地球科学进展 ›› 2010, Vol. 25 ›› Issue (5): 474 -483. doi: 10.11867/j.issn.1001-8166.2010.05.0474

综述与评述 上一篇    下一篇

海洋沉积物中现存微生物化学标志物完整极性膜脂研究进展
姚 鹏 1,2,3,于志刚 1,2   
  1. 1.海洋化学理论与工程技术教育部重点实验室,山东  青岛  266100;
    2.中国海洋大学化学化工学院,海洋有机地球化学研究所,山东  青岛  266100;
    3. Department of Chemistry, University of York, York YO10 5DD, UK
  • 收稿日期:2009-10-16 修回日期:2010-03-16 出版日期:2010-05-10
  • 通讯作者: 姚鹏 E-mail:yaopeng@ouc.edu.cn
  • 基金资助:

    国家自然科学基金重大国际(地区)合作研究项目“长江口及邻近海域底边界层生物地球化学过程研究”(编号: 40920164004);国家留学基金委青年骨干教师出国研修项目(编号: 2007110616)资助.

Advances of Intact Polar Membrane Lipids as Chemical Biomarkers for Extant Microorganisms in Marine Sediments

Yao Peng 1,2,3,Yu Zhigang 1,2   

  1. 1.Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Qingdao  266100, China;
    2.Institute of Marine Organic Geochemistry, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao  266100, China;   
    3.Department of Chemistry, University of York, York YO10 5DD, UK
  • Received:2009-10-16 Revised:2010-03-16 Online:2010-05-10 Published:2010-05-10
  • Contact: PENG YAO E-mail:yaopeng@ouc.edu.cn
  • Supported by:

     国家自然科学基金重大国际(地区)合作研究项目“长江口及邻近海域底边界层生物地球化学过程研究”(编号: 40920164004);国家留学基金委青年骨干教师出国研修项目(编号: 2007110616)资助
     

 完整极性膜脂作为活的微生物细胞的化学标志物,能够反映海洋沉积物中现存微生物群落结构和生物量等信息。与生物学方法相比,完整极性膜脂分析技术具有无需培养、快速和普适性等特点。综述了海洋沉积物中细菌和古菌的细胞膜完整极性膜脂的组成特点及其在生物地球化学和微生物生态学等研究中的应用,重点评述了在生物地球化学循环中有特殊作用的微生物,如厌氧氨氧化细菌、甲烷氧化古菌、氨氧化古菌、具有四醚膜脂结构的海洋泉古菌等,或者是一些特殊生态系统,如冷泉、海底深部生物圈等研究中完整极性膜脂应用的进展。还简要介绍了完整极性膜脂的分析方法,并对其应用前景进行了展望。

 Intact polar membrane lipids (IPLs) can serve as chemical biomarkers of living cells that can provide information on the extant microbial community structure and in situ microbial processes. IPLs analysis is a culture independent, rapid and non-selective procedure in contrast to biological methods. The compositions of cell membrane intact polar membrane lipids of bacteria and Achaea and their applications in the researches of biogeochemistry and microbial ecology are summarized in this paper. The recent progresses of IPLs applications are reviewed, with emphasis on those microorganisms that play a specific role in biogeochemical cycle, such as anaerobic ammonium-oxidizing bacteria, anaerobic methanotrophic Achaea, ammonia-oxidizing Achaea and marine Crenarcheota with tetraether lipids, or those special ecological systems, such as hydrothermal vent, cold seep and marine deep biosphere. The advances of analytical method for microbial IPLs in marine sediments are briefly introduced, and their application prospects are proposed.

中图分类号: 

