地球科学进展 ›› 2002, Vol. 17 ›› Issue (5): 659 -663. doi: 10.11867/j.issn.1001-8166.2002.05.0659

研究论文 上一篇    下一篇

伊利石单元粒子及其研究意义
杨献忠 1,2   
  1. 1.中国地质大学地学院,湖北 武汉 430074;2.南京地质矿产研究所,江苏 南京 210016
  • 收稿日期:2002-01-14 修回日期:2002-05-24 出版日期:2002-12-20
  • 通讯作者: 杨献忠(1962-),男,江苏省靖江市人,高级工程师,在读博士,主要从事粘土矿物学研究.E-mail:ngyxianzhong@cas.gov.cn E-mail:ngyxianzhong@cas.gov.cn

ILLITE FUNDAMENTAL PARTICLE AND ITS SIGNIFICANCES

YANG Xian-zhong 1,2   

  1. 1. Faculty of Geosciences,China University of Geosciences,Wuhan  430074,China;2. Nanjing Institute of Geology and Mineral Resources,Nanjing  210016,China
  • Received:2002-01-14 Revised:2002-05-24 Online:2002-12-20 Published:2002-10-01

单元粒子是单晶体构成的细小的粘土颗粒,是由一种或多种层状结构的硅酸盐构成的混层粘土的基本单元。多数伊利石单元粒子以混层晶体的"建筑砌块"的形式产出,"砌块"与"砌块"之间,在 a、b方向通过"砌块"的边缘界面相"砌合"而连接,在 c轴方向通过平面界面相"砌合"而连接。还对伊利石单元粒子的生长机理及形成过程中的形态变化、利用伊利石单元粒子的厚度划分成岩作用阶段等方面的研究成果进行了综述。伊利石单元粒子的形成过程有三个阶段:蒙脱石伊利石化过程中2nm厚的伊利石粒子的成核作用阶段、成核作用与生长作用阶段和表面控制生长阶段。伊利石单元粒子生长过程中,伊利石单元粒子呈现从板状体到条状体的生长,而板状颗粒又呈现各种螺旋生长图案,有圆形、残缺的圆形、多边螺旋、平行阶梯状螺旋、交错螺旋等。伊利石单元粒子的厚度分布服从对数正态型,其峰值为10.5nm。单元粒子与纳米科技两者的主要研究内容和所采用的方法基本一致,建议今后将研究单元粒子与研究纳米粘土矿物学有机地结合起来。

The fundamental particle is the very fine clay particle composed of single crystal,and is the basic unit of mixed-layer clays formed by one or several kinds of silicates with the sheet structure. Most of illite fundamental particle were found to occur as “building blocks” of mixed-layer crystals(MacEwan crystallites). Between the “blocks”, the adjacent edges were joined with bonded blocks in a, b direction, and the adjacent surface interfaces are joined with blocks of longer bond in c direction. The recent achievements for illite fundamental particle including the formation mechanisms, the shape variations in the formation process, and the diagenetic stages division were also summarized in the paper. There are three stages in the formation process of illite fundamental particle:①the nucleation stage of 2-nm thick illite particle at the incipient process of montmorillonite illitization; ② the simultaneous nucleation and growth stage  and ③ the surface-controlled growth stage. Illite fundamental particles showed platy to lath shapes. Platy particles exhibited various spiral growth patterns, i.e. circular, malformed circular, polygonal single unit-cell layer spirals, polygonal parallel step spiral, interlaced spiral patterns, etc. The crystal thickness distribution of illite fundamental particle submit to the lognormal-type distribution which maximum value is 10.5nm. Because the major contents and methods of fundamental particle are basic similar to  those in the nanoscience and technology, it is suggested that the relationship between illite fundamental particle and the nano-clay mineralogy be regarded together in future.

中图分类号: 

