[1] Lipp J S. Intact Membrane Lipids as Tracers for Microbial Life in the Marine Deep Biosphere[D]. Bremen: University of Bremen, 2008. [2] Xi Feng, Zheng Tianling, Jiao Nianzhi, et al. A preliminary analysis of mechanism of deep sea microorganisms diversity[J]. Advances in Earth Science,2004, 19(1): 38-46.[席峰,郑天凌,焦念志,等. 深海微生物多样性形成机制浅析[J]. 地球科学进展, 2004, 19(1): 38-46.] [3] McKee B A, Aller R C, Allison M A, et al. Transport and transformation of dissolved and particulate materials on continental margins influenced by major rivers: Benthic boundary layer and seabed processes[J].Continental Shelf Research,2004, 24: 899-926. [4] Rossel P E, Lipp J S, Fredricks H F, et al. Intact polar lipids of anaerobic methanotrophic archaea and associated bacteria[J]. Organic Geochemistry, 2008, 39: 992-999. [5] Kuypers M M, Sliekers A O, Lavik G, et al. Anaerobic ammonium oxidation by anammox bacteriain the Black Sea[J]. Nature, 2003, 422: 608-611. [6] Li Jiangtao, Zhou Huaiyang, Peng Xiaotong, et al. Molecular biological techniques in geomicrobiology of seafloor hydrothermal vents[J]. Advances in Earth Science,2009, 24(9): 1 015-1 023.[李江涛,周怀阳,彭晓彤,等.海底热液活动区地微生物学研究中的分子生物学技术[J]. 地球科学进展, 2009, 24(9): 1 015-1 023.] [7] Amann R I, Ludwig W, Schleifer K-H. Phylogenetic identification and in-situ detection of individual microbial cells without cultivation[J]. Microbiological Reviews, 1995, 59: 143-169. [8] Pernthaler A, Pernthaler J, Amann R I. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria[J]. Applied and Environmental Microbiology,2002, 68: 3 094-3 101. [9] Schippers A, Neretin L N, Kallmeyer J, et al. Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria[J]. Nature,2005, 433: 861-864. [10] Teske A, Sorensen K B. Uncultured Achaea in deep marine subsurface sediments: Have we caught them all?[J].The ISME Journal,2008, 2: 3-18. [11] Mauclaire L, Zepp K, Meister P, et al. Direct in-situ detection of cells in deep-sea sediment cores from the Peru Margin (ODP Leg 201, Site 1229)[J]. Geobiology,2004, 2: 217-223. [12] Fang J, Barcelona M J. Structural determination and quantitative analysis of bacterial phospholipids using liquid chromatography/electrospray ionization/mass spectrometry[J]. Journal of Microbiological Methods,1998, 33: 23-35. [13] Rütters H, Sass H, Cypionka H, et al. Phospholipid analysis as a tool to study complex microbial communities in marine sediments[J]. Journal of Microbiological Methods,2002, 48: 149-160. [14] Sturt H F, Summons R E, Smith K J, et al. Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry-new biomarkers for biogeochemistry and microbial ecology[J]. Rapid Communications in Mass Spectrometry,2004, 18: 617-628. [15] Zink K G, Mangelsdorf K. Efficient and rapid method for extraction of intact phospholipids from sediments combined with molecular structure elucidation using LC-ESI-MS-MS analysis[J]. Analytical and Bioanalytical Chemistry,2004, 380: 798-812. [16] Schubotz F, Wakeham S G, Lipp J S. Detection of microbial biomass by intact polar membrane lipid analysis in the water column and surface sediments of the Black Sea[J]. Environmental Microbiology,2009, 11: 2 720-2 734. [17] Biddle J F, Lipp J S, Lever M A, et al. Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru[J].Proceedings of the National Academy of Sciences USA,2006,103:3 846-3851.[18] Lipp J S, Morono Y, Inagaki F, et al. Significant contribution of Archaea to extant biomass in marine subsurface sediments[J]. Nature,2008, 454: 991-994. [19] Lipp J S, Hinrichs K U. Structural diversity and fate of intact polar lipids in marine sediments[J]. Geochimica et Cosmochimica Acta, 2009, 73: 6 816-6 833. [20] Rütters H, Sass H, Cypionka H, et al. Microbial communities in a Wadden Sea sediment core clues from analyses of intact glyceride lipids, and released fatty acids[J]. Organic Geochemistry, 2002, 33: 803-816. [21] Zink K G, Wilkes H, Disko U, et al. Intact phospholipids-microbial “life markers” in marine deep subsurface sediments[J]. Organic Geochemistry,2003, 34: 755-769. [22] Zink K G, Mangelsdorf K, Granina L, et al. Estimation of bacterial biomass in subsurface sediments by quantifying intact membrane phospholipids[J]. Analytical and Bioanalytical Chemistry, 2008, 390: 