[1] Lipp J S. Intact Membrane Lipids as Tracers for Microbial Life in the Marine Deep Biosphere[D]. Bremen: University of Bremen, 2008.
[2] Xi Feng, Zheng Tianling, Jiao Nianzhi, et al. A preliminary analysis of mechanism of deep sea microorganisms diversity[J]. Advances in Earth Science,2004, 19(1): 38-46.[席峰,郑天凌,焦念志,等. 深海微生物多样性形成机制浅析[J]. 地球科学进展, 2004, 19(1): 38-46.]
[3] McKee B A, Aller R C, Allison M A, et al. Transport and transformation of dissolved and particulate materials on continental margins influenced by major rivers: Benthic boundary layer and seabed processes[J].Continental Shelf Research,2004, 24: 899-926.
[4] Rossel P E, Lipp J S, Fredricks H F, et al. Intact polar lipids of anaerobic methanotrophic archaea and associated bacteria[J]. Organic Geochemistry, 2008, 39: 992-999.
[5] Kuypers M M, Sliekers A O, Lavik G, et al. Anaerobic ammonium oxidation by anammox bacteriain the Black Sea[J]. Nature, 2003, 422: 608-611.
[6] Li Jiangtao, Zhou Huaiyang, Peng Xiaotong, et al. Molecular biological techniques in geomicrobiology of seafloor hydrothermal vents[J]. Advances in Earth Science,2009, 24(9): 1 015-1 023.[李江涛,周怀阳,彭晓彤,等.海底热液活动区地微生物学研究中的分子生物学技术[J]. 地球科学进展, 2009, 24(9): 1 015-1 023.]
[7] Amann R I, Ludwig W, Schleifer K-H. Phylogenetic identification and in-situ detection of individual microbial cells without cultivation[J]. Microbiological Reviews, 1995, 59: 143-169.
[8] Pernthaler A, Pernthaler J, Amann R I. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria[J]. Applied and Environmental Microbiology,2002, 68: 3 094-3 101.
[9] Schippers A, Neretin L N, Kallmeyer J, et al. Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria[J]. Nature,2005, 433: 861-864.
[10] Teske A, Sorensen K B. Uncultured Achaea in deep marine subsurface sediments: Have we caught them all?[J].The ISME Journal,2008, 2: 3-18.
[11] Mauclaire L, Zepp K, Meister P, et al. Direct in-situ detection of cells in deep-sea sediment cores from the Peru Margin (ODP Leg 201, Site 1229)[J]. Geobiology,2004, 2: 217-223.
[12] Fang J, Barcelona M J. Structural determination and quantitative analysis of bacterial phospholipids using liquid chromatography/electrospray ionization/mass spectrometry[J]. Journal of Microbiological Methods,1998, 33: 23-35.
[13] Rütters H, Sass H, Cypionka H, et al. Phospholipid analysis as a tool to study complex microbial communities in marine sediments[J]. Journal of Microbiological Methods,2002, 48: 149-160.
[14] Sturt H F, Summons R E, Smith K J, et al. Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry-new biomarkers for biogeochemistry and microbial ecology[J]. Rapid Communications in Mass Spectrometry,2004, 18: 617-628.
[15] Zink K G, Mangelsdorf K. Efficient and rapid method for extraction of intact phospholipids from sediments combined with molecular structure elucidation using LC-ESI-MS-MS analysis[J]. Analytical and Bioanalytical Chemistry,2004, 380: 798-812.
[16] Schubotz F, Wakeham S G, Lipp J S. Detection of microbial biomass by intact polar membrane lipid analysis in the water column and surface sediments of the Black Sea[J]. Environmental Microbiology,2009, 11: 2 720-2 734.
[17] Biddle J F, Lipp J S, Lever M A, et al. Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru[J].Proceedings of the National Academy of Sciences USA,2006,103:3 846-3851.[18] Lipp J S, Morono Y, Inagaki F, et al. Significant contribution of Archaea to extant biomass in marine subsurface sediments[J]. Nature,2008, 454: 991-994.
[19] Lipp J S, Hinrichs K U. Structural diversity and fate of intact polar lipids in marine sediments[J]. Geochimica et Cosmochimica Acta, 2009, 73: 6 816-6 833.
[20] Rütters H, Sass H, Cypionka H, et al. Microbial communities in a Wadden Sea sediment core clues from analyses of intact glyceride lipids, and released fatty acids[J]. Organic Geochemistry, 2002, 33: 803-816.
[21] Zink K G, Wilkes H, Disko U, et al. Intact phospholipids-microbial “life markers” in marine deep subsurface sediments[J]. Organic Geochemistry,2003, 34: 755-769.
[22] Zink K G, Mangelsdorf K, Granina L, et al. Estimation of bacterial biomass in subsurface sediments by quantifying intact membrane phospholipids[J]. Analytical and Bioanalytical Chemistry, 2008, 390: 885-896.
