibrous calcite veins contained hydrocarbon-bearing inclusions [J]. Acta Sedimentologica Sinica, 2013, 30(3): 516-526.
49 李荣西,董树文,丁磊,等.构造驱动大巴山前陆烃类流体排泄:含烃包裹体纤维状方解石脉证据[J]. 沉积学报, 2013, 30(3): 516-526.
50 MILES F, FIONA W, CATHY H. Fluid expulsion from overpressured basins: Implications for Pb/Zn mineralisation and dolomitisation of the East Midlands platform, northern England [J]. Marine and Petroleum Geology, 2014, 55: 68-86.
51 YU Caisong, YING Chaoliu, ZENG Qianhou, et al. Sediment-hosted Pb/Zn deposits in the Tethyan domain from China to Iran: Characteristics, tectonic setting, and ore controls [J]. Gondwana Research, 2019, 75: 249-281.
52 CORBELLA M, AYORA C, CARDELLACH E. Hydrothermal mixing, carbonate dissolution and sulfide precipitation in Mississippi Valley Type deposits [J]. Mineralium Deposita, 2004, 39: 344-357.
53 HANOR J S. Controls on the solubilization of lead and zinc in basin brines [J]. Society of Economic Geologists Special Publication, 1996, 4: 483-500.
54 GIORDANO T H. Transport of Pb and Zn by carboxylate complexes in basinal ore fluids and related petroleum- field brines at 100°C: The influence of pH and oxygen fugacity [J]. Geochemical Transactions, 2002, 3: 56-72.
55 KARPOV I K, CHUDNENKO K V, KULIK D A, et al. Minimization of Gibbs free energy in geochemical systems by convex programming [J]. Geochemistry International, 2001, 39:1 108-1 119.
56 KULIK D A, WAGNER T, DMYTRIEVA S V. GEM-Selektor geochemical modeling package: Revised algorithm and GEMS3K numerical kernel for coupled simulation codes [J]. Computation and Geoscience, 2013, 17:1-24.
57 ZHANG Yonghan, YUE Changtao, LI Shuyuan, et al. Simulation and kinetic study of thermo-chemical sulfate reduction reaction between crude oil and sulfate [J]. Acta Sedimentologica Sinica, 2011, 29(5): 994-1 001.
57 张永翰,岳长涛,李术元,等.原油与硫酸盐的热化学硫酸盐还原反应模拟实验及动力学研究[J].沉积学报,2011,29(5): 994-1 001.
58 YUE Changtao, LI Shuyuan, XU Ming, et al. Experimental study on the influence of reaction conditions on organic sulfide formation [J]. Acta Sedimentologica Sinica, 2011, 29(2): 402-409.
58 岳长涛,李术元,徐明.等.反应条件对有机硫化物形成影响的模拟实验研究[J].沉积学报, 2011, 29(2): 402-409.
59 SANZ-ROBINSON J, WILLIAMS-JONES A E. Zinc solubility, speciation and deposition: A role for liquid hydrocarbons as ore fluids for Mississippi Valley Type Zn-Pb deposits [J]. Chemical Geology, 2019, 520: 60-68.
60 LU Jialan, ZHUANG Hanping, LIU Wenjun. Experimental study on the role of organic matter in strata-controlled lead-zinc deposits [J]. Acta Sedimentologica Sinica, 1997, 15(2): 226-231.
60 卢家烂, 庄汉平, 刘文均.有机质在层控铅锌矿床中作用的实验研究[J].沉积学报,1997, 15(2): 226-231.
61 PARNELL J, BARON M, MANN P. Oil migration and bitumen formation in a hydrothermal system, Cuba [J]. Journal of Geochemical Exploration, 2003, 78/79: 409-415.
62 LI Rongxi, DONG Shuwen, ZHANG Shaoni, et al. Features and formation of organic fluids during Dabashan orogenisis[J]. Journal of Nanjing University (Natural Science Edition), 2012, 48(3): 295-307.
62 李荣西,董树文,张少妮,等.大巴山造山过程有机流体研究[J].南京大学学报: 自然科学版, 2012, 48(3): 295-307.
63 HUC A Y, NEDERLOF P, DEBARRE R, et al. Pyrobitumen occurrences and formation in a Cambron- Ordovician sandstone reservoir, Fahud Salt Basin, North Oman[J]. Chemical Geology, 2000, 168: 99-112.
64 JACOB H. Classification, structure, genesis and practical importance of natural solid oil bitumen [J]. International Journal of Coal Geology, 1989, 11(1): 65-79.
[1] 吕红华, 周祖翼. 前陆盆地陆源沉积序列的特征与成因机制[J]. 地球科学进展, 2010, 25(7): 706-714.
[2] 戴朝成,郑荣才,朱如凯,翟文亮,高红灿. 四川类前陆盆地须家河组震积岩的发现及其研究意义[J]. 地球科学进展, 2009, 24(2): 172-180.
[3] 冯军;李江海;牛向龙. 现代海底热液微生物群落及其地质意义[J]. 地球科学进展, 2005, 20(7): 732-739.
[4] 董云鹏,张国伟. 造山带与前陆盆地结构构造及动力学研究思路和进展[J]. 地球科学进展, 1997, 12(1): 1-6.
[5] 刘少峰. 前陆盆地的形成机制和充填演化[J]. 地球科学进展, 1993, 8(4): 30-37.