Please wait a minute...
img img
高级检索
地球科学进展  2021, Vol. 36 Issue (7): 671-683    DOI: 10.11867/j.issn.1001-8166.2021.062
综述与评述     
伊利石K-Ar/Ar-Ar年龄约束浅地表断层活动时间:原理和潜力
赵奇1,2,3(),闫义1,2,4,5()
1.中国科学院广州地球化学研究所,中国科学院边缘海与大洋地质重点实验室,广东 广州 510640
2.中国科学院深地科学卓越创新中心,广东 广州 510640
3.中国科学院大学地球与行星科学学院,北京 100049
4.南方海洋科学与工程广东省实验室,广东 广州 511458
5.中国科学院南海生态环境工程创新研究院,广东 广州 510301
Dating of Shallow Crusted Faults by Illite K-Ar/Ar-Ar Ages: Principles and Potential
Qi ZHAO1,2,3(),Yi YAN1,2,4,5()
1.Key Laboratory of Ocean and Marginal Sea Geology,Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou 510640,China
2.Center for Excellence in Deep Earth Science,Chinese Academy of Sciences,Guangzhou 510640,China
3.College of Earth and Planetary Sciences,University of Chinese Academy of Sciences,Beijing 100049,China
4.Southern Marine Science and Engineering Guangdong Laboratory,Guangzhou 511458,China
5.Innovation Academy of South China Sea Ecology and Environmental Engineering,Chinese Academy of Sciences,Guangzhou 510301,China
 全文: PDF(2785 KB)   RICH HTML
摘要:

地壳脆性区断层的定年工作是地质学面临的一个重大瓶颈问题。尽管绝大多数脆性断层在活动时会产生可以用于放射性测年的自生/同运动学伊利石,但同时也会混入影响放射性年龄的碎屑矿物,如2M1多型伊利石或云母,从而使得自生/同运动学伊利石年龄数据受到质疑。随着伊利石年龄分析法及年龄牵引子法的提出,利用分离提纯的各粒级伊利石年龄与颗粒尺度的关系约束近地表脆性断层活动时间的方法逐渐变得可靠。首先介绍了伊利石定年的原理和假设,其次回顾了伊利石年龄限定断层活动时间的研究历史,并总结了关于伊利石年龄数据解释的2种方法及其原理和运用背景。然后评价了影响伊利石定年的可能因素,认为Ar损失在近地表脆性断层域中可以忽略不计,而2M1多型伊利石或云母是否自生对讨论断层泥伊利石年龄的地质意义至关重要。最后指出伊利石定年技术不仅仅局限于浅地表断层定年,还可以约束高应变褶皱及构造混杂岩的变形时间。另外,如果识别俯冲带中与俯冲、增生、剥蚀相关的各构造主控域并分别开展伊利石定年工作,将有助于从时空上对整个俯冲带循环过程(俯冲—增生—剥蚀)的还原。

关键词: 断层定年K-Ar/Ar-Ar年龄伊利石伊利石年龄分析年龄牵引子    
Abstract:

Dating of shallow crusted faults has remained difficult. Although most brittle faults produce authigenic/synkinetic illite that can be used for radiometric dating, the fault gouges always retain detrital minerals, such as high-temperature 2M1 polytype illite/mica that make the radioactive age data questioned. However, with the introduction of the Illite Age Analysis method and the "Age-Attractor" method, illite K-Ar/Ar-Ar ages of each grain size fraction can be used for constraining the activity time of near-surface brittle faults. This paper first introduces the principles and assumptions of illite dating, and then reviews the history of the study of fault gouge dating, including the principles and background of the Illite Age Analysis method and "Age-Attractor" method. Then, the factors affecting the dating of illite are evaluated, and it is believed that Ar loss is negligible in the near-surface brittle fault domain, and whether the 2M1 polytype illite/mica is authigenic mineral is crucial for discussing the geological significance of illite age. Finally, it is pointed out that the illite dating method is not only used for shallow crusted fault dating, but can also constrain the deformation time of high-strain folds and tectonic mélange as well. In addition, if the main structural domains of subduction, accretion, and denudation in subduction zones are identified and dated, a complete temporal and spatial evolution process of the subduction zone can be obtained.

