地球科学进展 ›› 2010, Vol. 25 ›› Issue (5): 484 -491. doi: 10.11867/j.issn.1001-8166.2010.05.0484

综述与评述 上一篇    下一篇

滑带土的研究进展
李晓 1,梁收运 1,2*,郑国东 2   
  1. 1. 西部灾害与环境力学教育部重点实验室,兰州大学,甘肃  兰州  730000;
    2.中国科学院地质与地球物理研究所油气资源研究重点实验室,甘肃  兰州  730000
  • 收稿日期:2009-10-26 修回日期:2010-03-16 出版日期:2010-05-10
  • 通讯作者: 梁收运(1965-),男,陕西蒲城人,副教授,主要从事工程地质和环境地质方面的教学与研究. E-mail:liangsy@lzu.edu.cn
  • 基金资助:

    兰州大学灾后重建应急专项“板块俯冲地震诱发次生地质灾害及重建对策研究”(编号:LZUZJ003);  甘肃省科技支撑计划—社会发展计划项目“甘肃省突发性地质灾害特征及防灾救灾技术研究”(编号:0804NKCA084)资助.

Progresses in Sliding Zone Soil of Landslides

Li Xiao 1,Liang Shouyun 1,2,Zheng Guodong 2   

  1. 1.Key Laboratory of Mechanics on Western Disaster and Environment, Lanzhou University,Lanzhou  730000,China;   2. Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, CAS, Lanzhou  730000, China
  • Received:2009-10-26 Revised:2010-03-16 Online:2010-05-10 Published:2010-05-10
  • Supported by:

    李晓(1983),男,河南正阳人,硕士研究生,主要从事灾害地质学方面研究.E-mail:lixiao@126.com

  滑带土是滑坡的重要组成部分,与滑坡的发展演化和稳定性密切相关。开展滑带土的研究是滑坡工程地质研究的基础内容,并已逐渐成为该领域的研究热点。目前有关滑带土的研究成果主要集中在滑带土物理力学性质方面,而针对滑带土强度的控制因素和机理研究还比较欠缺。在简要总结了滑带的识别、滑带土分类和强度特性等研究现状的基础上,着重从滑带土微观结构、矿物成分、地球化学特征和形成机理等,及其对滑带土强度特性的影响进行了综述与分析。研究结果认为:除了滑带的识别、滑带土的分类及其强度特征的研究需要进一步加强外,应不断拓宽滑带土的研究领域,深化对滑带土强度本质因素认识;应重视滑带土微观结构在不同条件下的变化规律、粘土矿物成分、元素地球化学特征、微生物、水—岩(土)相互作用、渗透性以及水化学等综合作用对滑带土强度影响的研究;从发展演化的活动论观点系统研究滑带土的形成过程,探索滑带土中所蕴含的滑坡发展演化与环境变化的信息。

 The soil in sliding zone is an essential part of landslides, and closely related to the evolutionary development and landslide stability evaluation. The study of sliding zone soil has been concerned recently and gradually turned to a hotspot because the study is the fundamental content of landslide in engineering geology. However, most of the study of sliding zone soil, at present, mainly has concentrated on physical and mechanical property, lacked of discussing the essential factors which affect the strength of sliding zone soil. Based on the work that have been done, in this paper, we briefly summarize the recognition and the classification of sliding zone, and the current study situation of the strength characteristics of sliding zone soil, and then emphatically give a summary and analysis according to the microstructure, mineral composition, geochemical characteristics and formation mechanism of sliding zone soil, especially the discussion of the effect of these characteristics on the strength of sliding zone soil. The study results suggest that: ①the recognition of sliding zone, the classification of sliding zone soil and the analysis of the strength of sliding zone soil need to be further studied, and we ought to do some work to broaden steadily research scopes of sliding zone soil and improve the understanding of the essential factors of affecting its strength; ②the research of sliding zone soil should be emphasized on the change of strength with its mineral composition, water, density, grain-size, geochemical characteristics, microorganisms, and the variation laws of microstructure under different conditions, and the effect of water-rock(soil) interaction, permeability and water chemical action on sliding zone soil; ③the systematical research of sliding zone soil formation process should be based on the evolutionary viewpoint. More information  about sliding zone soil  landslide evolutionary progress and environment change should be sought in future.

