地球科学进展 ›› 2005, Vol. 20 ›› Issue (3): 312 -319. doi: 10.11867/j.issn.1001-8166.2005.03.0312

综述与评述 上一篇    下一篇

海洋蓝细菌生物固氮的研究进展
侯建军 1,2,黄邦钦 1   
  1. 1.近海海洋环境科学国家重点实验室,厦门大学环境科学研究中心,福建 厦门 361005;2.湖北民族学院医学生物化学教研室,湖北 恩施 445000
  • 收稿日期:2004-03-09 修回日期:2004-07-21 出版日期:2005-03-25
  • 通讯作者: 黄邦钦(1964-),男,福建人,教授,博士生导师,主要从事海洋生态学研究. E-mail:bqhuang@jingxian.xmu.edu.cn
  • 基金资助:

    国家重点基础研究发展规划项目“东黄海生态系统动力学及生物资源可持续利用”(编号:G1999043706);国家自然科学基金项目“近岸海域超微型浮游植物的生物多样性研究”(编号:40076031);国家教育部优秀青年教师资助计划项目“中国亚热带近海微型生物多样性及其生态过程研究”资助.

OVERVIEW OF NITROGEN FIXATION OF MARINE CYANOBACTERIA

HOU Jianjun 1,2; HUANG Bangqin 1   

  1. 1.State Key Laboratory of Marine Environmental Science, Environmental Science Research Center, Xiamen University, Xiamen 361005, China; 2.Hubei Institute for Nationalities, Enshi 445000,China
  • Received:2004-03-09 Revised:2004-07-21 Online:2005-03-25 Published:2005-03-25

海洋生物固氮是海洋中氮循环的重要过程,其对海洋吸收CO2有着重要的影响。海洋固氮蓝细菌的种类和数量也有待进一步探明。现今的研究已表明,蓝细菌对海洋的氮平衡和生物生产有着重要的贡献。从海洋生物固氮的研究现状和研究方法着手,阐述了海洋生物固氮的意义,并重点对影响海洋生物固氮的因素、海洋蓝细菌生物固氮的生物化学和分子生物学机制等研究方面做了细致的综述,在此基础上提出了海洋生物固氮方面有待深入研究的科学问题,旨在为海洋生物固氮及氮的生物地球化学研究提供基础资料。

Biological nitrogen fixation is much more important process in nitrogen cycle of the oceans than what was previously thought of. Nitrogen fixation may have an influence on capacity of the oceans to sequester carbon and the interactions between photosynthetic production of organic matter and nitrogen nutrient dynamics in the sea. A greater diversity of marine nitrogen fixation cyanobacteria has also been unknown and their quantitative significance remains to be determined. It is necessary to further study diversity and abundance of N2 fixing cyanobacteria in order to resolve the issue of N2 fixation in the ocean. A variety of approaches can reveal the the N2 fixing ability of cyanobacteria, such as stable isotope tracer techniques to measure N2 fixation rates; natural abundance stable isotope studies that indicate the contribution of N2 fixation to organic matter; visual examination of microbial assemblages by microscopic approaches and genetic studies targeted at the genes for N2 fixation. The application of classical microbiological, physiological and molecular techniques has drawn an increasingly complex picture of the composition and roles of marine cyanobacteria populations. Present study suggests that N2 fixation could indeed be more widespread and important than those was previously assumed, and indicates that they might make a substantial contribution to the open ocean nitrogen budget. Significance of nitrogen fixation was discussed based on its recent results and protocols with specific emphasizes on its influencing factors, biochemical and molecular study. Then, scientific questions were launched for further research on marine nitrogen fixation, such as N2 fixing picoplankton, the extent and diversity of N2 fixing symbionts and genetic diversity of symbiotic cyanobacteria, aiming at offering basics for nitrogen fixation study.

