地球科学进展 ›› 2019, Vol. 34 ›› Issue (9): 922 -935. doi: 10.11867/j.issn.1001-8166.2019.09.0922

综述与评述 上一篇    下一篇

大气氧化态活性氮循环与稳定同位素过程:问题与展望
周涛 1, 2( ),蒋壮 1, 2,耿雷 1, 2( )   
  1. 1. 冰芯和大气化学稳定同位素实验室 地球和空间科学学院 中国科学技术大学,安徽 合肥 230026
    2. 极地环境与全球变化安徽省重点实验室, 安徽 合肥 230026
  • 收稿日期:2019-06-23 修回日期:2019-08-08 出版日期:2019-09-10
  • 通讯作者: 耿雷 E-mail:zhoutao7@mail.ustc.edu.cn;genglei@ ustc.edu.cn;genglei@ustc.edu.cn
  • 基金资助:
    国家自然科学基金优秀青年科学基金项目“冰芯同位素地球化学”(41822605);国家自然科学基金面上项目“青藏高原冰雪硝酸盐同位素组成;大气臭氧波动的关系研究”(41871051)

Atmospheric Reactive Nitrogen Cycle and Stable Nitrogen Isotope Processes: Progresses and Perspectives

Tao Zhou 1, 2( ),Zhuang Jiang 1, 2,Lei Geng 1, 2( )   

  1. 1. Stable Isotope Laboratory of Ice Core and Atmospheric Chemistry,School of Earth and Spaces Sciences,University of Science and Technology of China,Hefei 230026,China
    2. Anhui Key Laboratory of Polar Environment and Global Change, Hefei 230026,China
  • Received:2019-06-23 Revised:2019-08-08 Online:2019-09-10 Published:2019-11-15
  • Contact: Lei Geng E-mail:zhoutao7@mail.ustc.edu.cn;genglei@ ustc.edu.cn;genglei@ustc.edu.cn
  • About author:Zhou Tao (1996-), female, Feixi County, Anhui Province, Ph.D student. Research areas include reactive nitrogen cycle with stable isotopes. E-mail: zhoutao7@mail.ustc.edu.cn
  • Supported by:
    the National Natural Science Foundation of China “Ice core stable isotope geochemistry” (No. 41822605) and “Atmospheric ozone variability as inferred from isotopic composition of Tibetan snow and ice core nitrate”(41871051)

大气中氧化态活性氮主要包括氮氧化物(NO X =NO+NO2)和硝酸等。NO X 的循环过程会影响臭氧和羟基自由基的浓度,进而影响大气氧化能力。NO X 的氧化终端产物硝酸是颗粒污染物的重要组成部分,其干湿沉降过程会对生态系统产生影响。氮稳定同位素(δ 15N)在大气活性氮循环,示踪区域和全球活性氮排放、传输和沉降等研究方面都展现出了一定的潜力。回顾目前用δ 15N研究NO X 排放和大气活性氮循环的现状,从NO X 的产生机制和收集分析方法等方面讨论NO X δ 15N数据的不确定性及原因,分析NO X 和硝酸在大气转化和传输过程中氮同位素的分馏效应和影响等,最后讨论用δ 15N示踪NO X 排放的可能性和问题。虽然目前用δ 15N量化示踪排放源还存在比较大的不确定性,但是δ 15N可以有效地示踪大气活性氮循环和转化过程。在此基础上,有望利用大气化学传输模型,结合同位素观测数据和分馏机制,对区域和全球大气活性氮循环过程中的同位素效应进行综合评估,提高用δ 15N研究大气氧化态活性氮来源以及循环的准确性和可靠性。

Oxidized reactive nitrogen in the atmosphere mainly consists of nitrogen oxides (NO X =NO+NO2, NO3) and nitric acid. The atmospheric cycling of NO X influences the formation of ozone and hydroxyl radicals that are important for atmospheric oxidation capacity. Nitric acid, the final product of NO X oxidation, not only is an important component of particulate pollutants, but also has a direct impact on the ecosystem through dry and wet deposition.