885-896. [23] Pitcher A, Schouten S, Sinninghe Damsté J S, et al. In situ production of crenarchaeol in two California hot springs[J]. Applied and Environmental Microbiology, 2009, 75: 4 443-4 451. [24] Elvert M, Boetius A, Knittel K, et al. Characterization of specific membrane fatty acids as chemotaxonomic markers for sulfate-reducing bacteria involved in anaerobic oxidation of methane[J]. Geomicrobiology Journal, 2003, 20: 403-419. [25] Pitcher A, Hopmans E C, Schouten S, et al. Separation of core and intact polar archaeal tetraether lipids using silica columns: Insights into living and fossil biomass contributions[J]. Organic Geochemistry, 2009, 40: 12-19. [26] Fang J, Barcelona M J, Alvarez P J J. A direct comparison between fatty acid analysis and intact phospholipid profiling for microbial identification[J].Organic Geochemistry, 2000, 31: 881-887. [27] Weijers J W H, Schouten S, van den Donker J C, et al. Environmental controls on bacterial tetraether membrane lipid distribution in soils[J]. Geochimica et Cosmochimica Acta,2007, 71: 703-713.[28] Fredricks H F, Hinrichs K U. Data Report: Intact Membrane Lipids as Indicators of Subsurface Life in Cretaceous and Paleogene Sediments from Sites 1257 and 1258[R]. Proceedings of ODP Science Research 207, 2007. [29] Boumann H A, Hopmans E C, van de Leemput I, et al. Ladderane phospholipids inanammox bacteria comprise phosphocholine and phosphoethanolamine headgroups[J]. FEMS Microbiology Letters, 2006, 258: 297-304. [30] Sinninghe Damsté J S, Ossebaar J, Abbas B, et al. Fluxes and distribution of tetraether lipids in an equatorial African lake: Constraints on the application of the TEX86 palaeothermometer and BIT index in lacustrine settings[J]. Geochimica et Cosmochimica Acta,2009, 73: 4 232-4 249. [31] Dowhan W. Molecular basis for membrane phospholipid diversity: Why are there so many lipids[J]? Annual Review of Biochemistry,1997, 66: 199-232. [32] Raetz C R H. Molecular genetics of membrane phospholipid synthesis[J]. Annual Review of Genetics,1986, 20: 253-291. [33] Sohlenkamp C, López-Lara I M, Geiger O. Biosynthesis of phosphatidylcholine in bacteria[J]. Progress in Lipid Research,2003, 42: 115-162. [34] Schubotz F. Investigation of Intact Polar Lipids of Bacteria Isolated from the Deep Marine Subsurface[D]. Bremen: University of Bremen, 2005. [35] Fang J, Barcelona M J, Nogi Y, et al. Biochemical implications and geochemical significance of novel phospholipids of the extremely barophilic bacteria from the Marianas Trench at 11 000 m[J]. Deep Sea Research Part I,2000, 47: 1 173-1 182. [36] Wada H, Murata N. The essential role of phosphatidylglycerol in photosynthesis[J]. Photosynthesis Research,2007, 92: 205-215. [37] Seidel M. Intact Polar Membrane Lipids as Biomarkers for Characterization of Microbial Communities in Wadden Sea Sediments[D]. Oldenburg: Carl von Ossietzky University of Oldenburg, 2009. [38] Strous M, Fuerst J A, Kramer E H, et al. Missing lithotroph identified as new planctomycete[J].Nature,1999, 400: 446-449. [39] Sinninghe Damsté J S, Strous M, Rijpstra W I, et al. Linearly concatenated cyclobutane lipids form a dense bacterial membrane[J].Nature,2002, 419: 708-712. [40] Rattray J E, van de Vossenberg J, Hopmans E C, et al. Ladderane lipid distribution in four genera of anammox bacteria[J]. Archives of Microbiology,2008, 190: 51-66. [41] Jaeschke A, Rooks C, Trimmer M, et al. Comparison of ladderane phospholipid and core lipids as indicators for anaerobic ammonium oxidation (anammox) in marine sediments[J]. Geochimica et Cosmochimica Acta,2009, 73: 2 077-2 088. [42] Weijers J W H, Schouten S, Hopmans E C, et al. Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits[J].Environmental Microbiology,2006, 8: 648-657. [43] Sinninghe Damsté J S, Hopmans E C, Pancost R D, et al. Newly discovered non-isoprenoid dialkyl diglycerol tetraether lipids in sediments[J].Journal of the Chemical Society, Chemical Communications,2000,1 683-1 684,doi:10.1039/b004517i. [44] Peterse F, Kim J H, Schouten S, et al. Constraints on the application of the MBT/CBT palaeothermometer in high latitude environments (Svalbard, Norway)[J]. Organic Geochemistry,2009, 40:692-699. [45] Hopmans E C, Weijers J W H, Schefu E, et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids[J]. Earth and Planetary Science Letters, 2004, 224: 107-116. [46] Powers L A, Werne J P, Johnson T C, et al. Crenarchaeotal lipids in lake sediments: A new paleotemperature proxy for continental paleoclimate reconstruction?