中图分类号: 

[1] Allen C B,  Kanda J E A. New production and photosynthetic rates within and outside a cyclonic mesoscale eddy in the North Pacific subtropical gyre[J]. Deep Sea Research, 1996, 43:917-936.[2] Dugdale R C, Goering J J. Uptake of new and regenerated forms of nitrogen in primary productivity[J]. Limnology and Oceanography, 1967,12:196-206.
[3] Dugdale R C. Nutrient limitation in the sea: dynamics, identification and significance[J]. Limnology and Oceanography,1967,12: 685-695.  
[4] Brandes J A, Devol A H. A global marine-fixed nitrogen isotopic budget: Implications for Holocene nitrogen cycling[J]. Global Biogeochemical Cycles, 2002,16(4):1 120-1 132. 
[5] Capone D G. Marine nitrogen fixation: what's the fuss?[J]. Ecology and Industrial Microbiology, 2001, 29(2): 341-348. 
[6] Capone D G.Trichodesmium: A globally significant marine cyanobacterium[J]. Science, 1997,  276: 1 221-1 229.
[7] Reddy K J. Unicellular, aerobic nitrogen-fixing cyanobacteria of the genus Cyanothece[J]. Journal of Bacteriology, 1993,175:1 284-1 292. 
[8] Sullivan M B, Waterbury J B, Chisholm S W. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus (vol 424, pg 1047, 2003)[J]. Nature,2003, 426 (6 966): 584.
[9] Neveux J, Lantoine F, Vaulot D, et al.Phycoerythrins in the southern tropical and equatorial Pacific Ocean: Evidence for new cyanobacterial types[J]. Journal of Geophysical Research, 1999,104:3 311-3 321.
[10] Gruber N,Sarmiento J L. Global patterns of marine nitrogen fixation and denitrification[J]. Global Biogeochemistry Cycles,1997,11: 235-266.
[11] Zehr J P, Waterbury J B, Turner P J,et al. Unicellular cyanobacteria fix N2 in the subtropical north Pacific Ocean[J].Nature, 2001, 412: 635-638.
[12] Campbell L, Liu H, Nolla H A, et al. Annual variability of phytoplankton and bacteria in the subtropical North Pacific Ocean at station ALOHA during the 1991-1994 ENSO event[J]. Deep Sea Research,1997,144:167-192.
[13] Karl D M. The role of nitrogen fixation in biogeochemical cycling in the subtropical north Pacific Ocean[J]. Nature, 1997,388: 533-538 .
[14] Karl D M.  A new source of “new” nitrogen in the sea[J]. Trends in Microbiology, 2000, 8(7): 301.
[15] Zehr J P, Carpenter E J, Villareal T A. New perspectives on nitrogen-fixing microorganisms in tropical and subtropical oceans[J].Trends in Microbiology, 2000, 8(2): 68-73.
[16] Zehr J P, Braun S, Chen Y-B, et al. Nitrogen fixation in the marine environment: Relating genetic potential to nitrogenase activity[J]. Journal of Experimental Marine Biology and Ecology, 1996,203:61-73.
[17] Zehr J P. New nitrogen fixing microorganisms detected in oligotrophic oceans by the amplification of nitrogenase(nifH) genes[J]. Applied and Environmental Microbiology, 1998, 64: 3 444-3 450.[18] Harris J M. The presence, nature, and role of gut microflora in aquatic invertebrates: A synthesis[J]. Microbial Ecology, 1993, 25: 195-231.
[19] Braun S. Molecular evidence for zooplanktonassociated nitrogen-fixing anaerobes based on amplification of the nifH gene[J]. FEMS Microbiology Ecology,1999, 28:273-279.
[20] Guerinot M L,Patriquin D G. The association of N2-fixing bacteria with sea urchins[J]. Marine Biology,1981, 62:197-207.
[21] Gallon J R. N2 fixation in phototrophs: Adaptation to a specialized way of life[J]. Plant Soil and Environment,2001, 230 : 39-48.
[22] Ren Ling, Yang Jun. Nitrogen nutrients cycling in marine environment and its modeling research[J]. Advances in Earth Science,2000,15(1):58-64.[任玲,杨军.海洋中氮营养盐循环及其模型研究[J].地球科学进展,2000,15(1):58-64.]
[23] Paerl  H W. Physiological ecology and regulation of N2 fixation in natural waters[J].  Advanced Microbial. Ecology,1990, 8: 305-344.
[24] Dugdale R C, Goering J J, Ryther J H. Nitrogen fixation in the Sargasso Sea[J]. Deep Sea Research, 1961, 7:298-300.
[25] Michaels A F. Inputs, losses and transformations of nitrogen and phosphorus in the pelagic North Atlantic Ocean[J]. Biogeochemistry,1996, 35:181-226.
[26] Falkowski P G. Evolution of the nitrogen cycle and its influence on the biological equestration of CO2 in the ocean[J]. Nature, 1997, 387:272-275.
[27] Karl D M. Nutrient dynamics in the deep blue sea[J]. Trends in Microbiology, 2002, 10(9): 410-418.
[28] Martin J H.Iron as a limiting factor[A]. In: Falkowski P G, Woodhead A, eds. Primary Productivity and Biogeochemical Cycles in the Sea[C].New York : Plenum Press,1992.123-137. 