Key words: Fault dating    K-Ar/Ar-Ar age    Illite    Illite age analysis    Age-attractor.
收稿日期: 2021-04-15 出版日期: 2021-08-20
ZTFLH:  P597+.3  
基金资助: 国家自然科学基金项目“华南陆壳结构与南海北部地质过程研究”(U1701641);南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项“南海北部陆缘岩石圈薄化—破裂过程及其资源效应”(GML 2019ZD0205)
通信作者: 闫义     E-mail: zhaoqi@gig.ac.cn;yanyi@gig.ac.cn
作者简介: 赵奇(1995-),男,湖北荆州人,博士研究生,主要从事构造年代学研究. E-mail:zhaoqi@gig.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵奇
闫义

引用本文:

赵奇,闫义. 伊利石K-Ar/Ar-Ar年龄约束浅地表断层活动时间:原理和潜力[J]. 地球科学进展, 2021, 36(7): 671-683.

Qi ZHAO,Yi YAN. Dating of Shallow Crusted Faults by Illite K-Ar/Ar-Ar Ages: Principles and Potential. Advances in Earth Science, 2021, 36(7): 671-683.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2021.062        http://www.adearth.ac.cn/CN/Y2021/V36/I7/671

图1  伊利石年龄分析流程图
图2  断层泥各粒级伊利石K-Ar年龄与磷灰石裂变径迹和锆石裂变径迹年龄范围的关系[19]ZFTA: 锆石裂变径迹年龄; AFTA: 磷灰石裂变径迹年龄
图3  K-Ar年龄—颗粒尺度图
图4  对“年龄吸引子”模式混合曲线的概念解释(据参考文献[34]修改)
1 VELDE B. Green clay minerals[M]//HOLLAND H D, TUREKIAN K K. Treatise on geochemistry. Amsterdam: Elsevier, 2004: 309-324.
2 ZHANG Youyu, LIU Keyu, LUO Xiuquan. Geochronology of authigenic illite: principles methods and applications [M]. Beijing: Science Press, 2016.
2 张有瑜, 刘可禹, 罗修泉. 自生伊利石年代学研究:理论、方法与实践 [M]. 北京:科学出版社, 2016.
3 PEVEAR D R. Illite and hydrocarbon exploration[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96: 3 440-3 446.
4 Bailey S W, Bailey S W, Jones B F, et al. Reviews in mineralogy [M]. Washington DC: Mineralogical Society of America, 1984:495-544.
5 WANG Longzhang, DAI Tongmo, PENG Pingan. Experimental study on the 40Ar/39Ar age of illite in gas reservoirs [J]. Chinese Science Bulletin, 2004, 49(): 81-85.
5 王龙樟, 戴橦谟, 彭平安. 气藏储层自生伊利石40Ar/39Ar法定年的实验研究[J]. 科学通报, 2004, 49(): 81-85.
6 ZHANG Youyu, ZWINGMANN H, TODD A, et al. K-Ar isotopic dating of authigenic illite and its application to the investigation of hydrocarbon accumulation history of typical sandstones in Tarim Basin [J]. Frontier of Geosciences, 2004, 11(4): 637-648.
6 张有瑜, ZWINGMANN H, TODD A, 等. 塔里木盆地典型砂岩储层自生伊利石K-Ar同位素测年研究与成藏年代讨论[J]. 地学前缘, 2004, 11(4): 637-648.
7 ZHANG Youyu, ZWINGMANN H, LIU Keyu, et al. K-Ar isotopic dating of authigenic illite and its application to the investigation of hydrocarbon accumulation history of the Silurian bituminous sandstone reservoirs in the Tazhong uplift, Tarim basin [J]. Oil and Gas Geology, 2007, 28(2): 162-174.