The stable nitrogen isotope (δ15N) shows the potential to study reactive nitrogen cycle, and to trace the emission, transport and deposition of reactive nitrogen from local to global scales. Here, we reviewed previous studies using δ15N to investigate NO X emission and atmospheric reactive nitrogen cycle, and discuss the uncertainties of δ15N signatures of different NO X sources from two aspects: NO X generation mechanism and NO X collection methods. We also discussed the nitrogen isotope fractionation and the consequences during the conversions of NO y molecules. We ended up with discussions on the possibility of using δ15N to trace NO X emissions. Although there are still large uncertainties in quantifying and tracing NO X emissions using nitrogen stable isotopes, such isotope tool is efficient enough to trace reactive nitrogen cycles in the atmosphere. On the basis of this, we proposed that we can combine atmospheric chemistry transmission models with isotope tracers to improve our understanding of regional and global atmospheric reactive nitrogen cycle regarding the fluxes of different emission sources, their atmospheric transformation, etc.

中图分类号: 

图1 不同源排放的NO X δ 15N
Fig.1 δ 15N values of various NO X emission sources
表1 NO X 收集方法的总结
Table 1 Summary of NO X collection methods
1 Alexander B , Mickley L J . Paleo-perspectives on potential future changes in the oxidative capacity of the atmosphere due to climate change and anthropogenic emissions[J]. Current Pollution Reports, 2015, 1(2): 57-69.
2 Galloway J N , Dentener F J , Capone D G , et al . Nitrogen cycles: Past, present, and future[J]. Biogeochemistry, 2004, 70(2): 153-226.
3 Hastings M G , Casciotti K L , Elliott E M . Stable isotopes as tracers of anthropogenic nitrogen sources, deposition, and impacts[J]. Elements, 2013, 9(5): 339-344.
4 Galloway J N , Aber J D , Erisman J W , et al . The nitrogen cascade[J]. BioScience, 2003, 53(4): 341-356.
5 Logan J A . Nitrogen oxides in the troposphere: Global and regional budgets[J]. Journal of Geophysical Research: Oceans, 1983, 88(NC 15): 10 785-10 807.
6 Leighton P A . Sunlight and health hazards. (Book reviews: Photochemistry of air pollution)[J]. Science, 1962, 135(3 502):427-428.
7 Park R J , Jacob D J , Field B D , et al . Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: Implications for policy[J]. Journal of Geophysical Research, 2003, 109(D15): D15 204.
8 Lamarque J F , Bond T C , Eyring V , et al ., Historical (1850-2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application [J]. Atmospheric Chemistry and Physics, 2010, 10(15): 7 017-7 039.
9 Tao J , Zhang L , Cao J , et al . A review of current knowledge concerning PM2.5 chemical composition, aerosol optical properties and their relationships across China[J]. Atmospheric Chemistry and Physics, 2017, 17: 9 485-9 518.
10 Sun Y , Zhuang G , Tang A , et al . Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing[J]. Environmental science and technology, 2006, 40(10): 3 148-3 155.
11 Lamarque J F , Kiehl J T , Brasseur G P , et al . Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach: Analysis of nitrogen deposition[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D19).DOI:10.1029/2005JD005825 .
doi: 10.1029/2005JD005825    