[23] Pitcher A, Schouten S, Sinninghe Damsté J S, et al. In situ production of crenarchaeol in two California hot springs[J]. Applied and Environmental Microbiology, 2009, 75: 4 443-4 451.
[24] Elvert M, Boetius A, Knittel K, et al. Characterization of specific membrane fatty acids as chemotaxonomic markers for sulfate-reducing bacteria involved in anaerobic oxidation of methane[J]. Geomicrobiology Journal, 2003, 20: 403-419.
[25] Pitcher A, Hopmans E C, Schouten S, et al. Separation of core and intact polar archaeal tetraether lipids using silica columns: Insights into living and fossil biomass contributions[J]. Organic Geochemistry, 2009, 40: 12-19.
[26] Fang J, Barcelona M J, Alvarez P J J. A direct comparison between fatty acid analysis and intact phospholipid profiling for microbial identification[J].Organic Geochemistry, 2000, 31: 881-887.
[27] Weijers J W H, Schouten S, van den Donker J C, et al. Environmental controls on bacterial tetraether membrane lipid distribution in soils[J]. Geochimica et Cosmochimica Acta,2007, 71: 703-713.[28] Fredricks H F, Hinrichs K U. Data Report: Intact Membrane Lipids as Indicators of Subsurface Life in Cretaceous and Paleogene Sediments from Sites 1257 and 1258[R]. Proceedings of ODP Science Research 207, 2007.
[29] Boumann H A, Hopmans E C, van de Leemput I, et al. Ladderane phospholipids inanammox bacteria comprise phosphocholine and phosphoethanolamine headgroups[J]. FEMS Microbiology Letters, 2006, 258: 297-304.
[30] Sinninghe Damsté J S, Ossebaar J, Abbas B, et al. Fluxes and distribution of tetraether lipids in an equatorial African lake: Constraints on the application of the TEX86 palaeothermometer and BIT index in lacustrine settings[J]. Geochimica et Cosmochimica Acta,2009, 73: 4 232-4 249.
[31] Dowhan W. Molecular basis for membrane phospholipid diversity: Why are there so many lipids[J]? Annual Review of Biochemistry,1997, 66: 199-232.
[32] Raetz C R H. Molecular genetics of membrane phospholipid synthesis[J]. Annual Review of Genetics,1986, 20: 253-291.
[33] Sohlenkamp C, López-Lara I M, Geiger O. Biosynthesis of phosphatidylcholine in bacteria[J]. Progress in Lipid Research,2003, 42: 115-162.
[34] Schubotz F. Investigation of Intact Polar Lipids of Bacteria Isolated from the Deep Marine Subsurface[D]. Bremen: University of Bremen, 2005.
[35] Fang J, Barcelona M J, Nogi Y, et al. Biochemical implications and geochemical significance of novel phospholipids of the extremely barophilic bacteria from the Marianas Trench at 11 000 m[J]. Deep Sea Research Part I,2000, 47: 1 173-1 182.
[36] Wada H, Murata N. The essential role of phosphatidylglycerol in photosynthesis[J]. Photosynthesis Research,2007, 92: 205-215.
[37] Seidel M. Intact Polar Membrane Lipids as Biomarkers for Characterization of Microbial Communities in Wadden Sea Sediments[D]. Oldenburg: Carl von Ossietzky University of Oldenburg, 2009.
[38] Strous M, Fuerst J A, Kramer E H, et al. Missing lithotroph identified as new planctomycete[J].Nature,1999, 400: 446-449.
[39] Sinninghe Damsté J S, Strous M, Rijpstra W I, et al. Linearly concatenated cyclobutane lipids form a dense bacterial membrane[J].Nature,2002, 419: 708-712.
[40] Rattray J E, van de Vossenberg J, Hopmans E C, et al. Ladderane lipid distribution in four genera of anammox bacteria[J]. Archives of Microbiology,2008, 190: 51-66.
[41] Jaeschke A, Rooks C, Trimmer M, et al. Comparison of ladderane phospholipid and core lipids as indicators for anaerobic ammonium oxidation (anammox) in marine sediments[J]. Geochimica et Cosmochimica Acta,2009, 73: 2 077-2 088.
[42] Weijers J W H, Schouten S, Hopmans E C, et al. Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits[J].Environmental Microbiology,2006, 8: 648-657.
[43] Sinninghe Damsté J S, Hopmans E C, Pancost R D, et al. Newly discovered non-isoprenoid dialkyl diglycerol tetraether lipids in sediments[J].Journal of the Chemical Society, Chemical Communications,2000,1 683-1 684,doi:10.1039/b004517i.
[44] Peterse F, Kim J H, Schouten S, et al. Constraints on the application of the MBT/CBT palaeothermometer in high latitude environments (Svalbard, Norway)[J]. Organic Geochemistry,2009, 40:692-699.