7 张有瑜, ZWINGMANN H, 刘可禹, 等. 塔中隆起志留系沥青砂岩油气储层自生伊利石K-Ar同位素测年研究与成藏年代探讨[J]. 石油与天然气地质, 2007, 28(2): 162-174.
8 QIU Huaning, WU Heyong, FENG Zihui, et al. The puzzledom and feasibility in determining emplacement of oil/gas reserviors by 40Ar/39Ar techniques [J]. Geochemica, 2009, 38(4): 405-411.
8 邱华宁, 吴河勇, 冯子辉, 等. 油气成藏40Ar-39Ar定年难题与可行性分析[J]. 地球化学, 2009, 38(4): 405-411.
9 PEVEAR D R. Illite age analysis, a new tool for basin thermal history analysis[C]// KHARAKA Y K, MAEST A S. Proceedings of the 7th international symposium on water-rock interaction. Park City, Utah, USA, 1992: 1 251-1 254.
10 PLUIJM B A VAN DER, HALL C M, VROLIJK P J, et al. The dating of shallow faults in the Earth's crust [J]. Nature, 2001, 412: 172-175.
11 ZHANG Yan, CHEN Kelong, LIU Xinyu. Study on the K-Ar dating of diagenetic illite in sedimentary rock samples: questions and discussions [J]. Rock and Mineral Analysis, 2007, 26(2): 117-120.
11 张彦, 陈克龙, 刘新宇. 沉积岩中自生伊利石 K-Ar 定年研究——存在问题及原因讨论[J]. 岩矿测试, 2007, 26(2): 117-120.
12 HAINES S H, PLUIJM B A VAN DER. Clay quantification and Ar-Ar dating of synthetic and natural gouge: application to the Miocene Sierra Mazatán detachment fault, Sonora, Mexico [J]. Journal of Structural Geology, 2008, 30: 525-538.
13 HUANG Baoling, WANG Darui. An improved method for separation of authigenic clay minerals from sedimentary rocks [J]. Rock and Mineral Analysis, 2001, 20(3): 214-216.
13 黄宝玲, 王大锐. 沉积岩中自生黏土矿物分离提纯方法的改进[J]. 岩矿测试, 2001, 20(3): 214-216.
14 HUANG Baoling, WANG Darui, LIU Yulin, et al. Extraction method and significance of authigenic clay minerals in sedimentary rocks for K-Ar age dating [J]. Petroleum Geology and Experiment, 2002, 24(6): 550-560.
14 黄宝玲, 王大锐, 刘玉琳, 等. 油气储层钾氩定年中的自生黏土矿物提纯技术及意义[J]. 石油实验地质, 2002, 24(6): 550-560.
15 ZHANG Yan, CHEN Wen, YANG Huining. The separation of authigenic illite from detrital illite in sedimentary rock for Ar isotope dating [J]. Acta Geoscientica Sinica, 2003, 24(6): 622-626.
15 张彦, 陈文, 杨慧宁. 用于同位素测年的自生伊利石 分离纯化流程探索[J]. 地球学报, 2003, 24(6): 622-626.
16 ZHANG Youyu, Dong Aizheng, Luo Xiuquan. Separation of authigenic illite in hydrocarbon reservoirs and its K-Ar dating techniques [J]. Geoscience, 2001, 20(4): 461-464.
16 张有瑜, 董爱正, 罗修泉. 油气储层自生伊利石分离提纯及其K-Ar 同位素测年技术研究[J]. 现代地质, 2001, 20(4): 461-464.
17 ZHANG Youyu, LUO Xiuquan. A vacuum filtrating device and technique to separate authigenic illite from sandstone reservoirs with microporous membrane [J]. Petroleum Geology and Experiment, 2011, 33(6): 671-676.
17 张有瑜, 罗修泉. 油气储层自生伊利石分离提纯微孔滤膜真空抽滤装置与技术[J]. 石油实验地质, 2011, 33(6): 671-676.
18 WANG Yongsheng, ZHU Guang, HU Zhaoqi, et al. K-Ar dating of extensional fault gouge from the Yi-Shu segment of the Tan-Lu fault zone [J]. Science in China (Series D), 2009, 52(4): 489-503.
