1 |
HANNINGTON M D, DE RONDE C E J, PETERSEN S. Sea-floor tectonics and submarine hydrothermal systems [J]. Economic Geology, 2005, 100: 111-141.
|
2 |
LEACH D L, SANGSTER D F, KELLEY K D, et al. Sediment-hosted lead-zinc deposits: a global perspective [J]. Economic Geology, 2005, 100: 561-607.
|
3 |
SANGSTER D F, HILLARY E M. SEDEX lead-zinc deposits: proposed sub-types and their characteristics [J]. Exploration and Mining Geology, 1998, 7: 341-357.
|
4 |
SATO T. The behaviours of ore-forming solutions in seawater [J]. Mining Geology, 1972, 22: 31-42.
|
5 |
GOODFELLOW W D, LYDON J W, TURNER R J W. Geology and genesis of stratiform sediment-hosted (SEDEX) zinc-lead-silver sulphide deposits: mineral deposit modeling [J]. Geological Association of Canada Special Paper, 1993, 40: 201-251.
|
6 |
LYDON J W. Genetic models for Sullivan and other SEDEX deposits [C]//MIHIR Deb, GOODFELLOW W D. Sediment-hosted lead-zinc sulphide deposits, attributes and models of some major deposits in India, Australia and Canada. New Delhi, India: Narosa Publishing House, 2004: 149-190.
|
7 |
MAGNALL J M, GLEESON S A, CREASER R A, et al. The mineralogical evolution of the clastic dominant-type Zn-Pb±Ba deposits at Macmillan Pass (Yukon, Canada)—tracing subseafloor barite replacement in the layered mineralization [J]. Economic Geology, 2020, 115: 961-979.
|
8 |
LARGE R, BULL S W, COOKE D R, et al. A genetic model for the HYC deposit, Australia: based on regional sedimentology, geochemistry, and sulfide-sediment relationships [J]. Economic Geology, 1998, 93:1 345-1 368.
|
9 |
GU Lianxing. Advances in research on massive sulfide deposits: a review [J]. Geological Review, 1999, 45(3): 265-275.
|
|
顾连兴. 块状硫化物矿床研究进展评述[J]. 地质论评, 1999, 45(3): 265-275.
|
10 |
HAN Fa, SUN Haitian. Metallogenic system of SEDEX type deposits [J]. Earth Science Frontiers, 1999, 6(1): 139-162.
|
|
韩发, 孙海田. SEDEX 型矿床成矿系统[J]. 地学前缘, 1999, 6(1): 139-162.
|
11 |
LIU Jiajun, ZHENG Minghua, LIU Jianming, et al. The geological features and prospecting marks of the exhalative type of stratabound gold deposits in western Qinling [J]. Gold, 1997, 18(9): 9-12.
|
|
刘家军,郑明华,刘建明,等. 西秦岭喷流型层控金矿床的地质特征及其找矿标志[J]. 黄金, 1997, 18(9): 9-12.
|
12 |
SANGSTER D F. The role of dense brines in the formation of ventdistal Sedimentary-Exhalative (SEDEX) lead-zinc deposits: field and laboratory evidence[J]. Mineral Deposita, 2002, 37: 149-157.
|
13 |
IRELAND T, LARGE R R, MCGOLDRICK P, et al. Spatial distribution patterns of sulfur isotopes, nodular carbonates, and ore textures in the McArthur River (HYC) Zn-Pb-Ag deposit, northern Territory, Australia [J]. Economic Geology, 2004, 99: 1 687-1 709.
|
14 |
SPINKS S C, PEARCE M A, LIU W H, et al. Carbonate replacement as the principal ore formation process in the Proterozoic McArthur River (HYC) sediment-hosted Zn-Pb deposit Australia [J]. Economic Geology, 2021, 116(3): 693-718.
|
15 |
LEACH D L, BRADLEY D C, HUSTON D, et al. Sediment-hosted lead-zinc deposits in Earth history [J]. Economic Geology, 2010, 105: 593-625.
|
16 |
MA G, BEAUDOIN G, ZHONG S, et al. Geology and geochemistry of the Dengjishan Zn-Pb SEDEX deposit, Qinling belt, China [J]. Canadian Journal of Earth Sciences, 2007, 44: 479-492.
|
17 |
GADD M G, LAYTON-MATTHEWS D, PETER J M, et al. The worldclass Howard's Pass SEDEX Zn-Pb district, Selwyn Basin, Yukon. Part I: trace element compositions of pyrite record input of hydrothermal, diagenetic and metamorphic fluids to mineralization [J]. Mineral Deposita, 2016, 51: 319-342.
|
18 |
RAISWELL R, BUCKLEY F, BERNER R A, et al. Degree of pyritization of iron as a paleoenvironmental indicator of bottom water oxygenation [J]. Journal of Sedimentary Research, 1988, 58: 812-819.