[45] Hopmans E C, Weijers J W H, Schefu E, et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids[J]. Earth and Planetary Science Letters, 2004, 224: 107-116.
[46] Powers L A, Werne J P, Johnson T C, et al. Crenarchaeotal lipids in lake sediments: A new paleotemperature proxy for continental paleoclimate reconstruction?[J]. Geology,2004, 32: 613-616.
[47] Peterse F, Kim J H, Schouten S, et al. Constraints on the application of the MBT/CBT palaeothermometer in high latitude environments (Svalbard, Norway)[J].Organic Geochemistry,2009, 40: 692-699.
[48] Peterse F, van der Meer M T J, Schouten S, et al. Assessment of soil n-alkane δD and branched tetraether membrane lipid distributions as tools for paleoelevation reconstruction[J]. Biogeosciences Discuss, 2009, 6: 8 609-8 631.
[49] Weijers J W H, Panoto E, van Bleijswijk J, et al. Constraints on the biological source(s) of the orphan branched tetraether membrane lipids[J]. Geomicrobiology Journal, 2009, 26:402-414.
[50] Woese C R, Kandler O, Wheelis M L. Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya[J]. Proceedings of the National Academy of Sciences USA,1990, 87: 4 576-4 579.
[51] Ferrante G, Richards J C, Sprott G D. Structures of polar lipids from the thermophilic, deep-sea archaeabacterium Methanococcus jannaschii[J]. Biochemistry and Cell Biology,1990, 68: 274-283.
[52] Schouten S, Hopmans E C, Baas M. Intact membrane lipids of “Candidatus Nitrosopumilus maritimus” a cultivated representative of the cosmopolitan mesophilic Group I Crenarchaeota[J]. Applied and Environmental Microbiology, 2008, 74: 2 433-2 440.
[53] Schouten S, Hopmans E C, Schefuβ E, et al. Distributional variations in marine crenarchaeotal membrane lipids: A new tool for reconstructing ancient sea water temperatures?[J]. Earth and Planetary Science Letters,2002, 204: 265-274.
[54] Zhang Xiaolin, Sha Jin′geng, Liu Jing. Palaeothermometer from tetraether membrane lipids—TEX86[J]. Acta Palaeontologica Sinica,2008, 47: 498-505.[张晓林, 沙金庚, 刘静. 四醚膜类脂物的古温标——TEX86[J]. 古生物学报, 2008, 47: 498-505.]
[55] Zhao Meixun, Li Dawei, Xing Lei. Using archaea biomarker index TEX86 as a paleo-sea surface temperature proxy[J]. Marine Geology & Quaternary Geology, 2009, 29: 75-84.[赵美训, 李大伟, 邢磊. 古菌生物标志物古海水温度指标TEX86研究进展[J]. 海洋地质与第四纪地质, 2009, 29: 75-84.]
[56] Chong P L G. Archaebacterial bipolar tetraether lipids: Physico-chemical and membrane properties[J]. Chemistry and Physics of Lipids,2010, 163:253-265.
[57] Schouten S, Forster A, Panoto F E, et al. Towards the calibration of the TEX86 paleothermometer for tropical sea surface temperatures in ancient greenhouse worlds[J]. Organic Geochemistry, 2007, 38: 1 537-1 546.
[58] Hinrichs K U, Hayes J M, Sylva S P, et al. Methane-consuming archaebacteria in marine sediments[J]. Nature,1999, 398: 802-805.
[59] Schleper C, Jurgens G, Jonuscheit M. Genomic studies of uncultivated Archaea[J]. Nature Reviews Microbiology, 2005, 3: 479-488.
[60] Dang Hongyue, Song Linsheng, Li Tiegang, et al. Progresses in the studies of subseafloor deep biosphere microorganisms[J]. Advances in Earth Science,2005, 20(12): 1 306-1 313.[党宏月, 宋林生, 李铁刚,等. 海底深部生物圈微生物的研究进展[J]. 地球科学进展, 2005, 20(12): 1 306-1 313.]
[61] Science Committee of ODP-China. Chinese national science plan (2003-2013) for participation in IODP[J]. Advances in Earth Science, 2003, 18(5): 662-665.[中国大洋钻探学术委员会.中国加入综合大洋钻探( IODP)科学计划(2003—2013)[J]. 地球科学进展, 2003, 18(5): 662-665.]
[62] Schippers A, Neretin L N. Quantification of microbial communities in near-surface and deeply buried marine sediments on the Peru continental margin using real-time PCR[J]. Environmental Microbiology, 2006, 8: 1 251-1 260.
[63] Inagaki F, Nunoura T, Nakagawa S, et al. Biogeographical distribution and diversity of microbes in methane hydratebearing deep marine sediments on the Pacific Ocean Margin[J]. Proceedings of the National Academy of Sciences of the USA,2006, 103: 2 815-2 820.
[64] Svenson S, Thompson D H. Facile and efficient synthesis of bolaamphilic tetraether phosphocholines[J]. The Journal of Organic Chemistry,1998, 21: 7 180-7 182.
[65] Huguet A, Fosse C, Laggoun-D farge F, et al. Occurrence and distribution of glycerol dialkyl glycerol tetraethers in a French peat bog[J].Organic Geochemistry,2010,41:559-572.