18 王勇生, 朱光, 胡召齐, 等. 郯庐断裂带沂沭段伸展活动断层泥K-Ar同位素定年[J]. 中国科学: D辑, 2009, 39(5): 489-503.
19 ZWINGMANN H, MANCKTELOW N. Timing of alpine fault gouges [J]. Earth and Planetary Science Letters, 2004, 223(3/4): 415-425.
20 ZWINGMANN H, OFFLER R, WILSON T, et al. K-Ar dating of fault gouge in the northern Sydney basin, Australia—implications for the breakup of Gondwana [J]. Journal of Structural Geology, 2004, 26: 2 285-2 295.
21 ZWINGMANN H, YAMADA K, TAGAMI T. Timing of brittle deformation within the Nojima fault zone, Japan [J]. Chemical Geology, 2010, 275: 176-185.
22 ZWINGMANN H, MANCKTELOW N, ANTOGNINI M, et al. Dating of shallow faults: new constraints from the AlpTransit tunnel site (Switzerland) [J]. Geology, 2010, 38: 487-490.
23 MOTTRAM C M, KELLETT D A, BARRESI T, et al. Syncing fault rock clocks: direct comparison of U-Pb carbonate and K-Ar illite fault dating methods [J]. Geology, 2020, 48: 1 179-1 183.
24 EBERL D D, SRODON J. Ostwald ripenning and interparticle-diffraction effects for illite crystals [J]. American Mineralogist, 1988, 73: 1 335-1 345.
25 EBERL D D, SACUTERODONACUTE J, KRALIK M, et al. Ostwald ripening of clays and metamorphic minerals [J]. Science, 1990, 248(4 954): 474.
26 CLAUER N, CHAUDHURI S. Clays in crustal environments [M]// Isotope dating and tracing. Berlin: Springer-Verlag, 1995.
27 MEUNIER A, VELDE B, ZALBA P. Illite K-Ar dating and crystal growth processes in diagenetic environments: a critical review [J]. Terra Nova, 2004, 16: 296-304.
28 VELDE B. Experimental determination of muscovite polymorph stabilities [J]. American Mineralogist, 1965, 50: 436-449.
29 MOORE D A, REYNOLDS J R. X-ray diffraction and the identification and analysis of clay minerals [M]. Oxford: Oxford University Press, 1997: 378.
30 GRATHOFF G H, MOORE D M, HAY R L, et al. Origin of illite in the lower Paleozoic of the Illinois basin: evidence for brine migrations [J]. Geological Society America Bulletin, 2001,113: 1 092-1 104.
31 PLUIJM B A VAN DER, VROLIJK P J, PEVEAR D R, et al. Fault dating in the Canadian Rocky Mountains: evidence for Late Cretaceous and Early Eocene orogenic pulses [J]. Geology, 2006, 34: 837-840.
32 TONAI S, ITO S, HASHIMOTO Y, et al. Complete 40Ar resetting in an ultracataclasite by reactivation of a fossil seismogenic fault along the subducting plate interface in the Mugi Mélange of the Shimanto accretionary complex, southwest Japan [J]. Journal of Structural Geology, 2016, 89: 19-29.
33 FISHER D M, TONAI S, HASHIMOTO Y, et al. K-Ar dating of fossil seismogenic thrusts in the Shimanto accretionary complex, southwest Japan [J]. Tectonics, 2019, 38: 3 866-3 880.
34 TORGERSEN E, VIOLA G, ZWINGMANN H, et al. Structural and temporal evolution of a reactivated brittle-ductile fault: part II. Timing of fault initiation and reactivation by K‐Ar dating of synkinematic illite [J]. Earth and Planetary Science Letters, 2014, 407: 221-233.
35 VIOLA G, ZWINGMANN H, MATTILA J, et al. K-Ar illite age constraints on the Proterozoic formation and reactivation history of a brittle fault in Fennoscandia [J]. Terra Nova, 2013, 25: 236-244.