[29] Goldman J C, McCarthy J J, Peavy D G. Growth rate influence the chemical composition  of  phytoplankton in oceanic waters[J]. Nature,1979,279:210-215.
[30] Ryther J H, Dunstan W M. Nitrogen, phosphorous and eutrophication in the coastal marine environment[J]. Science,1971,171:1 008-1 012.
[31] Fu F X, Bell P R F. Factors affecting N2 fixation by the cyanobacterium Trichodesmium sp. GBRTRLI101 [J]. Microbiology Ecology, 2003, 45: 203-209.
[32] Fu F X, Bell P R F.Growth, N2 fixation and photosynthesis in a cyanobacterium, Trichodesmium sp., under Fe stress[J].Biotechnology Letters,2003, 25 (8): 645-649.
[33] Bell P R F, Elmetri I,Uwins  P. Nitrogen fixation by Trichodesmium spp. in the Central and Northern Great Barrier Reef Lagoon relative importance of the fixed-nitrogen load[J]. Marine Ecology Progress Series, 1999,186:119-126.
[34] Ohki A, Zehr J P, Fujita Y. Regulation of nitrogenase activity in relation to the light-dark regime in the flamentous non-heterocystsous cyanobacterium Trichodesmium sp. NIBB 1067[J]. Journal of General and Applied Microbiology, 1992, 138:2 679-2 685.
[35] Omoregie E O, Crumbliss L L, Bebout B M, et al.Determination of nitrogen-fixing phylotypes in Lyngbya sp-and Microcoleus chthonoplastes cyanobacterial mats from Guerrero Negro, Baja California, Mexico[J]. Applied and Environmental Microbiology, 2004, 70 (4): 2 119-2 128.
[36] Berman-Frank I,Lundgren P,Chen Y-B,et al.Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium[J]. Science,2001,294:1 534-1 537.
[37] Evans A M, Gallon  J R,  Jones A,et al. Nitrogen fixation by Baltic cyanobacteria is adapted to the prevailing photon flux density[J]. New Phycology,2000,147:285-297.
[38] Paerl H W, Zehr J P. Marine nitrogen fixation[A]. In: Kirchman D L eds. Microbial Ecology of the Oceans[C]. New York: Wiley  Liss Press, 2000.387-426. 
[39] Zehr J P,Capone D G. Problems and promises of assaying the genetic potential for nitrogen fixation in the marine environment[J]. Microbial Ecology, 1996, 32 :263-281.
[40] Kumar D. Effect of light quality on the acetylene reduction activity of the isolated heterocysts  of  Anabaena sp. strain CA[J]. Journal of General and Applied Microbiology,1989,35:369-375.
[41] Berman-Frank I, Lundgren P, Falkowski P. Nitrogen fixation and photosynthetic oxygen evolution in Cyanobacteria[J].Microbiological Research,2003,154: 157-164.
[42] Adams D G.  Heterocyst formation in cyanobacteria[J]. Current Opinion in Microbiology, 2000, 3:618-624.
[43] Wang C M, Ekman M, Bergman B. Expression of cyanobacterial genes involved in heterocyst differentiation and dinitrogen fixation along a plant symbiosis development profile[J]. Molecular Plant Microbe Interactions, 2004, 17 (4): 436-443.
[44] Böhme H. Regulation of nitrogen fixation in heterocyst-forming cyanobacteria[J].Trends Plant, 1998, 3(9):346-351.
[45] Kasting J F, Siefert J L. Life and the evolution of Earth's atmosphere[J]. Science,2002, 296: 1 066-1 068.
[46] Kasting J F, Siefert J L. The nitrogen fix[J]. Nature, 2001, 412: 26-27.
[47] Anbar A D, Knoll A H. Proterozoic ocean chemistry and evolution:A bioinorganic bridge [J]. Science,2002, 297:1 137-1 142.
[48] Wolk C P, Ernst A, Elhai J. Heterocyst metabolism and developmnet[A]. In: Bryant D A ed. The Molecular Biology of Cyanobacteria[C]. Kluwer Academic Publishers, 1994. 769-823.
[49] Happe T, Schutz K, Böhme H. Transcriptional and mutational analysis of the uptake hydrogenase of the filamentous cyanobacterium Anabaena variabilis ATCC 29413[J].Journal of Bacteriology, 2000, 182 (6): 1 624-1 631.
[50] Buikema W J, Haselkorn R. Molecular genetics of cyanobacterial development[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1993, 44: 33-52.
[51] Thiel T. Chracterization of genes for an alternative nitrogenase in the cyanobacterium Anabaena variabilis[J]. Journal of Bacteriology,1993,175:6 276-6 286.
[52] Steward G F, Zehr J P, Jellison R, et al.Vertical distribution of nitrogen-fixing phylotypes in a meromictic, hypersaline lake[J]. Microbial Ecology, 2004,47(1): 30-40.
[53] Zehr J P,Capone D G. Problems and promises of assaying the genetic potential for nitrogen fixation in the marine environment[J]. Microbiology Ecology,1996, 32: 263-281.