中图分类号: 

[1] Liu Xiaoli, Deng Jianhui, Li Guangtao. Shear strength properties of slip soils of landslides: An overview[J]. Rock and Soil Mechanics, 2004, 25(11): 1 849-1 854.[刘小丽,邓建辉,李广涛.滑带土强度特性研究现状[J].岩土力学,2004,25(11):1 849-1 854.]
[2] Wang Juan. Experimental Study on Engineering Properties of Slip Soils of Landslides along G212 Highway in Long-nan[D]. Lanzhou: Lanzhou University, 2006.[王娟.G212线陇南段滑坡滑带土工程特性试验研究[D].兰州:兰州大学,2006.]
[3] Anson R W W, Hawkins A B. Analysis of a sample containing a shear surface from a recent landslip, South Cotswolds, UK[J].Geotechnique,1999, 49(1): 33-41.
[4] Tian Bin, Dai Huichao, Wang Shimei. Strength characteristics of soil in slide zone and determination of its parameters[J].Chinese Journal of Rock Mechanics and Engineering,2004, 23(17): 2 887-  2 892.[田斌,戴会超,王世梅. 滑带土结构强度特征及其强度参数取值研究[J].岩石力学与工程学报,2004,23(17):2 887-2 892.]
[5] Wang Zhirong, Wang Nianqin. A summary of present study on loess landslides[J].Soil and Water Conservation in China,2004, 11: 16-18.[王志荣,王念秦.黄土滑坡研究现状综述[J].中国水土保持,2004,11:16-18.]
[6] Hu Ruilin,Wang Shanshan. Main features and identification method of sliding-surfaces in soil and rock slopes[J].Journal of Engineering Geology,2010,18(1):35-40.[胡瑞林,王珊珊. 滑坡滑面(带)的辩识[J].工程地质学报,2010,18(1):35-40.]
[7] Tan Hanhua, Luo Qiang, Liu Zhiguo. Sliding zone distinction and comprehensive treatment landslide of mantle rock area[J].Subgrade Engineering,2008, 3: 188-190.[谭捍华,罗强,柳治国.风化岩滑坡滑面判定与综合整治[J].路基工程,2008,3:188-190.] 
[8] Chen Zhimin, Zhao Dean, Li Shuangyang,et al.Comprehensive analysis method of the most unfavorable slide face of loess landslide[J].Journal of Railway Engineering Society,2007, 7:12-15.[陈志敏,赵德安,李双洋,等.黄土滑坡最不利滑面综合分析方法[J].铁道工程学报,2007,7:12-15.]
[9] Zheng Guodong, Xu Sheng, Lang Yuhua,et al. Pyrite in sliding mud of the Nakataura Landslide in Toyama Prefecture, Japan[J].Geochimica,2006, 35(2):201-210.[郑国东,徐胜,郎煜华,等. 日本富山县中田浦滑坡滑带内的黄铁矿[J]. 地球化学,2006,35(2):201-210. ]
[10] Li Ruie. Study on the Sliding soil of the Loess Landslides[D]. Xi′an: Northwest University, 2005.[李瑞娥. 黄土滑坡滑带土的研究[D]. 西安:西北大学,2005.]
[11] Wang Gongxian, Xu Junling. Landslide and Technology of Landslide-control[M]. Beijing: China Railway Publishing House, 2004.[王恭先,徐峻岭.滑坡学与滑坡防治技术[M]. 北京:中国铁道出版社,2004.]
[12] Wen B P, Aydin A. Microstructural study of a natural slip zone: Quantification and deformation history[J].Engineering Geology,2003, 68: 289-317. 
[13] Pusch R. Experience from preparation and investigation of clay microstructure[J].Engineering Geology,1999, 54: 187-194. 
[14] Liu Aiping, Cui Chunlong. Study actualities and prospect of relation between microfabric and mechanical properties of rockmass and soils[J].Journal of Southwest University of Science and Technology,2003, 18(2): 75-78.[刘爱萍,崔春龙.岩土体微观组构与力学性能关系研究现状与展望[J].西南科技大学学报,2003,18(2):75-78.]
[15] Zhang Lizhong, Hu Ruilin, Li Xiangquan, et al.Soil microstructure quantitative analysis system and its application[J].Geological Science and Technology Information,2008, 27(1): 108-112.[张礼中,胡瑞林,李向全.土体微观结构定量分析系统及应用[J].地质科技情报,2008,27(1):108-112.]
[16] Shi Bin. A simple quantitative analysis method for microstructure of clayey soil[J].Hydrogeology and Engineering Geology,1997, 1: 7-10.[施斌.粘性土微观结构简易定量分析法[J].水文地质工程地质,1997,1:7-10.]