|
19 |
GOLDHABER M B. Sulfur-rich sediments [C]// MACKENZIE F T. Treatise on geochemistry. Amsterdam: Elsevier, 2003, 7: 257-288.
|
20 |
SANGSTER D F. Toward an integrated genetic model for vent-distal SEDEX deposits[J]. Mineral Deposita, 2018, 53: 509-527.
|
21 |
SLACK J F, FALCK H, KELLEY K D, et al. Geochemistry of host rocks in the Howards Pass district, Yukon-Northwest Territories, Canada: implications for sedimentary environments of Zn-Pb and phosphate mineralization [J]. Mineral Deposita, 2017, 52: 565-593.
|
22 |
JOHNSON C A, SLACK J F, DUMOULIN J A, et al. Sulfur isotopes of host strata for Howards Pass (Yukon-Northwest Territories) Zn-Pb deposits implicate anaerobic oxidation of methane, not basin stagnation [J]. Geology, 2018, 46: 619-622.
|
23 |
COOKE D R, BULL S W, LARGE R R, et al. The importance of oxidized brines for the formation of Australian Proterozoic stratiform sediment-hosted Pb-Zn (SEDEX) deposits [J]. Economic Geology, 2000, 95: 1-18.
|
24 |
ELDRIDGE C S, WILLIAMS N, WALSHE J L. Sulfur isotope variability in sediment-hosted massive sulfide deposits as determined using the ion microprobe SHRIMP: II. a study of the H.Y.C. deposit at McArthur River, northern Territory, Australia [J]. Economic Geology, 1993, 88:1-26.
|
25 |
GADD M G, LAYTON-MATHEWS D, PETER J M, et al. The world-class Howard's Pass SEDEX Zn-Pb district, Selwyn Basin, Yukon. Part II: the roles of thermochemical and bacterial sulfate reduction in metal fixation [J]. Mineral Deposita, 2017, 52: 405-419.
|
26 |
GOODFELLOW W D, JONASSON I R. Ocean stagnation and ventilation defined by δ34S secular trends in pyrite and barite, Selwyn Basin, Yukon [J]. Geology, 1984, 12: 583-586.
|
27 |
KELLEY K D, LEACH D L, JOHNSON C A, et al. Textural, compositional, and sulfur isotope variations of sulfide minerals in the Red Dog Zn-Pb-Ag deposits, Brooks Range, Alaska: implications for ore formation [J]. Economic Geology, 2004, 99: 1 509-1 532.
|
28 |
BOROWSKI W S. A review of methane and gas hydrates in the dynamic, stratified system of the Blake Ridge region, offshore southeastern North America[J]. Chemical Geology, 2004, 205: 311-346.
|
29 |
LASH G G. Pyritization induced by Anaerobic Oxidation of Methane (AOM)—an example from the upper Devonian shale succession, western New York, USA [J]. Marine and Petroleum Geology, 2015, 68: 520-535.
|
30 |
LIN Z Y, SUN X M, PECKMANN J, et al. How sulfate-driven anaerobic oxidation of methane affects the sulfur isotopic composition of pyrite: a SIMS study from the South China Sea [J]. Chemical Geology, 2016, 440: 26-41.
|
31 |
LIN Z Y, SUN X M, STRAUSS H, et al. Multiple sulfur isotope constraints on sulfate-driven anaerobic oxidation of methane: evidence from authigenic pyrite in seepage areas of the South China Sea[J]. Geochimica et Cosmochimica Acta, 2017, 211: 153-173.
|
32 |
BROADBENT G C, MYERS R E, WRIGHT J V. Geology and origin of shale-hosted Zn-Pb-Ag mineralization at the Century deposit, northwest Queensland, Australia [J]. Economic Geology, 1998, 93: 1 264-1 294.
|
33 |
KELLEY K D, DUMOULIN J A, JENNINGS S, et al. The Anarraaq Zn-Pb-Ag and barite deposit, northern Alaska: evidence for replacement of carbonate by barite and sulfides [J]. Economic Geology, 2004, 99: 1 577-1 591.
|
34 |
MAGHFOURI S, HOSSEINZADEH M R, CHOULET F, et al. Vent-proximal sub-seafloor replacement clastic-carbonate hosted SEDEX-type mineralization in the Mehdiabad world-class Zn-Pb-Ba-(Cu-Ag) deposit, southern Yazd Basin, Iran [J]. Ore Geology Reviews, 2019, 113. DOI:10.1016/j.oregeorev.2019.103047.
doi: 10.1016/j.oregeorev.2019.103047
|
35 |
DERAKHSHI M G, HOSSEINZADEH M R, MOAYYED M, et al. Geological, isotope geochemical and fluid inclusion constraints on the Mishu SEDEX-type Barite (Pb-Cu-Zn) system, NW Iran [J]. Ore Geology Reviews, 2020, 121. DOI:10.1016/j.oregeorev.2020.103493.
doi: 10.1016/j.oregeorev.2020.103493
|