[1]Nadeau P H,Wilson M J,McHardy W J,et al.Interstratified clay as fundamental particle[J]. Science,1984,225:923-935.
[2]Zhang Shengyang. A new concept in clay mineralogy—Fundamental particle and interparticle diffraction[J]. Geology-Geochemistry,1988,2:26-28. [张胜扬. 粘土矿物学中的新概念——单元粒子和粒间衍射现象[J]. 地质地球化学,1988,2:26-28.]
[3]Srodon V,Andreoli C,Elsass F,et al. Direct high-resolution transmition electron microscopic measurement of expandability of mixed-layer illite/smectite in bentonite rock[J]. Clays and Clay Minerals,1990,34:368-378.
[4]Reynolds R C,Jr. X-ray diffraction studies of illite/smectite from rocks,<1μm randomly oriented powders,and <1μm oriented powder aggregates: The absence of laboratory induced artifacts[J]. Clays and Clay Minerals,1992,40:387-396.
[5]Srodon J,Eberl D D,Drits V A. Evolution of fundamental-particle size during illitization of smectite and implications for reaction mechanism[J]. Clays and Clay Minerals,2000,48:446-458.
[6]Nadeau P H,Wilson M J,McHardy W J,et al. Interparticle diffraction:A new concept for interstratified clays[J]. Clay Minerals,1984,19:757-759.
[7]Drits V A,Eberl D D,Srodon J. XRD measurement of mean illite crystallite thickness:Reappraisal of the Kübler index and Scherrer equation[J]. Clays and Clay Minerals,1997,45:461-475.
[8]Scherrer P. Bestimmung der grosse und inneren Struktur von Kolloidteilchen mittels Rontgenstrahlen[J]. Nachrichten Gesellschaft Wissenschaft Gottingen,1918,26:98-100.
[9]Kübler B. les argiles indicateurs de metamorphisme[J]. Revue Institut Francais du Petrole,1964,XIX(10):1 093-1 113.
[10]Arkai P,Merriman R J,Roberts B,et al. Cryatsllinity,crystallite size and lattice strain of illite-muscovite and chlorite:Comparison of XRD and TEM data for diagenetic to epizonal pelites[J]. European Journal of Mineralogy,1996,8:1 119-1 137.
[11]Srodon J,Eberl D D. Illite[A]. In:Bailey S W, eds. Mica[C]. Chelsea,Michigan: Mineralogical Society of American,1984. 495-544.
[12]Srodon J. Precise identification of illite/smectite interstratification by X-ray powden diffration[J]. Clays and Clay Minerals,1980,28:401-411.
[13]Srodon J,Elsass F. Effect of the shape of fundamental particles on XRD characteristics of illitic minerals[J]. European Journal of Mineralogy,1994,6:113-122.
[14]Drits V A,Eberl D D,Srodon J. XRD measurement of mean thickness,thickness distribution and strain for illite and illite/smectite crystallites by the Bertaut-Warren-Averbach technique[J]. Clays and Clay Minerals,1998,46:461-475.
[15]Eberl D D,Nuesch R,Sucha V,et al.Measurement of fundamental illite particle thicknesses by X-ray diffraction using PVP-10 intercalation[J]. Clays and Clay Minerals,1998,46:89-97.
[16]Jaboyedoff M,Bussy F,Kübler B,et al. Illite “crystallinity” revisited[J]. Clays and Clay Minerals,2001,49:156-167.
[17]Altaner S P,Ylagan R F. Comparison of structural models of mixed-layer illite-smectite and reaction mechanisms of smectite illitization[J]. Clays and Clay Minerals,1997,45:517-533.
[18]Barronnet A. Polytypism and stacking disorder[A]. In:Buseck P R, ed. Minerals and Reactions at the Atomic Scale:Transmission Electron Microscopy[C]. Chelsea,Michigan: Mineralogical Society of American,1992. 231-288.
[19]Lanson B,Velde B,Meunier A. Late-stage diagenesis of illitic clay minerals as seen by decomposition of X-ray diffraction patterns:contrasted behaviors of sedimentary basins with different burial histories[J]. Clays and Clay Minerals,1998,46:69-78.
[20]Rajec P,Sucha V,Eberl D D,et al. Effect of illite particle shape on cesium sorption[J]. Clays and Clay Minerals,1999,47:755-760.
[21]Ylagan R F,Altaner S P,Pozzuoli A. Reaction mechanisms of smectite illitization associated with hydrothermal alteration from Ponza Island,Italy[J]. Clays and Clay Minerals,2000,48:610-631.
[22]Kuwahara Y,Uehara S,Aoki Y. Atomic force microscopy study of hydrothermal illite in Izumiyama Pottery stone from Arita,Saya Prefeture,Japan[J]. Clays and Clay Minerals,2001,49:300-309.

[1] 赵奇,闫义. 伊利石 K-Ar/Ar-Ar年龄约束浅地表断层活动时间:原理和潜力[J]. 地球科学进展, 2021, 36(7): 671-683.
[2] 韩志轩, 廖建国, 张聿隆, 张必敏, 王学求. 穿透性地球化学勘查技术综述与展望[J]. 地球科学进展, 2017, 32(8): 828-838.
[3] 张强, 姚玉璧, 李耀辉, 罗哲贤, 张存杰, 李栋梁, 王润元, 王劲松, 陈添宇, 肖国举, 张书余, 王式功, 郭铌, 白虎志, 谢金南, 杨兴国, 董安祥, 邓振镛, 柯晓新, 徐国昌. 中国西北地区干旱气象灾害监测预警与减灾技术研究进展及其展望[J]. 地球科学进展, 2015, 30(2): 196-211.
[4] 李晓,梁收运,郑国东. 滑带土的研究进展[J]. 地球科学进展, 2010, 25(5): 484-491.
[5] 王运生,罗永红,吴俊峰,孙耀明. 中国西部深切河谷谷底卸荷松弛带成因机理研究[J]. 地球科学进展, 2008, 23(5): 463-468.
[6] 黄荣辉. 我国重大气候灾害的形成机理和预测理论研究[J]. 地球科学进展, 2006, 21(6): 564-575.
[7] 王桂华;苏纪兰;齐义泉. 南海中尺度涡研究进展[J]. 地球科学进展, 2005, 20(8): 882-886.
[8] 车忱,杨忠芳,季峻峰. 沉积岩中成岩伊利石年龄测定研究进展[J]. 地球科学进展, 2002, 17(5): 693-698.
[9] 赵靖舟. 油气成藏年代学研究进展及发展趋势[J]. 地球科学进展, 2002, 17(3): 378-383.
[10] 刘 立,于均民,孙晓明,杨庆杰. 热对流成岩作用的基本特征与研究意义[J]. 地球科学进展, 2000, 15(5): 583-585.
[11] 李晶莹,陶明信. 国际煤层气组成和成因研究[J]. 地球科学进展, 1998, 13(5): 467-473.
[12] 张景廉,张平中,吕锡敏,关银录,廖天纯,张正刚,王爱勤. 油气无机成因学说的新进展[J]. 地球科学进展, 1998, 13(1): 44-50.
阅读次数
全文


摘要