[17] Prikryl R, Ryndova T, Bohac J, et al. Microstructures and physical properties of “backfill” clays: Comparison of residual and sedimentary montmorillonite clays[J]. Applied Clay Science,2003, 23: 149-156.
[18] Romero E, Simms P H. Microstructure investigation in unsaturated soils: A review with special attention to contribution of mercury intrusion porosimetry and environmental scanning electron microscopy[J].Geotechnical and Geological Engineering,2008, 26(6): 93-115.
[19] Tan Luorong, Kong Lingwei. Soil Mechanics of Special Geotechnical Engineering[M]. Beijing: Science Press, 2006.[谭罗荣,孔令伟. 特殊岩土工程土质学[M]. 北京:科学出版社,2006.]
[20] Tan Luorong. The review and development of the microstructure research of the soil[J].Rock and Mechanics,1983, 4(1): 73-86.[谭罗荣.土的微观结构研究概况和发展[J].岩土力学,1983,4(1):73-86.]
[21] Yan Chunjie, Tang Huiming, Sun Yunzhi. Study on the soil of slipping zone in landslides and its significance by scanning electron microscope and X-ray diffractometer[J].Geological Science and Technology Information,2001,20(4): 89-92.[严春杰,唐辉明,孙云志.利用扫描电镜和X射线衍射仪对滑坡滑带土的研究[J].地质科技情报,2001,20(4):89-92.]
[22] Wen B P, Aydin A. Mechanism of a rainfall-induced slidedebris flow: Constraints from microstructure of its slip zone[J].Engineering Geology,2005, 78: 69-88.
[23] Wang Hongxing, Tang Huiming, Yan Tongzhen. Study on X-ray diffractometer of clay minerals in sliding-soil in the Miaoshangbei landslide, Xiaolangdi reservoir area[J].Journal of Mineralogy and Petrology,2004, 24(2): 26-29.[王洪兴,唐辉明,晏同珍.小浪底库区庙上北滑坡滑带土粘土矿物定向性的X射线衍射研究及其对滑坡的作用[J].矿物岩石,2004,24(2):26-29.]
[24] Long Jianhui, Li Tonglu, Lei Xiaofeng,et al. Study on physical properties of soil in sliding zone of loess landslip[J].Chinese Journal of Rock Mechanics and Engineering,2007, 29(2): 289-293.[龙建辉,李同录,雷晓锋,等.黄土滑坡滑带土的物理特性研究[J].岩石力学与工程学报,2007,29(2):289-293.]
[25] Hammond K J, Evans J P. Geochemistry, mineralization, structure, and permeability of a normal fault zone, Casino mine, Alligator Ridge district, north central Nevada[J].Journal of Structural Geology,2003, 25: 717-736.
[26] Li Ruie, Xu Haoming, Wang Juanjuan. Characters of sliding soil of the loess landslide: A case study from Jiaoshuwan, Tianshui[J].Coal Geology and Exploration,2009, 37(1): 43-47.[李瑞娥,徐郝明,王娟娟.黄土滑坡滑带土的特点——以天水椒树湾滑坡为例[J].煤田地质与勘探,2009,37(1):43-47.]
[27] Wu Weijiang, Wang Nianqin. Landslide Hazards in Gansu[M]. Lanzhou: Lanzhou University Press, 2006.[吴玮江,王念秦.甘肃滑坡灾害[M].兰州:兰州大学出版社,2006.]
[28] Kawamura K, Ogawa Y J, Oyagi N,et al. Structural and fabric analyses of basal slip zone of the Jin′nosuke-dani landslide, northern central Japan: Its application to the slip mechanism of decollement[J].Landslides,2007, 4: 371-380.
[29] Cheng Dongxing, Liu Daan, Ding Enbao,et al.Study on attenuation characteristics of long-term strength for landslide soil[J].Chinese Journal of Rock Mechanics and Engineering,2005, 24(suppl.2): 5 827-5 834.[程东幸,刘大安,丁恩保,等.滑带土长期强度参数的衰减特性研究[J].岩石力学与工程学报,2005,24(增刊2):5 827-5 834.]
[30] Dai Shaobin, Huang Jun, Xia Lin. Analysis of mineral composition and chemical components of expansive soil in North Hubei[J].Rock and Soil Mechanics,2005, 26(suppl.): 296-299.[戴绍斌,黄俊,夏林.鄂北膨胀土的矿物组成和化学成分分析[J].岩土力学,2005,26(增刊):296-299.]
[31] Tang Liangqin, Nie Dexin, Ren Guangming. The relational analysis between the clay grain content and strength characteristics of weak intercalated layer[J].The Chinese Journal of Geological Hazard and Control,2003, 14(2): 56-60.[唐良琴,聂德新,任光明.软弱夹层粘粒含量与抗剪强度参数的关系分析[J].中国地质灾害与防治学报,2003,14(2):56-60.]