36 VIOLA G, SCHEIBER T, FREDIN O, et al. Deconvoluting complex structural histories archived in brittle fault zones [J]. Nature Communications, 2016, 7(1): 13448.
37 VIOLA G, TORGERSEN E, MAZZARINI F, et al. New constraints on the evolution of the inner Northern Apennines by K‐Ar dating of Late Miocene‐Early Pliocene compression on the Island of Elba, Italy [J]. Tectonics, 2018, 37: 3 229-3 243.
38 SCHEIBER T, VIOLA G. Complex bedrock fracture patterns: a multipronged approach to resolve their evolution in space and time [J]. Tectonics, 2018, 37: 1 030-1 062.
39 SOLUM J G, PLUIJM B A VAN DER, PEACOR D R. Neocrystallization, fabrics and age of clay minerals from an exposure of the Moab Fault, Utah [J]. Journal of Structural Geology, 2005, 27(9): 1 563-1 576.
40 RAHL J M, HAINES S H, PLUIJM B A VAN DER. Links between orogenic wedge deformation and erosional exhumation: evidence from illite age analysis of fault rock and detrital thermochronology of syn-tectonic conglomerates in the Spanish Pyrenees [J]. Earth and Planetary Science Letters, 2011, 307(1/2): 180-190.
41 BOLES A, SCHLEICHER A M, SOLUM J, et al. Quantitative X‐ray powder diffraction and the illite polytype analysis method for direct fault rock dating: a comparison of analytical techniques [J]. Clays and Clay Minerals, 2018, 66: 220-232.
42 DUVALL A R, CLARK M K, PLUIJM B A VAN DER. Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault clays and low-temperature thermochronometry [J]. Earth and Planetary Science Letters, 2011, 304: 520-526.
43 REYNOLDS R C. WILDFIRE?-a computer program for the calculation of three-dimensional powder X-ray diffraction patterns for Mica Polytypes and their disordered variations [M]. New Hampshire: Hanover, 1993.
44 SCHLEICHER A, WARR L, KOBER B. Episodic mineralization of hydrothermal illite in the Soultz-sous-Fore?ts granite (Upper Rhine Graben, France) [J]. Contribution to Mineralogy and Petrology, 2006, 152: 349-364.
45 ZWINGMANN H, HARTOG S A M DEN, TODD A. The effect of sub-seismic fault slip processes on the isotopic signature of clay minerals-implications for K-Ar dating of fault zones [J]. Chemical Geology, 2019, 514: 112-121.
46 SüSSENBERGER A, WEMMER K, SCHMIDT S T. The zone of incipient 40Ar* loss-monitoring 40Ar* degassing behavior in a contact metamorphic setting [J]. Applied Clay Science, 2018, 165: 52-63.
47 VROLIJK P, PLUIJM B A VAN DER. Clay gouge [J]. Journal of Structural Geology, 1999, 21: 1 039-1 048.
48 UYSAL I T, MUTLU H, ALTUNEL E, et al. Clay mineralogical and isotopic (K-Ar, δ18O, δD) constraints on the evolution of the North Anatolian Fault Zone, Turkey [J]. Earth and Planetary Science Letters, 2006, 243(1/2): 181-194.
49 HAINES S H, PLUIJM B A VAN DER. Dating the detachment fault system of the Ruby Mountains, Nevada: significance for the kinematics of low-angle normal faults [J]. Tectonics, 2010, 29: 525-538.
50 SONG Y, CHUNG D, CHOI S, et al. K-Ar illite dating to constrain multiple events in shallow crustal rocks: implications for the late phanerozoic evolution of NE Asia [J]. Journal of Asian Earth Science, 2014, 95: 313-322.
51 BUI H B, NGO X T, KHUONG T H. Episodes of brittle deformation within the Dien Bien Phu Fault zone, Vietnam: evidence from K-Ar age dating of authigenic illite [J]. Tectonophysics, 2017, 695: 53-63.