12 Lamarque J F , Dentener F , Mcconnell J , et al . Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Evaluation historical and projected changes[J]. Atmospheric Chemistry and Physics, 2013, 13(16): 7 997-8 018.
13 Murray L T , Mickley L J , Kaplan J O , et al . Factors controlling variability in the oxidative capacity of the troposphere since the Last Glacial Maximum[J]. Atmospheric Chemistry and Physics Discussions, 2013, 13(9): 3 589-3 622.
14 Skeie R B , Berntsen T K , Myhre G , et al . Anthropogenic radiative forcing time series from pre-industrial times until 2010[J]. Atmospheric Chemistry and Physics, 2011, 11(8): 22 545-22 617.
15 Stevenson D S , Young P J , Naik V , et al . Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Inter-comparison Project (ACCMIP)[J]. Atmospheric Chemistry and Physics, 2013, 13(6): 3 063-3 085.
16 Levy H , Moxim W J , Klonecki A A , et al . Simulated tropospheric NO X : Its evaluation, global distribution and individual source contributions[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D21): 26 279-26 306.
17 Fang Y T , Koba K , Wang X M , et al . Anthropogenic imprints on nitrogen and oxygen isotopic composition of precipitation nitrate in a nitrogen-polluted city in southern China[J]. Atmospheric Chemistry & Physics: Discussions, 2010, 10(9): 1 313-1 325.
18 Elliott E M , Kendall C , Wankel S D , et al . Nitrogen isotopes as indicators of NO X source contributions to atmospheric nitrate deposition across the midwestern and northeastern United States[J]. Environmental Science and Technology, 2007, 41(22): 7 661-7 667.
19 Yang Z , Chen J , Li H , et al . Sources of nitrate in Xiangshan Bay (China), as identified using nitrogen and oxygen isotopes[J]. Estuarine, Coastal and Shelf Science, 2018, 207: 109-118.
20 Hastings M G , Sigman D M , Lipschultz F . Isotopic evidence for source changes of nitrate in rain at Bermuda[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D24). DOI: 10.1029/2003JD003789 .
doi: 10.1029/2003JD003789    
21 Reich M , Bao H . Nitrate deposits of the Atacama Desert: A marker of long-term hyperaridity[J]. Elements, 2018, 14(4): 251-256.
22 Hastings M G , Jarvis J C , Steig E J . Anthropogenic impacts on nitrogen isotopes of ice-core nitrate[J]. Science, 2009, 324(5 932): 1 288.
23 Wolff E W , Jones A E , Bauguitte S J B , et al . The interpretation of spikes and trends in concentration of nitrate in polar ice cores, based on evidence from snow and atmospheric measurements[J]. Atmospheric Chemistry and Physics, 2008, 8(18): 5 627-5 634.
24 Geng L , Alexander B , Coledai J , et al . Nitrogen isotopes in ice core nitrate linked to anthropogenic atmospheric acidity change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(16): 5 808.
25 Geng L , Zatko M C , Alexander B , et al . Effects of postdepositional processing on nitrogen isotopes of nitrate in the Greenland Ice Sheet Project 2 ice core[J]. Geophysical Research Letters, 2015, 42(13): 5 346-5 354.
26 Fibiger D L , Dibb J E , Chen D , et al . Analysis of nitrate in the snow and atmosphere at Summit, Greenland: Chemistry and transport[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(9): 5 010-5 030.
27 Geng L , Coledai J , Alexander B , et al . On the origin of the occasional spring nitrate peak in Greenland snow[J]. Atmospheric Chemistry and Physics Discussions, 2014, 14(7): 13 361-13 376.