[1] 张薇. 现代碳酸盐叠层石的重要进展及意义[J]. 地球科学进展, 2020, 35(1): 70-78.
[2] 康曼玉,贾国东. 固氮蓝细菌的一种生物标志物——异形胞糖脂及其研究进展[J]. 地球科学进展, 2019, 34(9): 901-911.
[3] 周涛, 蒋壮, 耿雷. 大气氧化态活性氮循环与稳定同位素过程:问题与展望[J]. 地球科学进展, 2019, 34(9): 922-935.
[4] 邹学勇, 张春来, 程宏, 亢力强, 吴晓旭, 常春平, 王周龙, 张峰, 李继峰, 刘辰琛, 刘博, 田金鹭. 土壤风蚀模型中的影响因子分类与表达[J]. 地球科学进展, 2014, 29(8): 875-889.
[5] 宋国栋,刘素美. 海洋环境中的厌氧铵氧化研究进展[J]. 地球科学进展, 2012, 27(5): 529-538.
[6] 杨志,陈敏. 海水硝酸盐氮、氧同位素组成研究进展[J]. 地球科学进展, 2012, 27(3): 268-275.
[7] 苏延桂,李新荣,赵昕,李爱霞,陈应武. 不同类型生物土壤结皮固氮活性及对环境因子的响应研究[J]. 地球科学进展, 2011, 26(3): 332-338.
[8] 石金辉,高会旺,张经. 大气有机氮沉降及其对海洋生态系统的影响[J]. 地球科学进展, 2006, 21(7): 721-729.
[9] 周莉;李保国;周广胜. 土壤有机碳的主导影响因子及其研究进展[J]. 地球科学进展, 2005, 20(1): 99-105.
[10] 李 林,张国胜,汪青春,时兴合. 黄河上游流域蒸散量及其影响因子研究[J]. 地球科学进展, 2000, 15(3): 256-259.
阅读次数
全文


摘要