[32] Liao Shiwen. Expansive Soil and Railway Engineering\[M\]. Beijing: China Railway Publishing House, 1984.[廖世文. 膨胀土与铁路工程[M]. 北京:中国铁道出版社,1984.]
[33] Liu Tehong. The Question of Expansive Soil in Engineering Construction[M]. Beijing: China Architecture and Building Press, 1999.[刘特洪. 工程建设中的膨胀土问题[M]. 北京:中国建筑工业出版社,1999.]
[34] Zheng G D, Xu S, Lang Y H,et al.Variation of iron species in sliding mud[J].Chinese Science Bulletin,2002, 47(23): 2 018-2 024.
[35] Shuzui H. Process of slip surface development and formation of slip surface clay in landslide in Tertiary volcanic rocks, Japan[J].Engineering Geology,2001, 61: 199-219.
[36] Wen B P, Chen H Y. Mineral compositions and elements concentrations as indicators for the role of groundwater in the development of landslide slip zones: A case study of large-scale landslides in the Three Gorges area in China[J].Earth Science Frontiers,2007, 14(6): 98-106.
[37] Wen B P, Aydin A, Duzgoren-Aydin N S. Residual strength of slip zones of large landslides in the Three Gorges area, China[J].Engineering Geology,2007, 93: 82-98.
[38] Wen B P, Duzgoren-Aydin N S, Aydin A. Geochemical characteristics of the slip zones of a landslide in granitic saprolite, Hong Kong: Implications for their development and microenvironments[J].Environmental Geology,2004, 47: 140-154.
[39] Zheng G D,Lang Y H, Miyahara M. Iron oxide precipitates in seepage of groundwater from a landslide slip zone[J].Environmental Geology,2007, 51:1 455-1 464.
[40] Tang Liansheng, Wang Sijing. Progress in the study on mechanical effect of the chemical action of water-rock on deformation and failure of rocks[J].Advances in Eearth Science,1999, 14(5):433-439.[汤连生,王思敬.水—岩化学作用对岩体变形破坏力学效应研究进展[J].地球科学进展,1999,14(5):433-439.]
[41] Shen Zhaoli, Wang Yanxin. Review and outlook of water-rock interaction studies[J].Earth Science-Journal of China University of Geosciences,2002, 27(2): 127-133.[沈照理,王焰新.水—岩相互作用研究的回顾与展望[J].地球科学——中国地质大学学报,2002,27(2):127-133.]
[42] Bogaard T A, Antoine P, Desvarreux P,et al.The slope movements with the mondores graben(Drome, France): The interaction between geology hydrology and typology[J].Engineering Geology,2000, 55: 297-312. 
[43] Li Yushu, Li Tianbin. Study on slip band of carbon mudstone landslide in coal measure strata[J].Geotechnical Engineering Technique,2006, 20(2): 88-93.[李育枢,李天斌.煤系地层中炭质泥岩滑带土的初步研究[J].岩土工程技术,2006,20(2):88-93.]
[44] Hu Tao, Ren Guangming, Nie Dexin,et al.Strength characteristics with genesis and type of the sedimentary weak intercalated layers[J].The Chinese Journal of Geological Hazard and Control,2004, 1:124-128.[胡涛,任光明,聂德新,等.沉积型软弱夹层成因分类及强度特征[J].中国地质灾害与防治学报,2004,1:124-128.]
[45] Tan Luorong. Discussion on mechanism of disintegration and argillitization of clay-rock[J].Rock and Soil Mechanics,2001, 22(1): 1-5.[谭罗荣.关于粘土岩崩解、泥化机理的讨论[J].岩土力学,2001,22(1):1-5.]
[46] Li Shouding, Li Xiao, Wu Jiang, et al. Evolution process and pattern of sliding zone in large consequent bedding rock landside[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(12): 2 473-2 480.[李守定,李晓,吴疆,等. 大型基岩顺层滑坡滑带形成演化过程与模式[J].岩石力学与工程学报,2007,26(12):2 473-2 480.]
[47] Tang Daxiong, Liu Yourong, Zhang Wenshu,et al.Science of Engineering Rock and Soil[M]. Beijing: Geological Publishing House, 1999.[唐大雄,刘佑荣,张文殊,等.工程岩土学[M]. 北京:地质出版社,1999.]