28 Li D J , Wang X M . Nitrogen isotopic signature of soil-released nitric oxide (NO) after fertilizer application[J]. Atmospheric Environment, 2008, 42(19): 4 747-4 754.
29 Hastings M G , Sigman D M , Steig E J . Glacial/interglacial changes in the isotopes of nitrate from the Greenland Ice Sheet Project 2 (GISP2) ice core[J]. Global Biogeochemical Cycles, 2005, 19(4).DOI:10.1029/2005GB00502 .
doi: 10.1029/2005GB00502    
30 Hastings M G , Steig E J , Sigman D M . Seasonal variations in N and O isotopes of nitrate in snow at Summit, Greenland: Implications for the study of nitrate in snow and ice cores[J]. Journal of Geophysical Research Atmospheres, 2004, 109(D20).DOI:10.1029/2004JD004991 .
doi: 10.1029/2004JD004991    
31 Geng L , Coledai J , Alexander B , et al . On the origin of the occasional springtime nitrate concentration maximum in Greenland snow[J]. Atmospheric Chemistry and Physics, 2014, 14(7):13 361-13 376.
32 Geng L , Murray L T , Mickley L J , et al . Isotopic evidence of multiple controls on atmospheric oxidants over climate transitions[J]. Nature, 2017, 546(7 656):133-136.
33 Ammann M , Siegwolf R , Pichlmayer F , et al . Estimating the uptake of traffic-derived NO2 from 15N abundance in Norway spruce needles[J]. Oecologia, 1999, 118(2): 124-131.
34 Redling K , Elliott E , Bain D , et al . Highway contributions to reactive nitrogen deposition: Tracing the fate of vehicular NO X using stable isotopes and plant biomonitors[J]. Biogeochemistry, 2013, 116(1/3): 261-274.
35 Felix J D , Elliott E M . Isotopic composition of passively collected nitrogen dioxide emissions: Vehicle, soil and livestock source signatures[J]. Atmospheric Environment, 2014, 92: 359-366.
36 Felix J D , Elliott E M , Shaw S L . Nitrogen isotopic composition of coal-fired power plant NO X : Influence of emission controls and implications for global emission inventories[J]. Environmental Science and Technology, 2012, 46(6): 3 528-3 535.
37 Freyer H D . Seasonal trends of NH 4 + and NO 3 - nitrogen isotope composition in rain collected at Jülich, Germany[J]. Tellus, 1978, 30(1): 83-92.
38 Heaton T H E . 15N/14N ratios of NO X from vehicle engines and coal-fired power stations[J]. Tellus, 1990, 42(3): 304-307.
39 Hoering T . The isotopic composition of the ammonia and the nitrate ion in rain[J]. Geochimica et Cosmochimica Acta, 1957, 12(1): 97-102.
40 Moore H . The isotopic composition of ammonia, nitrogen dioxide and nitrate in the atmosphere[J]. Atmospheric Environment, 1977, 11(12): 1 239-1 243.
41 Walters W W , Goodwin S R , Michalski G . Nitrogen stable isotope composition (δ 15N) of vehicle-emitted NO X [J]. Environmental Science and Technology, 2015, 49(4): 2 278-2 285.
42 Walters W W , Tharp B D , Fang H , et al . Nitrogen isotope composition of thermally produced NO X from various fossil-fuel combustion sources[J]. Environmental Science and Technology, 2015, 49(19): 11 363-11 371.
43 Widory D . Nitrogen isotopes: Tracers of origin and processes affecting PM10 in the atmosphere of Paris[J]. Atmospheric Environment, 2007, 41(11): 2 382-2 390.
44 Yu Z , Elliott E M . Novel method for nitrogen isotopic analysis of soil-emitted nitric oxide[J]. Environmental science and technology, 2017, 51(11): 6 268-6 278.
45 Fibiger D L , Hastings M G . First measurements of the nitrogen isotopic composition of NO X from biomass burning[J]. Environmental Science & Technology, 2016, 50(21): 11 569-11 574.