[J]. Geology,2004, 32: 613-616. [47] Peterse F, Kim J H, Schouten S, et al. Constraints on the application of the MBT/CBT palaeothermometer in high latitude environments (Svalbard, Norway)[J].Organic Geochemistry,2009, 40: 692-699. [48] Peterse F, van der Meer M T J, Schouten S, et al. Assessment of soil n-alkane δD and branched tetraether membrane lipid distributions as tools for paleoelevation reconstruction[J]. Biogeosciences Discuss, 2009, 6: 8 609-8 631. [49] Weijers J W H, Panoto E, van Bleijswijk J, et al. Constraints on the biological source(s) of the orphan branched tetraether membrane lipids[J]. Geomicrobiology Journal, 2009, 26:402-414. [50] Woese C R, Kandler O, Wheelis M L. Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya[J]. Proceedings of the National Academy of Sciences USA,1990, 87: 4 576-4 579. [51] Ferrante G, Richards J C, Sprott G D. Structures of polar lipids from the thermophilic, deep-sea archaeabacterium Methanococcus jannaschii[J]. Biochemistry and Cell Biology,1990, 68: 274-283. [52] Schouten S, Hopmans E C, Baas M. Intact membrane lipids of “Candidatus Nitrosopumilus maritimus” a cultivated representative of the cosmopolitan mesophilic Group I Crenarchaeota[J]. Applied and Environmental Microbiology, 2008, 74: 2 433-2 440. [53] Schouten S, Hopmans E C, Schefuβ E, et al. Distributional variations in marine crenarchaeotal membrane lipids: A new tool for reconstructing ancient sea water temperatures?[J]. Earth and Planetary Science Letters,2002, 204: 265-274. [54] Zhang Xiaolin, Sha Jin′geng, Liu Jing. Palaeothermometer from tetraether membrane lipids—TEX86[J]. Acta Palaeontologica Sinica,2008, 47: 498-505.[张晓林, 沙金庚, 刘静. 四醚膜类脂物的古温标——TEX86[J]. 古生物学报, 2008, 47: 498-505.] [55] Zhao Meixun, Li Dawei, Xing Lei. Using archaea biomarker index TEX86 as a paleo-sea surface temperature proxy[J]. Marine Geology & Quaternary Geology, 2009, 29: 75-84.[赵美训, 李大伟, 邢磊. 古菌生物标志物古海水温度指标TEX86研究进展[J]. 海洋地质与第四纪地质, 2009, 29: 75-84.] [56] Chong P L G. Archaebacterial bipolar tetraether lipids: Physico-chemical and membrane properties[J]. Chemistry and Physics of Lipids,2010, 163:253-265. [57] Schouten S, Forster A, Panoto F E, et al. Towards the calibration of the TEX86 paleothermometer for tropical sea surface temperatures in ancient greenhouse worlds[J]. Organic Geochemistry, 2007, 38: 1 537-1 546. [58] Hinrichs K U, Hayes J M, Sylva S P, et al. Methane-consuming archaebacteria in marine sediments[J]. Nature,1999, 398: 802-805. [59] Schleper C, Jurgens G, Jonuscheit M. Genomic studies of uncultivated Archaea[J]. Nature Reviews Microbiology, 2005, 3: 479-488. [60] Dang Hongyue, Song Linsheng, Li Tiegang, et al. Progresses in the studies of subseafloor deep biosphere microorganisms[J]. Advances in Earth Science,2005, 20(12): 1 306-1 313.[党宏月, 宋林生, 李铁刚,等. 海底深部生物圈微生物的研究进展[J]. 地球科学进展, 2005, 20(12): 1 306-1 313.] [61] Science Committee of ODP-China. Chinese national science plan (2003-2013) for participation in IODP[J]. Advances in Earth Science, 2003, 18(5): 662-665.[中国大洋钻探学术委员会.中国加入综合大洋钻探( IODP)科学计划(2003—2013)[J]. 地球科学进展, 2003, 18(5): 662-665.] [62] Schippers A, Neretin L N. Quantification of microbial communities in near-surface and deeply buried marine sediments on the Peru continental margin using real-time PCR[J]. Environmental Microbiology, 2006, 8: 1 251-1 260. [63] Inagaki F, Nunoura T, Nakagawa S, et al. Biogeographical distribution and diversity of microbes in methane hydratebearing deep marine sediments on the Pacific Ocean Margin[J]. Proceedings of the National Academy of Sciences of the USA,2006, 103: 2 815-2 820. [64] Svenson S, Thompson D H. Facile and efficient synthesis of bolaamphilic tetraether phosphocholines[J]. The Journal of Organic Chemistry,1998, 21: 7 180-7 182. [65] Huguet A, Fosse C, Laggoun-D farge F, et al. Occurrence and distribution of glycerol dialkyl glycerol tetraethers in a French peat bog[J].Organic Geochemistry,2010,41:559-572. |