52 ALDEGA L, VIOLA G, CASAS-SAINZ A, et al. Unravelling multiple thermo-tectonic events accommodated by crustal-scale faults in northern Iberia, Spain: insights from K-Ar dating of clay gouges [J]. Tectonics, 2019, 38(10): 3 629-3 651.
53 PURDY J W, JA?GER E. K-Ar ages on rock-forming minerals from the Central Alps [J]. Memorie degli Istituti di Geologia e Mineralogia dell' Universita? di Padova, 1976, 30: 31.
54 ALLAZ J. Metamorphic evolution in the northern Central Alps: linking 39Ar-40Ar dating with thermobarometry[D]. Bern: University of Bern, 2008.
55 TORGERSEN E, VIOLA G, ZWINGMANN H, et al. Inclined K‐Ar illite age spectra in brittle fault gouges: effects of fault reactivation and wall‐rock contamination [J]. Terra Nova, 2015, 27(2): 106-113.
56 ZWINGMANN H, HAN R, REE J H. Cretaceous reactivation of the Deokpori Thrust, Taebaeksan Basin, South Korea, constrained by K-Ar dating of clayey fault gouge [J]. Tectonics, 2011, 30: TC5015.
57 TARTAGLIA G, VIOLA G, LELIJ R VAN DER, et al. "brittle structural facies" analysis: a diagnostic method to unravel and date multiple slip events of long-lived faults [J]. Earth and Planetary Science Letters, 2020, 545: 116420.
58 DODSON M H. Closure temperature in cooling geochronological and petrological systems [J]. Contributions to Mineralogy and Petrology, 1973, 40: 259-274.
59 HARRISON T M, CéLéRIER J, AIKMAN A B, et al. Diffusion of 40Ar in muscovite [J]. Geochimica et Cosmochimica Acta, 2009, 73 (4): 1 039-1 051.
60 ZHANG Jiawei, LI Han'ao, ZHANG Huiping, et al. Research progress in Cenozoic N-S striking rifts in Tibetan Plateau[J]. Advances in Earth Science, 2020, 35(8): 848-862.
60 张佳伟, 李汉敖, 张会平, 等. 青藏高原新生代南北走向裂谷研究进展 [J]. 地球科学进展, 2020, 35(8): 848-862.
61 LIU Fangbin, NIE Junsheng, ZHENG Dewen, et al. The Cenozoic exhumation history and forcing mechanism of SE Tibetan Plateau: a case study of the Lincang granite area [J]. Advances in Earth Science, 2021, 36(4): 421-441.
61 刘方斌, 聂军胜, 郑德文, 等. 青藏高原东南缘新生代剥露历史及驱动机制探讨:以临沧花岗岩地区为例 [J]. 地球科学进展, 2021, 36(4): 421-441.
62 FITZ-DIAZ E, PLUIJM B VAN DER. Fold dating: a new Ar/Ar illite dating application to constrain the age of deformation in shallow crustal rocks [J]. Journal of Structural Geology, 2013, 54: 174-179.
63 ZHAO Q, YAN Y, TONAI S, et al. A new K/Ar illite dating application to constrain the timing of subduction in West Sarawak, Borneo [J]. Geological Society of America Bulletin, 2021. DOI: 10.1130/B35895.1.
doi: 10.1130/B35895.1
64 RAYMOND L A. Perspectives on the roles of mélanges in subduction accretionary complexes: a review [J]. Gondwana Research, 2019, 74: 68-89.
[1] 杨献忠. 伊利石单元粒子及其研究意义[J]. 地球科学进展, 2002, 17(5): 659-663.
[2] 车忱,杨忠芳,季峻峰. 沉积岩中成岩伊利石年龄测定研究进展[J]. 地球科学进展, 2002, 17(5): 693-698.
[3] 赵靖舟. 油气成藏年代学研究进展及发展趋势[J]. 地球科学进展, 2002, 17(3): 378-383.
[4] 刘 立,于均民,孙晓明,杨庆杰. 热对流成岩作用的基本特征与研究意义[J]. 地球科学进展, 2000, 15(5): 583-585.