46 Jaeglé L , Steinberger L , Martin R V , et al . Global partitioning of NO X sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions[J]. Faraday Discussions, 2005, 130: 407-423.
47 Granier C , Bessagnet B , Bond T , et al . Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980-2010 period[J]. Climatic Change, 2011, 109(1/2): 163.
48 Srivastava R K , Hall R E , Khan S , et al . Nitrogen oxides emission control options for coal-fired electric utility boilers[J]. Journal of the Air & Waste Management Association, 2005, 55(9): 1 367-1 388.
49 Shelef M , McCabe R W . Twenty-five years after introduction of automotive catalysts: What next?[J]. Catalysis Today, 2000, 62(1): 35-50.
50 Taylor K C . Nitric oxide catalysis in automotive exhaust systems[J]. Catalysis Reviews, 1993, 35(4): 457-481.
51 Huber K P , Herzberg G .Constants of diatomic molecules[M]//Molecular Spectra and Molecular Structure. New York: Springer, 1979: 8-689.
52 L?ffler G , Sieber R , Harasek M , et al . NO X formation in natural gas combustion—A new simplified reaction scheme for CFD calculations[J]. Fuel, 2006, 85(4): 513-523.
53 Vinken G C M , Boersma K F , Maasakkers J D , et al . Worldwide biogenic soil NO X emissions inferred from OMI NO2 observations[J]. Atmospheric Chemistry and Physics, 2014, 14(14): 10 363-10 381.
54 Davidson E A , Kingerlee W . A global inventory of nitric oxide emissions from soils[J]. Nutrient Cycling in Agroecosystems, 1997, 48(1/2): 37-50.
55 Yu Z , Elliot E M . A novel method for nitrogen isotopic analysis of soil-emitted nitric oxide (NO)[J]. Environmental Science & Technology, 2017, 51(11): 6 268.
56 Kendall C , Elliott E M , Wankel S D . Tracing anthropogenic inputs of nitrogen to ecosystems[J]. Stable Isotopes in Ecology and Environmental Science, 2007, 2: 375-449.
57 Jaffe D A , Wigder N L . Ozone production from wildfires: A critical review[J]. Atmospheric Environment, 2012, 51(5): 1-10.
58 Sheng W , Yu G , Fang H , et al . Regional patterns of 15N natural abundance in forest ecosystems along a large transect in eastern China[J]. Scientific Reports, 2014,4: 4 249.
59 Qin Rui , Shi Guitao , Chen Zhenlou . Review of the study on the stable isotopes of nitrogen and oxygen in atmospheric nitrate[J]. Advances in Earth Science, 2019, 34(2):14-29.
秦瑞, 史贵涛, 陈振楼 . 大气硝酸盐中氮氧稳定同位素研究进展[J]. 地球科学进展, 2019, 34(2):14-29.
60 Walters W W , Simonini D S , Michalski G . Nitrogen isotope exchange between NO and NO2 and its implications for δ 15N variations in tropospheric NO X and atmospheric nitrate[J]. Geophysical Research Letters, 2016, 43(1): 440-448.
61 Freyer H D , Kley D , Volz-Thomas A , et al . On the interaction of isotopic exchange processes with photochemical reactions in atmospheric oxides of nitrogen[J]. Journal of Geophysical Research: Atmospheres, 1993, 98(D8): 14 791-14 796.
62 Walters W W , Fang H , Michalski G . Summertime diurnal variations in the isotopic composition of atmospheric nitrogen dioxide at a small midwestern United States city[J]. Atmospheric Environment, 2018, 179: 1-11.
63 Dahal B , Hastings M G . Technical considerations for the use of passive samplers to quantify the isotopic composition of NO X and NO2 using the denitrifier method[J]. Atmospheric Environment, 2016, 143: 60-66.