[1] 张薇. 现代碳酸盐叠层石的重要进展及意义[J]. 地球科学进展, 2020, 35(1): 70-78.
[2] 康曼玉,贾国东. 固氮蓝细菌的一种生物标志物——异形胞糖脂及其研究进展[J]. 地球科学进展, 2019, 34(9): 901-911.
[3] 卢龙飞, 张锐, 徐杰, 焦念志. 病毒对海洋细菌代谢的影响及其生物地球化学效应[J]. 地球科学进展, 2018, 33(3): 225-235.
[4] 任成喆, 袁华茂, 宋金明, 李学刚, 李宁, 段丽琴. 海洋环境中的氨基糖及其在有机质循环过程中的指示作用[J]. 地球科学进展, 2017, 32(9): 959-971.
[5] 焦念志, 张传伦, 谢树成, 刘纪化, 张飞. 古今结合论碳汇、见微知著识海洋 *[J]. 地球科学进展, 2014, 29(11): 1294-1297.
[6] 李 东, 李 祎, 郑天凌. 海洋溶藻功能菌作用机理研究的若干进展[J]. 地球科学进展, 2013, 28(2): 243-252.
[7] 孙治雷,何拥军,李 军,黄 威,李 清,李季伟,王 丰. 海洋环境中甲烷厌氧氧化机理及环境效应[J]. 地球科学进展, 2012, 27(11): 1262-1273.
[8] 王剑飞,萨仁高娃,李铁刚,申之义,于心科. 苏禄海深海沉积物古菌群落结构多样性研究[J]. 地球科学进展, 2010, 25(7): 766-774.
[9] 张翠云,张俊霞,马琳娜,张胜,殷密英,李政红. 硝酸盐氮氧同位素反硝化细菌法测试研究[J]. 地球科学进展, 2010, 25(4): 360-364.
[10] 魏玉利,王 鹏,赵美训,张传伦. 黑潮源区沉积物微生物多样性初步研究[J]. 地球科学进展, 2010, 25(2): 212-219.
[11] 李涛,王鹏,汪品先. 南海西沙海槽沉积物细菌多样性初步研究[J]. 地球科学进展, 2006, 21(10): 1058-1062.
[12] 侯建军;黄邦钦. 海洋蓝细菌生物固氮的研究进展[J]. 地球科学进展, 2005, 20(3): 312-319.
[13] 张运林;秦伯强;陈伟民. 增强的UV-B对湖泊生态系统的影响研究[J]. 地球科学进展, 2005, 20(1): 106-112.
[14] 万鹰昕,刘丛强,傅平青,刘建军. 微生物参与下的水/粒界面吸附反应研究进展[J]. 地球科学进展, 2002, 17(5): 699-704.
[15] 王占岐,魏 民. 国内外“人工矿床”研究现状与前景[J]. 地球科学进展, 2001, 16(2): 235-237.
阅读次数
全文


摘要