[1] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[2] 张富贵, 周亚龙, 孙忠军, 方慧, 杨志斌, 祝有海. 中国多年冻土区天然气水合物地球化学勘探技术研究进展[J]. 地球科学进展, 2021, 36(3): 276-287.
[3] 郭卫东,王超,李炎,瞿理印,郎目晨,邓永彬,梁清隆. 水环境中溶解有机质的光谱表征:从流域到深海[J]. 地球科学进展, 2020, 35(9): 933-947.
[4] 赖正,苏妮,吴舟扬,连尔刚,杨承帆,李芳亮,杨守业. 流域风化过程稳定锶同位素的分馏与示踪[J]. 地球科学进展, 2020, 35(7): 691-703.
[5] 赵振洋, 李双建, 王根厚. 中下扬子北缘中二叠统孤峰组层状硅质岩沉积环境、成因及硅质来源探讨[J]. 地球科学进展, 2020, 35(2): 137-153.
[6] 阮雅青,张瑞峰. 海水中铜的生物地球化学研究进展[J]. 地球科学进展, 2020, 35(12): 1243-1255.
[7] 李薇,张海东,戴国华,刘小驰. 2020年度地球化学学科基金项目评审与资助成果分析[J]. 地球科学进展, 2020, 35(11): 1154-1162.
[8] 汪智军,殷建军,蒲俊兵,袁道先. 钙华生物沉积作用研究进展与展望[J]. 地球科学进展, 2019, 34(6): 606-617.
[9] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[10] 刘洋,王文龙,滕学建,郭硕,滕飞,何鹏,田健,段霄龙. 内蒙古狼山地区早二叠世晚期花岗闪长岩:地球化学、年代学、 Hf同位素特征及其地质意义[J]. 地球科学进展, 2019, 34(4): 366-381.
[11] 党皓文,马小林,杨策,金海燕,翦知湣. 重建高分辨率深海环境变化:冷水竹节珊瑚无机地球化学方法[J]. 地球科学进展, 2019, 34(12): 1262-1272.
[12] 熊巨华,刘磊,赵学钦. 2019年度地球化学学科基金项目评审与成果分析[J]. 地球科学进展, 2019, 34(11): 1179-1184.
[13] 黄咸雨,张一鸣. 脂类单体碳同位素在湖沼古环境和古生态重建中的研究进展[J]. 地球科学进展, 2019, 34(1): 20-33.
[14] 熊巨华, 宗克清. 2018年度地球科学部地球化学学科工作报告 *[J]. 地球科学进展, 2018, 33(12): 1286-1291.
[15] 张硕, 简星, 张巍. 碎屑磷灰石对沉积物源判别的指示 *[J]. 地球科学进展, 2018, 33(11): 1142-1153.
阅读次数
全文


摘要