64 Robinson J K , Bollinger M J , Birks J W . Luminol/H2O2 chemiluminescence detector for the analysis of nitric oxide in exhaled breath[J]. Analytical chemistry, 1999, 71(22): 5 131-5 136.
65 Fibiger D L , Hastings M G , Lew A F , et al . Collection of NO and NO2 for Isotopic Analysis of NO X Emissions[J]. Analytical Chemistry, 2014, 86(24): 12 115-12 121.
66 Begun G M , Fletcher W H . Partition function ratios for molecules containing nitrogen isotopes[J]. The Journal of Chemical Physics, 1960, 33(4):1 083.
67 Walters W W , Michalski G . Ab initio study of nitrogen and position-specific oxygen kinetic isotope effects in the NO+O3 reaction[J]. The Journal of chemical physics, 2016, 145(22): 224 311.
68 Gobel A R , Altieri K E , Peters A J , et al . Insights into anthropogenic nitrogen deposition to the North Atlantic investigated using the isotopic composition of aerosol and rainwater nitrate[J]. Geophysical Research Letters, 2013, 40(22): 5 977-5 982.
69 Chang W L , Bhave P V , Brown S S , et al . Heterogeneous atmospheric chemistry, ambient measurements, and model calculations of N2O5: A review[J]. Aerosol Science and Technology, 2011, 45(6): 665-695.
70 Walters W W , Michalski G . Theoretical calculation of oxygen equilibrium isotope fractionation factors involving various NOy molecules, OH, and H2O and its implications for isotope variations in atmospheric nitrate[J]. Geochimica et Cosmochimica Acta, 2016, 191: 89-101.
71 Walters W W , Michalski G . Theoretical calculation of nitrogen isotope equilibrium exchange fractionation factors for various NOy molecules[J]. Geochimica et Cosmochimica Acta, 2015, 164: 284-297.
72 Freyer H D . Seasonal variation of 15N/14N ratios in atmospheric nitrate species[J]. Tellus B, 1991, 43(1): 30-44.
73 Meng Z , Seinfeld J H . Time scales to achieve atmospheric gas-aerosol equilibrium for volatile species[J]. Atmospheric Environment, 1996, 30(16): 2 889-2 900.
74 Heaton T H E , Spiro B , Robertson S M C . Potential canopy influences on the isotopic composition of nitrogen and sulphur in atmospheric deposition[J]. Oecologia, 1997, 109(4): 600-607.
75 Phillips D L , Koch P L . Incorporating concentration dependence in stable isotope mixing models[J]. Oecologia, 2002, 130(1): 114-125.
76 Deutsch B , Mewes M , Liskow I , et al . Quantification of diffuse nitrate inputs into a small river system using stable isotopes of oxygen and nitrogen in nitrate[J]. Organic Geochemistry, 2006, 37(10): 1 333-1 342.
77 Parnell A C , Inger R , Bearhop S , et al . Source partitioning using stable isotopes: Coping with too much variation[J]. Plos One, 2010, 5(3): e9672.
78 Wang Jing , Ye Yin , Wang Yunqing , et al . Using δ 15N and δ 18O values to identify sources of nitrate in the Dianbu River in the Chaohu Lake Basin[J]. Journal of Hydraulic Engineering, 2017, 48(10): 1 195-1 205.
王静, 叶寅, 王允青,等 .利用氮氧同位素示踪技术解析巢湖支流店埠河硝酸盐污染源[J]. 水利学报, 2017, 48(10): 1 195-1 205.
[1] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[2] 罗中原,李江涛,贾国东. 深水珊瑚的食物及其地球化学意义[J]. 地球科学进展, 2019, 34(12): 1234-1242.
[3] 刘贤赵, 张勇, 宿庆, 田艳林, 王庆, 全斌. 陆生植物氮同位素组成与气候环境变化研究进展[J]. 地球科学进展, 2014, 29(2): 216-226.
[4] 杨志,陈敏. 海水硝酸盐氮、氧同位素组成研究进展[J]. 地球科学进展, 2012, 27(3): 268-275.
[5] 邓林,曹玉清,王文科. 地下水NO - 3氮与氧同位素研究进展[J]. 地球科学进展, 2007, 22(7): 716-724.
[6] 陈法锦,李学辉,贾国东. 氮氧同位素在河流硝酸盐研究中的应用[J]. 地球科学进展, 2007, 22(12): 1251-1257.
[7] 张翠云;张胜;李政红;刘少玉. 利用氮同位素技术识别石家庄市地下水硝酸盐污染源[J]. 地球科学进展, 2004, 19(2): 183-191.
阅读次数
全文


摘要